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Abstract
We examined the relationship between the Bayes factor and the separation of credible intervals in between- and within-subject 
designs under a range of effect and sample sizes. For the within-subject case, we considered five intervals: (1) the within-
subject confidence interval of Loftus and Masson (1994); (2) the within-subject Bayesian interval developed by Nathoo et al. 
(2018), whose derivation conditions on estimated random effects; (3) and (4) two modifications of (2) based on a proposal 
by Heck (2019) to allow for shrinkage and account for uncertainty in the estimation of random effects; and (5) the standard 
Bayesian highest-density interval. We derived and observed through simulations a clear and consistent relationship between 
the Bayes factor and the separation of credible intervals. Remarkably, for a given sample size, this relationship is described 
well by a simple quadratic exponential curve and is most precise in case (4). In contrast, interval (5) is relatively wide due 
to between-subjects variability and is likely to obscure effects when used in within-subject designs, rendering its relation-
ship with the Bayes factor unclear in that case. We discuss how the separation percentage of (4), combined with knowledge 
of the sample size, could provide evidence in support of either a null or an alternative hypothesis. We also present a case 
study with example data and provide an R package ‘rmBayes’ to enable computation of each of the within-subject credible 
intervals investigated here using a number of possible prior distributions.

Keywords  Bayes factor · Credible intervals · Within-subject designs · Within-subject intervals

Introduction

Phenomena such as p-hacking and the file-drawer effect are 
important issues in science and are associated with an over-
reliance on null-hypothesis significance testing (NHST) in 
experimental psychology (Hu et al., 2016; Kline, 2013) and 
other areas. Even established researchers can sometimes 
misinterpret p-values and can, as a result, fail to replicate 
their studies and properly interpret their results (Etz & 
Vandekerckhove, 2016). Seeking alternatives to the p-value 
approach, researchers have lately advocated alternative 
statistical methods to assess the strength of the evidence 
for the presence of an effect of interest. These alternatives 

include interval estimation (e.g., Cumming, 2014; Eich, 
2014; Heck, 2019; Loftus & Masson, 1994; Nathoo et al., 
2018; Wagenmakers et al., 2022) and the Bayes factor (e.g., 
Kass & Raftery, 1995; Masson, 2011; Rouder et al., 2012; 
Rouder et al., 2017; Wagenmakers et al., 2010).

Although the relationship between confidence intervals 
and NHST is established and well understood in between- 
or within-subject designs (Franz & Loftus, 2012; Loftus & 
Masson, 1994; Schenker & Gentleman, 2001), the analo-
gous relationship between credible intervals and the Bayes 
factor is not fully understood and is the topic of this arti-
cle. Focusing on the linear mixed-effects model, we delin-
eate this relationship and explore how it varies for different 
types of interval estimates and under a range of simu-
lated effect sizes and sample sizes. Our study considers 
five interval estimates, and these are detailed in Table 1: 
(1) the within-subject confidence interval of Loftus and 
Masson (1994; LM-CI); (2) the analogous within-subject 
Bayesian interval developed by Nathoo et al. (2018; NKM-
HDI), whose derivation conditions on estimated random 
effects; (3) and (4) two modifications of (2) based on a 
proposal by Heck (2019; LH-HDI and JZS-HDI) to allow 
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for shrinkage and account for uncertainty in the estimation 
of random effects; and (5) the standard Bayesian highest-
density interval (HDI). The within-subject HDI labeled 
as JZS-HDI assumes the same prior distribution as that 
used to compute the default Bayes factor for analysis of 
variance (ANOVA) designs in Rouder et al. (2012). In 
the case of within-subject intervals, the intervals reflect 
uncertainty about the relative magnitudes of the popula-
tion means rather than their absolute values.

In either a balanced between-subjects design or a 
within-subject design using LM-CI, the point estimates of 
two population means have a statistically significant differ-
ence if they are separated by at least 

√
2 times the width of 

the associated frequentist interval estimate (Loftus & Mas-
son, 1994, p. 482). Note that this multiplier is constant over 
sample sizes. The width of an interval is, by convention, 
the half-length from the lower bound to the upper bound 
of the interval. Using the pooled estimate for the standard 
error of the mean to compute the confidence interval when 
homogeneity of variance holds ensures that all conditions 
will have the same interval width. We calculated the sepa-
ration percentage for the interval estimates of two popula-
tion means as the absolute difference between two interval 
centers over the twofold interval width. Hence, 50% sepa-
ration indicates that the smaller condition mean touches the 
lower boundary of the larger mean’s interval, and 100% 
separation indicates that the upper bound of the smaller 
mean’s interval touches the lower bound of the interval for 
the larger mean (see Fig. 1). If the intervals do not overlap 
at all, separation exceeds 100%. For example, if the upper 
bound for the smaller mean’s interval is separated from the 
lower bound of the larger mean by a distance equal to the 
interval’s width, then the separation percent is 150%. When 
it comes to unequal interval widths, we propose a more 
general definition of separation percent, in which the 
denominator of the formula is the root mean square of the 

two interval lengths, l =
√(

l2
1
+ l2

2

)
∕2.1 For example, if 

two midpoints are one unit apart, and their interval lengths 
are two units and one unit, then the separation percentage 
is calculated as 1∕

√(
22 + 12

)
∕2 ≈ 63% (see Fig. 1). Note 

that if this formula is applied to cases with equal interval 
widths, the denominator will reduce to the simple twofold 
interval width.

The Bayes factor BF10 =
p(Data ∣ M1)
p(Data ∣ M0)

 is the ratio of the 
marginal likelihood of the observed data under the alterna-
tive model (that includes an experimental effect) to the 
marginal likelihood of the same data under the null model 
(that assumes no such effect). Bayesian approaches have 
advantages over NHST, which include (1) strict depend-
ence on the observed data and not on hypothetical repli-
cate data, (2) immunity to data collection practices such 
as optional stopping, and (3) quantification of statistical 
evidence taking both the null and alternative hypotheses 
into account, including the possibility of assessing the 
strength of evidence in favor of the null (Dienes, 2021; 
Nathoo & Masson, 2016; Wagenmakers, 2007). Rouder 
et al. (2012) developed a suite of methods for computing 
Bayes factors for ANOVA designs by assuming the Jef-
freys prior for the overall mean and residual variance (Jef-
freys, 1946), a g-prior structure for effects (Zellner & 
Siow, 1980), and independent scaled inverse-chi-square 
priors with one degree of freedom for the scale 

Table 1   Overview of the interval estimates for population means

Note. A linear mixed-effects model is Yij = �i + bj + �ij, �ij

i.i.d.
∼ N

(
0, �2

�

)
 , for i = 1, ⋯, a and =1, ⋯, n; μi is the mean of the responses at the ith 

level; bj is a mean-zero random effect for the jth subject. The sample mean for the ith condition is Mi·. The within-group sum-of-squares (SS) is 
SSW. The interaction SS is SSS × C. t∗ refers to a critical value for the t-distribution

Label Equation Description

CI
Mi⋅ ±

√
SSW

n(n−1)a
⋅ t∗

1−
�

2
, a(n−1)

Standard confidence interval

HDI Markov chain Monte Carlo sampling of μi Standard highest-density interval

LM-CI
Mi⋅ ±

√
SSS×C

n(n−1)(a−1)
⋅ t

∗

1−
�

2
, (n−1)(a−1)

Within-subject CI

NKM-HDI
Mi⋅ ±

√
SSS×C

n(n−1)a
⋅ t

∗

1−
�

2
, a(n−1)

Conditional within-subject HDI

LH- or JZS-HDI
�

�
�i ±

�
�√
n
⋅ t∗

1−
�

2
, a(n−1)

∣ Data

�
  

Modification of NKM-HDI

1  Other types of averages can also be used. The root mean square is 
preferable because it connects the pooled confidence interval width 
( l = t∗

1−
�

2
, n1+n2−2

⋅ sp

√
1

n1
+

1

n2
 ) for the difference between means in a 

two-sample t-test to the confidence interval widths 
( li = t∗

1−
�

2
, n1+n2−2

⋅ sp

√
1

ni
 ) for the population means in an unbalanced 

one-way ANOVA with two conditions. l2 = l2
1
+ l2

2
 , and sp is the 

pooled estimate of the common standard deviation.
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hyperparameters of the g-priors. These hierarchical speci-
fications are widely adopted default priors for Bayesian 
model selection because of the consistency and computa-
tional efficiency in evaluating marginal likelihoods (Liang 
et al., 2008). Although the Bayes factor may not have a 
closed-form solution for linear models, its multi-dimen-
sional integral computation can be fulfilled by calling a 
suite of functions in the ‘BayesFactor’ R  package by 
Morey and Rouder (2022).

Lovric (2020) investigated the relationship between 
decision rules based on the Bayes factor and decision 
rules based on credible intervals. That study compared 
only the operating characteristics of decision rules but did 
not consider any specific functional relationship between 
the two quantities. Within the context of testing a single 
normal mean with known variance, Lovric demonstrated 
settings where the decision rules conflict. A limitation 
of this study is its formulation of the comparison based 
on the outcome of decision rules and summary in terms 
of agreement or disagreement of decision rules based on 
the two approaches. Similarly, within the paradigm of 
equivalence testing (where the null hypothesis is non-
equivalence), Linde et al. (2021) compared the classifi-
cation performance of three approaches, namely, (1) two 
one-sided tests, (2) HDI-region of practical equivalence 
(Kruschke, 2018), and (3) interval Bayes factor, in a bal-
anced independent-samples t-test, with respect to type I 
error rate (α) and statistical power. Linde et al. proposed 
using the interval Bayes factor for finding evidence of 
equivalence, especially when the sample size is inade-
quate. However, Campbell and Gustafson (2021) argued 
that these three approaches would produce the same per-
formance when calibrated to have the same predetermined 
maximum α.

Our simulation study, conducted using a one-way linear 
model and one-way linear mixed model, investigates the 
relationship between the separation of credible intervals 

and Bayes factors for testing equality of the correspond-
ing parameters (population means) associated with two 
conditions and a fixed sample size. A primary contribution 
of this article is thus to report the discovery of a remark-
ably simple quadratic exponential relationship between the 
two quantities, which holds for a given sample size. To 
our knowledge, no such relationship has been previously 
reported in the literature. A secondary contribution is the 
development of user-friendly and comprehensive software 
for the computation of Bayesian interval estimates for 
within-subject designs.

The rest of the paper proceeds as follows. We articulate 
the assumptions and prior distributions for the correspond-
ing statistical models for both between- and within-subject 
designs. In between-subjects designs, we derive the analytic 
form for the function relating the separation of confidence 
intervals to the Bayes factor through a limit theorem. This 
relationship is for a fixed sample size, and the approxima-
tion becomes more accurate as the sample size increases. 
In the within-subject design, we discuss Table 1’s methods 
of constructing the interval estimates for population means 
and introduce an R package to enable computation of these 
estimates. Next, we describe a series of Monte Carlo simu-
lation studies and present the results across various param-
eter settings along with quadratic exponential curve fits. 
Our limit theorem for between-subjects designs suggests 
that the relationship observed in our simulation studies for 
within-subject designs is an asymptotic one. We also exam-
ine results under a range of sample sizes and provide bench-
marks (1) to evaluate the Bayes factor when two JZS-HDIs 
barely overlap and (2) to evaluate the separation between 
intervals for two condition means computed using JZS-HDI 
when the Bayes factor presents moderate evidence for an 
effect. We extend the designs to multilevel and multiway 
ANOVA with application demonstrations on experimental 
data. Finally, we conclude the paper with overall recom-
mendations and a discussion of limitations and future work.

Fig. 1   Examples of the separation percentage for the interval estimates of two population means. A general definition of the separation percent-
age of any two intervals is given as the distance between two interval centers divided by the root mean square of interval lengths
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Between‑subjects design

Consider a linear model (1) for the mean response in a one-
way between-subjects design

where Yij represents the response for the jth subject under 
the ith level of the experimental manipulation; μ is the over-
all mean, τi is the ith level of the experimental manipulation 
(μi = μ + τi for the means model, where μi is the ith population 
mean); a is the number of levels; ni is the number of subjects 
in the ith group. The classical ANOVA, as well as the Bayes 
factor approach, tests the null hypothesis M0 ∶ �1 = ⋯ = �a 
versus the alternative hypothesis M1 that at least one mean is 
different. When considering the overlap in the interval esti-
mates of two of the population means, μp and μq at levels p 
and q, respectively, the implicit null and alternative hypoth-
eses are M�

0
∶ �p = �q versus M�

1
∶ �p ≠ �q . That is, consid-

eration of the overlap is based on a simpler pair of models in 
which just two population means are involved. These two sets 
of null and alternative hypotheses are the same when a = 2.

It is common to re-parameterize effect size as ti = τi /σϵ so 
that the treatment effects are standardized relative to the stand-
ard deviation of the error and become dimensionless (Jeffreys, 
1961; Rouder et al., 2012, p. 359). A Jeffreys prior on μ and �2

�
 

for both models is

In the Bayesian context, we assume that

so that the resulting Bayes estimators will exhibit a data-
dependent shrinkage towards zero (the posterior estimate 
is shifted from the sample mean towards the prior mean; 
Armitage et al., 2002). Aside from the specific form adopted 
here, a general class of shrinkage priors can arise based on a 
Gaussian scale-mixture formulation through different choices of 
the distribution for g (Carvalho et al., 2010; Casella et al., 2010). 
When modeling fixed effects (i.e., ti is assumed to be constant 
for all trials), Rouder et al. (2012) proposed default priors by 
projecting a set of a condition effects into a − 1 parameters, with 
the property that the marginal prior on all a effects is identical, 
such that

and

(1)Yij = � + �i + �ij, �ij

i.i.d.
∼ N

(
0, �2

�

)
,

for i = 1,⋯ , a and j = 1,⋯ , ni,

(2)�

(
�, �2

�

)
∝

1

�2
�

.

(3)ti ∣ g
i.i.d.
∼ N(0, g),

(4)t⋆
i
∣ g

i.i.d.
∼ N(0, g),

(5)
(
t⋆
1
,⋯ , t⋆

a−1

)
=
(
t1,⋯ , ta

)
⋅Q,

where Ia is the identity matrix of size a × a, Ja is the all-ones 
matrix of size a × a, Q is an a × (a − 1) matrix of the a − 1 
eigenvectors of unit length corresponding to the nonzero 
eigenvalues of the left-side term in Equation 6, and (t1, ⋯, ta) 
is a row vector. For example, t⋆

1
=

√
2

2

�
t1 − t2

�
 when a = 2. 

Based on Zellner and Siow (1980), g-priors assume that

where h is a tuning parameter that specifies a priori the 
expected range of effect sizes. In our study, we used a scale 
fixed effect h = 0.5 and a scale random effect h = 1. Rouder 
et al. (2012, p. 363) concluded that consideration of fixed or 
random effects was not critical for balanced one-way designs 
(n1 = ⋯ = na = n), and the resulting Bayes factors shared the 
same expression. The marginal prior density of the column 
vector (t1, ⋯, ta)⊤ is a heavy-tailed multivariate Cauchy dis-
tribution (e.g., Kotz & Nadarajah, 2004).

Analytic Bayes factors for ANOVA

Two impediments to adopting the Bayes factor approach 
are usually the complexity regarding the high-dimensional 
integration of the marginal probabilities and the subjectivity 
associated with choosing the prior distributions (Craiu et al., 
2022; Kass & Raftery, 1995; Morey et al., 2016). Default 
Bayes factors using the priors in Equations 2 to 7 have the 
advantage of preventing Bartlett’s paradox (the Bayes fac-
tor approaches zero as the prior variance increases; Wang 
& Liu, 2016) and the information paradox (the Bayes fac-
tor tends to be bounded, given overwhelming information; 
Ly et al., 2016). In the case of the Bayesian two-sample 
t-test (equivalently, a between-subjects design where the 
number of conditions is a = 2), the default ttestBF and ano-
vaBF functions in the ‘BayesFactor’ R package by Morey 
and Rouder (2022) return the same Bayes factor value 
(Wei et al., 2022b, p. 9). Unlike the anovaBF function, the 
ttestBF function yields negligible Monte Carlo errors and 
does not require specifying the number of Markov chain 
Monte Carlo (MCMC) iterations. This convenience is made 
possible because the computation of the so-called Jeffreys-
Zellner-Siow (JZS) Bayes factor for the Bayesian t-test is 
just the integration across one dimension in Equation 8 (Ly 
et al., 2016, p. 24; Rouder et al., 2012, p. 360; Rouder et al., 
2009, p. 237; see also the balanced one-way between-sub-
jects ANOVA in Morey et al., 2011, p. 374), so that Monte 
Carlo sampling is not necessary. In particular, n = n1n2/
(n1 + n2) represents the effective sample size (the default 
scale parameter is h =

√
2∕2 ), n1 and n2 are the sample sizes 

for two groups, and ν = n1 + n2 − 2 is the degrees of freedom 
in a two-sample t-test.

(6)Ia − a−1Ja = Q ⋅Q⊤,

(7)g ∼ Scale-inv-�2
(
1, h2

)
,
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(8)
JZS-BF10 = (2�)−

1

2 h

(
1 +

t2

ν

) ν+1

2

∫
∞

0

(1 + ng)−
1

2

(
1 +

t2

(1 + ng)ν

)−
ν+1

2

g
−

3

2 e
−

h2

2g dg.

The JZS Bayes factor can be computed simply based on 
the t-statistic and the sample size using the integral repre-
sentation in Equation 8. Relatedly, Jeffreys (1936, p. 417) 
provided a Bayes factor approximation for a point-null 
hypothesis test, which took the form of 

√
n multiplying an 

exponential function of the Wald test statistic (W = t2; see 
also Lovric, 2020; Ly et al., 2018; Wagenmakers, 2022). 
Faulkenberry (2021) introduced the Pearson Bayes factor for 
the one-way between-subjects ANOVA and expressed it in 
an analytic form using the ANOVA F-statistic and its 
degrees of freedom, assuming the Pearson type VI distribu-
tion for the ratio of variance components g, i.e., 
�(g) =

gβ(1+g)−γ−β−2

B(γ+1, β+1)
 , where B(γ + 1, β + 1) is the beta function 

with γ, β >  − 1. Maruyama and George (2011, p. 2749) and 
Wang and Sun (2014, p. 5078) imposed the shape parameters 
β =

N−a

2
− γ − 2 to further simplify the prior specification. 

The resulting Pearson Bayes factor is given in Equation 9, 
where Γ(·) is the gamma function and dfB = a − 1, 
dfW = N − a, and dfT = N − 1 are the degrees of freedom for 
between-groups, within-group, and total sources of varia-
tion, respectively. N =

∑a

i=1
ni denotes the total number of 

observations. Despite their different g-prior assumptions, the 
Pearson Bayes factor matches the JZS Bayes factor, espe-
cially when γ = 0 (Faulkenberry, 2021). Based on Equa-
tion 9, Theorem 1 employs a quadratic exponential function 
to describe the relationship between the separation percent-
age of frequentist confidence intervals and the Pearson Bayes 
factor for a balanced one-way between-subjects design, 
given a fixed sample size and two conditions. This approxi-
mation gets more accurate as the sample size increases.

(9)P-BF10 =
Γ
(

df B

2
+ 1 + γ

)
⋅ Γ

(
dfW

2

)

Γ
(

df T

2

)
⋅ Γ(1 + γ)

(
dfW

dfW + df B F

)−
dfW

2
+1+γ

.

Theorem 1. As n →  + ∞, the Pearson Bayes factor for 
the balanced one-way between-subjects ANOVA with 
two conditions can be approximated arbitrarily well by a 
quadratic exponential function of the separation between 
(1 − α) × 100% confidence intervals for two population 
means μ1 and μ2,

The proof along with a graphical illustration is 
provided in Appendix A. Note that coefficient A depends 
on the sample size and the hyperparameters, while 
coefficient B depends on α. The coefficients precisely 
match the remarks in Jeffreys (1961, p. 277) and 
Wagenmakers ( A = 2∕

√
n�  ; 2022, p. 26) when γ = 0.5. 

Both JZS and Pearson Bayes factors remain applicable 
when the design is unbalanced, and Theorem 1 can be 
likewise extended. Although the theorem provides the 
asymptotic approximation as a quadratic exponential 
function of the separation between confidence intervals, 
it is also relevant for the separation between HDIs 
because of the standard asymptotic normal form of 
the posterior distribution (e.g., Gelman et  al., 2013, 
chap. 4; Jaynes & Kempthorne, 1976), which leads to 
an asymptotic relationship between the HDI and the 
standard confidence interval for ANOVA.

Within‑subject design

In the context of the within-subject design, the Bayes factor 
approach considers a linear mixed-effects model M1 of the 
response,

���P-BF10 − A ⋅ exp
�
B ⋅ Sep2

���� → 0, as n → +∞,

where A =
Γ(1.5+γ)

Γ(1+γ)
√
n
and B = z2

1−
α

2

.

(10)M1 ∶ Yij = � + �
�

(
ti + bj

)
+ �ij versus M0 ∶ Yij = � + �

�
bj + �ij, �ij

i.i.d.
∼ N

(
0, �2

�

)
,

for i = 1,⋯ , a and j = 1,⋯ , n,

where the terms are as in Equation 1, and in addition, 
bj is the standardized random effect of each subject, 
bj ∣ gb

i.i.d.
∼ N

(
0, gb

)
 , and is independent of ti. Adding the sub-

ject-specific random effect can distinguish two conventional 
between-subjects and within-subject designs by whether 

each participant receives a single level of experimental 
manipulation or a collection of them. We again assume that 
gb ∼ Scale-inv-�2

(
1, h2

b

)
 for the g-priors and set hb = 1 as a 

default. If only two conditions are considered in between-
subjects or within-subject designs, it is not necessary to 
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introduce the quite complex ANOVA g-priors, but instead 
we can focus on the simpler case of the t-test (F = t2). Default 
functions in ‘BayesFactor’ version 0.9.2 and later return the 
same Bayes factor estimates for the independent-samples 
t-test and one-way ANOVA with two conditions. However, 
those functions return systematically different estimates for 
the paired t-test and one-way repeated-measures ANOVA 
with two conditions (see vignettes in Morey & Rouder, 
2022). As it is the more general case, we consider the 
ANOVA g-priors.

Confidence intervals

Loftus and Masson (1994) proposed a data transforma-
tion that removes the between-subjects variability prior to 
the construction of the confidence interval for the popula-
tion means in within-subject designs. The motivation is to 
remove the irrelevant between-subjects variability and reveal 
the actual pattern of the population means in within-subject 
designs. As a result, the interval is based on the interaction 
mean-square error rather than the within-group mean-square 
error used in the standard confidence interval. Thus, LM-CI 
is not a standard confidence interval, but the practical utility 
of removing the nuisance between-subject variability has 
made it a widely used statistical method in the analysis of 
within-subject designs (e.g., Jusczyk et al., 1999; Urry et al., 
2006; Vogel et al., 2001).

Credible intervals

A Bayesian credible interval is interpreted with respect 
to posterior probability (i.e., the most likely values of the 
parameter, given the observed data). This interpretation 
is far more intuitive than that of a frequentist confidence 
interval (Hoekstra et al., 2014). As the most-used type of 
credible interval, an HDI represents the smallest interval on 
a (posterior) density distribution for a specified credibility 
level (1 − α) × 100%.

Nathoo et al. (2018) developed a within-subject HDI as 
the Bayesian analog of LM-CI for within-subject designs. 
The motivation for this development was to incorporate the 
usefulness of the within-subject interval into the Bayesian 
paradigm, which provides interval estimates with a condi-
tional posterior probability interpretation. Whereas Lof-
tus and Masson removed the irrelevant between-subjects 
variability using a subject-centering transformation of the 
data, Nathoo et al. derived a Bayesian within-subject inter-
val by conditioning on maximum likelihood estimates of 
the subject-specific random effects. That is to say, Nathoo 
et al. considered a modified posterior distribution that is 
based on the conditional distribution of the parameters 
given the data and the subject-specific random effects and 
then plugged in the maximum likelihood estimates of the 

random effects. Nathoo et al. (2018, p. 4) showed that the 
original LM-CI could also be reformulated within this 
same framework under a specifically chosen prior distri-
bution. This development provided a new interpretation 
of LM-CI as a conditional Bayesian interval. As a further 
development, they proposed an alternative interval based 
on replacing that prior with a more intuitive non-inform-
ative Jeffreys prior for the population means and residual 
variance. The resulting NKM-HDI was shown always to 
have a smaller width than LM-CI. NKM-HDI was then 
extended further to account for both the homoscedastic 
and heteroscedastic cases.

Conditioning on estimated random effects removes the 
irrelevant between-subjects variability when identifying 
the credible regions of population means that are relevant 
for evaluating evidence in within-subject designs. How-
ever, the maximum likelihood estimates of the random 
effects used in NKM-HDI do not exhibit shrinkage, and 
the procedure does not account for the uncertainty asso-
ciated with the estimated random effects. Subsequently, 
Heck (2019) proposed modifying the conditional within-
subject Bayesian interval to account for uncertainty and 
shrinkage in those effects. Heck derived a modification 
by applying the NKM-HDI formula at each iteration of an 
MCMC sampling algorithm and then taking the average 
interval across posterior samples (two-step approach; Ly 
et al., 2017). This modification introduces shrinkage esti-
mation, as the MCMC draws will exhibit shrinkage, and 
accommodates the associated estimation uncertainty by 
computing the interval across iterations of an MCMC sam-
pling algorithm. The posterior-averaged interval (LH-HDI) 
is wider than NKM-HDI, as shown in simulation studies 
(Heck, 2019, p. 29). This increase in width is understood 
to arise as a result of incorporating the uncertainty of the 
estimated random effects through the posterior draws.

NKM- and LH-HDIs assume improper uniform priors 
for the population means. In this work, we expanded the 
space of possible priors by assuming default g-priors for 
standardized treatment effects, as described by Rouder 
et al. (2017). Since the resulting HDI assumes the same 
priors in Equations 2 to 7 as those used to compute the 
default Bayes factor for within-subject designs, we will 
refer to it as JZS-HDI. Both LH- and JZS-HDIs take the 
same expression in Table 1, which is formally the Bayes 
estimator of the interval-valued parameter (thinking of the 
endpoints as a two-dimensional vector) under squared-
error loss. They are centered on the posterior mean instead 
of the arithmetic sample mean, given that the intervals 
are computed from the average of MCMC draws. MCMC 
sampling of posterior means can also be used to obtain the 
standard HDI, which, unlike LM-CI and JZS-HDI, does 
not remove the between-subjects variability that is not of 
interest in within-subject designs.
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R packages

Given the relative complexity of within-subject designs,2 we 
used simulations to study the fixed sample-size functional 
relation between interval separation and the Bayes factor. 
For the simulation studies below, we called two functions in 
the ‘BayesFactor’ R package by Morey and Rouder (2022): 
the anovaBF function returns the Bayes factor object, and 
the posterior function returns the estimates for parameters 
by sampling from the posterior distribution of the numera-
tor of the Bayes factor. According to the reference manual, 
the posterior is sampled with a Gibbs sampler (Morey & 
Rouder, 2022, p. 35). If not stated otherwise, the Bayes 
factors in all the figures presented here are JZS style and 
were computed by the ‘BayesFactor’ R package. To pro-
vide practitioners with a high-level function for construct-
ing within-subject HDIs without requiring any programming 
knowledge, we created a Stan-based R package, ‘rmBayes’, 
available for download on the Comprehensive R Archive 
Network (CRAN). For both the homoscedastic and het-
eroscedastic cases in one-way within-subject designs, the 
rmHDI function provides multiple methods to construct the 
credible intervals for population means, with each method 
based on different sets of priors (see Appendices B–D and 
the reference manual for details; Wei et al., 2022a).

The default method (method 1) in our R function rmHDI 
(which corresponds to JZS-HDI) is based on the same priors 
that the anovaBF function uses to compute the Bayes factor 
in a within-subject design, assuming the Jeffreys prior for 
the overall mean and residual variance, a g-prior structure 
for effects, and independent scaled inverse-chi-square priors 
with one degree of freedom for the scale hyperparameters of 
the g-priors. The initial CRAN releases of ‘rmBayes’, as 
well as Heck’s (2019) scripts, miscoded the Jeffreys prior in 
Stan, resulting in a disparate prior �

(
�, �

�

)
∝

1

�2
�

 and 
slightly shorter interval estimates on average (Congdon, 
2019, p. 51–52).3 The computation of the within-subject 
Bayesian intervals in anovaHDI (see Appendix B) or rmHDI 
allows for either Gibbs sampling as implemented in the ano-
vaBF function or, as an alternative, an MCMC algorithm 
based on the No-U-Turn sampler (NUTS) implemented in 

the ‘rstan’ package by the Stan Development Team (2023, 
chap. 14). NUTS is an adaptive variant of the Hamiltonian 
Monte Carlo (HMC) algorithm that is designed to produce 
more efficient sampling than a standard HMC algorithm. 
The posterior sampling engine, whether it be Gibbs sam-
pling or NUTS, can be specified by the user, with the latter 
being the default.

One drawback, as it were, of the option of using the 
‘rstan’ sampling engine in our R package computations is 
imperfect reproducibility resulting from Monte Carlo vari-
ability. Namely, the results may not be the same if practition-
ers call the function on different operating systems (even if 
the random seed is the same).4 Stan results will be repro-
ducible only if several configurations are identical, such as 
computer hardware and the C++ compiler (Stan Develop-
ment Team, 2023, chap. 19). Ours appears to be the first 
analysis of the Monte Carlo error associated with R packages 
‘BayesFactor’ and ‘rmBayes’ (see Appendix C for further 
discussion).

Simulation studies

Between‑subjects design

We first conducted a Monte Carlo simulation for a one-way 
between-subjects design with two conditions (a = 2). These 
between-subjects data were generated from the linear model 
in Equation 1. The number of subjects in each balanced 
group was set to n = 24 or n = 48. The standardized size of 
the difference between the two population means was set 
according to d = (100 − μ2)/20, and this size was adjusted 
to obtain cases with a power of .3 or .8 (the probability of 
avoiding a type II error in a standard significance test; e.g., 
Cohen, 1988) and a significance level of .05 while holding 
the common population standard deviation at σϵ = 20. Such 
a two-sample t-test power analysis can be run on the statisti-
cal software G*Power (Faul et al., 2007) to determine the 
required value of μ2.

The Bayes factor approach can also quantify the evi-
dence supporting the null hypothesis as well as evidence 
for the alternative hypothesis. Therefore, we extended our 
simulations to include data simulated under the null model 
M0 . The parameter settings are straightforward, letting 
μ2 = μ1 = 100. The 2 × 3 = 6 combinations of simulation 
parameters, representing the variation in sample size and 
power (effect size), are presented in Table 2. We generated 

2  Faulkenberry and Brennan (2022) extended Equation 9 to a closed-
form expression of the Pearson Bayes factor for within-subject 
designs simply by substituting N∗ = n(a − 1) for the total number of 
independent observations (Masson, 2011, p. 682).
3  The  Stan syntax target += -log(sigma); in place of target += 
-2*log(sigma); has been implemented in version 0.1.15 and later of 
the ‘rmBayes’ R package to accurately reflect the Jeffreys prior in 
Equation 2. Regardless of which syntax is used, there is little differ-
ence in graphical results, which can be seen as an example of a sensi-
tivity analysis for different possible priors. ‘rmBayes’ 0.1.15 was used 
for the computations reported in this article.

4  By calling rmHDI(recall.long, iter = 2e4, seed = 277)$width, 
macOS may return 0.5613043, Intel-based macOS may return 
0.5601921, Compute Canada Cedar may return 0.5600443, and Win-
dows may return 0.5589209.
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10,000 between-subjects data sets under each combination 
of parameter settings. Then we computed the Bayes factor 
and two types of interval estimates (the standard frequen-
tist 95% confidence interval and the standard Bayesian 95% 
HDI) for each data set.

Given a fixed sample size, data simulated under different 
true effect sizes merge into one curve relating the Bayes 
factor to interval separation. This observation is displayed 
in Fig. 2A for the standard confidence interval, where data 
points form a continuous curve with either n = 24 or n = 48, 
regardless of whether the true effect size is null (yellow), 
small (red), or large (blue). From Fig. 2A, we see that the 
different effect sizes make up different, but somewhat over-
lapping, sections of the same curve as larger Bayes factors 
(and greater degrees of interval separation) are usually 

generated under larger effect sizes. Hence, the Bayes-factor/
separation relationship does not depend on the effect size.

As shown in Fig. 2E, the observed relationship between 
the Bayes factor (its natural logarithm) and interval separa-
tion is well described by a quadratic curve for simulations 
under null to large effect sizes but yields a linear function in 
black for the extreme effect size. Indeed, the parabola even-
tually opens downward once the separation exceeds 500%, 
given n = 24. Such a lack of fit of the quadratic function at 
the long tail arises because the component (SSB/SSW)2 is no 
longer the least significant in the exponential series (see the 
proof of Theorem 1). Thus, a higher-order term, such as the 
quartic term, is necessary even for relatively large but finite 
sample sizes.

To compare the simulated function relating the Bayes fac-
tor and interval separation to the analytic function gener-
ated by Theorem 1, we plotted them together in Fig. 3. That 
figure presents two scatter plots, each obtained from 30,000 
merged replicates showing the Bayes factor versus the cor-
responding interval separation for the standard confidence 
interval (left) and the standard HDI (right) in a between-sub-
jects design with a = 2 and n = 48. The separation percentage 
was computed for the intervals of each pair of condition 
means. There is a clear quadratic exponential relationship 
between the interval separation and the Bayes factor for a 
particular value of sample size. The data points are perfectly 
aligned on a fitted quadratic exponential curve shown as 
a solid black function in Fig. 3. The fitted coefficients of 
the quadratic exponential are comparable to the asymptotic 
coefficients obtained by plugging the known values into the 

Table 2   Parameters for simulated data in a between-subjects design 
with two conditions

Note. 10,000 simulations were run for each effect size. n is the num-
ber of subjects in each group. μ1 and μ2 are population means, and 
each case selects three values for μ2. σϵ is the common standard devi-
ation. μ2 was adjusted to obtain the desired power according to a two-
sample t-test power analysis

Case 1 2

n 24 48
μ1 100 100
μ2 (100, 91.5, 83.5) (100, 94.1, 88.4)
σϵ 20 20
power (NA, .3, .8) (NA, .3, .8)

Fig. 2   Scatter plots of the relationship between the natural logarithm 
of the Bayes factor and the separation (A) of the between-subjects 
confidence intervals or (B) of the within-subject JZS-HDIs under two 
fixed sample sizes and a range of effect sizes (or a combination of 

effect sizes and correlations) indicated by color. (C) and (D) are the 
partial magnifications of cases that overlay in (B). (E) displays the 
full scale of one case in (A), including an additional simulation with 
an extreme effect size (Cohen’s d = 2.5)
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formula of Theorem 1, with the latter being plotted as the 
dashed-dotted red curve in both panels of Fig. 3. The dis-
crepancy between the fitted and analytic functions becomes 
apparent for confidence interval separations beyond about 
80%, given n = 48. The approximation will be less accurate 
if the sample size is insufficient and the study is underpow-
ered. As the sample size increases, conformity to the ana-
lytic curve will improve (see Appendix A). However, we 
still expect some difference between the fitted and analytic 
values even for very large n because the Bayes factors are 
computed under different priors (JZS for the simulated data 
and Pearson for the theoretical function).

As discussed in Loftus and Masson (1994), two means are 
significantly different if separated by at least 

√
2 times the 

confidence interval width when a design-specific interval is 
used. Therefore, from our definition of the separation per-
centage, at least 71% separation ( 

√
2∕2 ) in the confidence 

intervals of two population means provides evidence for an 
effect with a standard p-value of .05 and a 95% confidence 
interval. As Fig. 3 shows, however, that with n = 48, the 
average separation of confidence intervals (88%) is greater 
than 71% when the Bayes factor value is about 3 (moderate 
evidence for an effect; Lee & Wagenmakers, 2014; Raftery, 
1995; Bayes factor evidence should not be evaluated on a 
strict criterion, but rather with reference to the context of the 
research; Evett, 1987; Kruschke, 2021; Rouder et al., 2017, 
p. 318). This greater separation threshold occurs because 
the Bayes factor value of 3 usually corresponds to a stricter 
standard p-value of around .01 instead of .05, given a spe-
cific sample size (Jeffreys, 1961, p. 435; Raftery, 1995, p. 
789; Wagenmakers, 2022, p. 15). Consequently, the separa-
tion threshold favoring the alternative model M1 is rela-
tively conservative from the Bayesian perspective relative to 

NHST, which is consistent with observations from Ly et al. 
(2016, p. 24), Nathoo and Masson (2016), and Wetzels et al. 
(2011). Similarly, Fig. 3 shows that for the standard Bayes-
ian HDI, about 81% separation is associated with a Bayes 
factor of about 3. The table in each panel shows descriptive 
statistics (1) for the Bayes factor when interval separation 
ranges from 99% to 101% and (2) for the separation percent-
age when the Bayes factor ranges from 2.9 to 3.1.

Within‑subject design

We next conducted a Monte Carlo simulation for a one-
way within-subject design with two conditions. The effect 
size was empirically determined from the ANOVA design 
with treatment effects and subject-specific random effects 
as specified in model M1 from Equation 10. Simulations 
were run with various effect sizes until one was found that 

Fig. 3   Scatter plots of the relationship between the between-subjects 
interval separation (standard confidence interval on the left, stand-
ard HDI on the right) and the Bayes factor (truncated at 50) for the 
aggregate of three effect sizes and sample size of 48 in Case 2 from 
Table 2. The table in each panel shows descriptive statistics for the 

Bayes factor when interval separation is 100 ± 1%; the Sep% row 
refers to the separation value when the Bayes factor is 3 ± 0.1. The 
fitted curve is in solid black, and the analytic curve (Theorem 1) is in 
dash-dotted red. The horizontal dashed line indicates a Bayes factor 
of 3, and the vertical red line indicates a separation percentage of 100

Table 3   Parameters for data simulation in a within-subject design 
with two conditions

Note. 10,000 simulations were run for each effect size. n is the num-
ber of subjects. μb is the baseline mean. Δμ is the raw-score effect 
size, and each case selects three values. σb is the standard deviation of 
the subject-specific random effect. σϵ is the standard deviation of the 
error. The correlation between two conditions is � = �

2

b
∕
(
�
2

b
+ �

2
�

)

Case 1 2 3 4

 n 24 24 48 48
 μb 100 100 100 100
 Δμ (0, 3.8, 6.7) (0, 16.5, 28.6) (0, 2.7, 4.6) (0, 12.0, 20.4)
 σb 20 20 20 20
 σϵ 6.67 30.55 6.67 30.55
 ρ .9 .3 .9 .3
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produced approximately the desired level of power (.3 or .8, 
probability of a Bayes factor of at least 3). We ran 10,000 
simulations for each parameter set based on 2 × 3 × 2 = 12 
combinations of sample size, power, and correlation between 
conditions. The 12 settings are categorized into four cases 
and presented in Table 3. As in the between-subjects case, 
the within-subject results can be collapsed across effect 
sizes because reports with the same sample size and within-
subject correlation generated identical curves, as shown in 
Fig. 2B. There may be some outliers in the computed values, 
with particularly large Bayes factor values occurring even 
when interval separation is quite low. Outliers like these are 
the result of Monte Carlo variability and numerical issues 
in the Bayes factor computation. Even though the number 
of MCMC iterations taken for a particular Bayes factor was 
as many as 100,000, such outlying Bayes factor values do 
occasionally occur. Fortunately, these instances are typically 
indicated by a large error estimate that is reported with the 
Bayes factor in the anovaBF function, suggesting that the 
analysis ought to be run again with a different random seed. 
See the discussion of this issue in Appendix C. All figures 
have excluded simulations that estimated proportional error 
on the Bayes factor to be greater than 1%.

Figures 4 and 5 display eight scatter plots showing the 
relationship between the Bayes factor and the interval sepa-
ration, computed for data simulated from within-subject 
designs with two conditions under two different 

combinations of parameters (Cases 1 and 4 from Table 3). 
The separation percentage of NKM-HDI for a data set can 
be numerically derived from that of LM-CI by multiplying 

a factor of 
√

a

a−1
⋅

t∗
1−

𝛼

2
, (n−1)(a−1)

t∗
1−

𝛼

2
, a(n−1)

> 1 (therefore, the NKM-HDI 

plots are omitted). The complete set of reports for the two 
between-subjects and four within-subject cases for each 
interval type can be viewed on the Open Science Framework 
website at https://​osf.​io/​x2pvw/. As in Fig. 3, the horizontal 
dashed line in Figs. 4 and 5 indicates a Bayes factor of 3, 
plus or minus 0.1. The vertical red bar indicates 100% inter-
val separation (±1%) as a reference line.

The table in each panel shows that the two benchmark 
values (Bayes factor associated with 100% separation and 
separation percent associated with a Bayes factor of 3) vary 
systematically across the four different within-subject inter-
vals due to the difference in magnitude of the respective 
intervals computed from the same data set (LM-CI < LH-
HDI < JZS-HDI widths). First, with the degree of separation 
fixed, methods whose estimates produce narrower interval 
widths are generally associated with smaller Bayes factors. 
For example, the average Bayes factors are 5.5, 6.5, and 
14.2 across the 100% separations of LM-CI, LH-HDI, and 
JZS-HDI, respectively, when n = 24 in Fig. 4. Second, with 
the Bayes factor fixed (thus, the observed effect size is held 
constant), narrower interval widths lead to larger degrees of 
separation. For example, the average separations of interval 

Fig. 4   Scatter plots of the relationship between within-subject inter-
val separation and the Bayes factor (truncated at 50) for the aggregate 
of three effect sizes, correlation of .9 and sample size of 24 in Case 1 
from Table 3. The table in each panel shows descriptive statistics for 

the Bayes factor when interval separation is 100 ± 1%; the Sep% row 
refers to the separation value when the Bayes factor is 3 ± 0.1. The 
horizontal dashed line indicates a Bayes factor of 3, and the vertical 
red line indicates a separation percentage of 100

https://osf.io/x2pvw/
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estimates are 88%, 85%, and 73% for LM-CI, LH-HDI, and 
JZS-HDI, respectively, when BF10 ≈ 3 and n = 24 in Fig. 4.

For the within-subject design, we found a similar relation-
ship between the within-subject interval separation and the 
Bayes factor, compared to the between-subjects case. In the 
within-subject design, however, the relationship between the 
standard HDI and the Bayes factor was evidently inconsist-
ent for a given sample size. This result demonstrates the 
benefit of using within-subject intervals in within-subject 
designs. That is, the separation of within-subject HDIs cor-
responds well with the Bayes factor, whereas the separation 
of the standard HDIs does not. We observed that the stand-
ard HDI was so wide that it produced substantial overlap 
(little separation) in within-subject designs, even when there 
was clear evidence from the Bayes factor for a reliable effect. 
For example, the standard HDIs are separated at percent-
ages from 13% to 49% when BF10 ≈ 3 and n = 24 in Fig. 4. 
The standard HDI for within-subject designs is unnecessar-
ily broad due to irrelevant between-subjects variability and 
tends to hide within-subject effects, rendering its relation-
ship with the Bayes factor less clear.

In addition, the greater the correlation between the two 
conditions in a within-subject design, the more consistent 
the observed quadratic exponential relationship is, as can be 
seen by comparing Fig. 5 (low correlation between condi-
tions) to Fig. 4 (high correlation), especially when the Bayes 
factor signals strong evidence against the null. Figure 2B 

depicts the Bayes-factor/HDI relationship for all four cases 
from Table 3. The two distinct curves are based on differ-
ent sample sizes, and in each case, when the correlation is 
low, more dispersion is present in the relation. This trend 
becomes more apparent as the Bayes factor increases. Fig-
ures 2C and D present a section of each sample size’s func-
tion that illustrates the dispersion related to the magnitude 
of correlation between conditions.

Because the Bayes-factor/HDI separation relationship 
was more precise for JZS-HDI than for any other intervals, 
we fitted a quadratic curve against the natural logarithm of 
the Bayes factor for each of the four simulation cases using 
the JZS-HDI. The results are shown in Fig. 6, where the 
fitted quadratic models are presented at the bottom of each 
panel. For all four cases, adjusted coefficients of determina-
tion, R2, were 0.993 or greater. The analytic result in Theo-
rem 1 suggests that the quadratic term is sufficient in the 
limit for between-subjects designs. Empirically, we found a 
quite good fit using the second-order quadratic equation to 
describe the relationship for either between- or within-sub-
ject data with moderate sample sizes. The simulated relation 
is concave downward when the observed effect size is large 
(i.e., a log Bayes factor greater than 8 in Fig. 6). The quad-
ratic exponential relationship is a fairly simple description 
of the fit between the Bayes factor and HDI separation, and 
it reflects an asymptotic result as the sample size approaches 
infinity.

Fig. 5   Scatter plots of the relationship between within-subject inter-
val separation and the Bayes factor (truncated at 50) for the aggregate 
of three effect sizes, correlation of .3 and sample size of 48 in Case 4 
from Table 3. The table in each panel shows descriptive statistics for 

the Bayes factor when interval separation is 100 ± 1%; the Sep% row 
refers to the separation value when the Bayes factor is 3 ± 0.1. The 
horizontal dashed line indicates a Bayes factor of 3, and the vertical 
red line indicates a separation percentage of 100
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Importance of sample size and evidence for the null

For within-subject data generated under the null model 
(Δμ = 0), there were four cases representing variation in 
sample size (24 or 48) and size of correlation between condi-
tions (.9 or .3). The benchmark values (the Bayes factor 
when separation percent was 100 and separation percent 
when the Bayes factor was 3) turned out to show similar 
descriptive statistics, regardless of whether the data were 
simulated under M0 or M1 . Thus, the relationship between 
the Bayes factor and HDI separation does not depend on the 
true effect size but on the sample size and the magnitude of 
the correlation between conditions. Figure 7 shows the 
results of an additional set of simulations based on Cases 1 
and 4 from Table 3. These simulations included a broader 
variation in sample size (from 5 to 48) and a different set of 
effect sizes (Δμ = 0, 3.8, and 6.7 in Case 1, and Δμ = 0, 12.0, 
and 20.4 in Case 4, representing null, small, and relatively 
larger effect sizes). These simulations highlight how separa-
tion percentage and Bayes factor benchmarks change with 
effect size and sample size. Cases 1 and 4 differ in the size 
of the correlation between conditions. We restricted the 
standardized effect sizes, Δ�∕

�
�
2
b
+ �2

ε
≡ Δ�

√
1 − �∕�ε , 

on the small and relatively larger scales so that some data 
sets would produce a Bayes factor of 3. With even larger 
effect sizes, the Bayes factor would seldom be as low as 3.

First, in Figs. 7E and F, the separation percentage sup-
porting an effect (Bayes factor of 3 ± 0.1) increases with 
the sample size. For sample sizes typical of within-subject 

designs in experimental psychology (i.e., 20–50), the separa-
tion percent associated with evidence for an effect is in the 
range of 70–80%. Similarly, in Figs. 7G and H, the separa-
tion percentage favoring the null (BF01 = 1/BF10; reciprocal 
Bayes factor of 3 ± 0.1) also increases with the sample size. A 
blue square symbol, representing the large true effect size, is 
missing for n = 48 in Fig. 7G because few observations would 
be simulated in such an instance. Similarly, the separation 
benchmarks are absent for limited sample sizes of 5 and 10 
because those functional curves never fall below the –ln 3 line 
(see Figs. 7A and B). With a case of n = 10, for example, prac-
titioners might be tempted to draw incorrect conclusions, such 
as taking an interval separation of close to 0% as evidence 
for the null. These simulations demonstrate that obtaining a 
result that provides moderate evidence in favor of the null 
hypothesis would be virtually impossible due to the dearth 
of data. Interpreting HDI separation as evidence for the null 
depends heavily on the sample size, as Figs. 7G and H show.

Second, Figs. 7C and D show that the Bayes factor cor-
responding to 100 ± 1% interval separation does vary non-
monotonically with the sample size. This nonmonotonic-
ity arises because the Bayes-factor/HDI relationship is not 
effectively described by the quadratic exponential when the 
sample size is small (5 or 10). Third, the benchmarks asso-
ciated with different effect sizes are notably similar given 
a particular sample size, except for cases in Figs. 7C and 
D. When the sample size is insufficient (n = 5; thus, under-
powered), data sets simulated from larger true effect sizes 
produce slightly larger Bayes factors corresponding to 100 
± 1% interval separation. The results of an additional set of 

Fig. 6   Quadratic exponential curve fits for JZS-HDI. The x-axis and 
the y-axis are in full scale with the y-axis showing ln (BF10) values. 
The solid red curve indicates a multiple regression of ln (BF10) on 

interval separation score (separation % divided by 100). The coeffi-
cients of determination are above 0.993 for all four cases
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simulations that assessed the benchmarks shown in Fig. 7 
but for Bayes factors and standard HDIs in between-subjects 
designs are available at https://​osf.​io/​x2pvw/.

Examining Figs. 3, 4, and 5, when the Bayes factor is 
larger than 3 and increasing, the separation is also increas-
ing in a manner that can be predicted through a quadratic 
exponential function for a given sample size. Therefore, 
both measures can give evidence in favor of the alternative 
hypothesis, and the relationship holds when there is evi-
dence for the alternative. Conversely, in the other direction, 
when the Bayes factor is less than one-third and approaching 
zero, the simulations again demonstrate that the separation 
percentage follows a predictable pattern as the Bayes fac-
tor becomes vanishingly small. When the Bayes factor is 

between 1/(3.1) and 1/(2.9), the average separation percent-
ages of JZS-HDIs are 17% and 32% for n = 24 and n = 48, 
respectively. Therefore, the separation percentage, like the 
Bayes factor, provides evidence in favor of the null, given 
an adequate sample size. That is, there is a clear monotonic 
relationship between the two quantities for both large val-
ues (evidence for the alternative) as well as small values 
(evidence for the null) of the Bayes factor. It is important to 
note that the separation percentage should not be used as the 
sole basis for supporting the null hypothesis while ignoring 
sample size and a specific alternative hypothesis. A similar 
notion is also discussed in Wagenmakers (2022) within the 
context of the relationship between the Bayes factor and the 
p-value for a given sample size.

Fig. 7   Simulations (A and B) were run according to the parameters 
in Cases 1 and 4 of Table 3 but with five sample sizes. Benchmarks 
(C) and (D) for the average Bayes factor when JZS-HDI separation 
is 100 ± 1%, (E) and (F) for the average separation percentage when 

the Bayes factor is 3 ± 0.1, and (G) and (H) for the average separation 
percentage when the Bayes factor is the reciprocal of 3 ± 0.1. The 
symbols have been horizontally jittered to avoid overplotting, and 
their color and shape represent the true effect sizes

https://osf.io/x2pvw/
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Sensitivity analysis

We also conducted a sensitivity analysis with respect to 
the prior for the variance gb of the standardized subject-
specific random effects by substituting for the inverse-chi-
square distribution (for gb) either a uniform distribution or 
a half-Cauchy distribution (for �

�

√
gb ), which generated 

almost identical within-subject HDIs as in Heck (2019, p. 
29). These priors correspond to methods 5 and 6 in our R 
function rmHDI. Simulations using these priors continued 
to show a quadratic exponential relationship between the 
Bayes factor and interval separation that varied somewhat 
with sample size (see Fig. 8 for a sample case). The lower 
boundaries of the curves in the scatter plots are like those in 
our original simulations in Fig. 4. However, the data points 
are somewhat more variable than the case using the default 
scaled inverse chi-squared priors.

Multilevel and multiway ANOVA

We have described the relationship between a Bayes fac-
tor and an HDI only for the case of two condition means, 
either in a within-subject or a between-subjects design. 
One might ask about the nature of this relationship when 
there are more than two levels of the independent vari-
able. In such cases, this relationship is quite difficult to 
define, given that the Bayes factor generated by analyzing 
data from all of the conditions could be associated with a 
wide range of patterns among population means and hence 
a large variety of possible degrees of separation between 
means. For example, in a within-subject design with three 
conditions, the three means may be equally spaced in rank 
order (e.g., μ1 < μ2 < μ3), or two of the means may be nearly 
identical and the third quite different from the first two. The 

Bayes factors for these two situations might be the same, 
and the HDI for the data might also be similar for the two 
cases, but the degree of separation between a given pair of 
means defined by the HDI metric we have used here would 
depend on which two means are chosen.

Our approach, therefore, has been to examine the Bayes-
factor/HDI relationship specifically for the case of two con-
ditions. The conclusions we have reached can be readily 
extended to designs with more than two conditions, assum-
ing that one is interested in considering two of the popula-
tion means at a time (see also testing equality constraints 
in Morey, 2015a; order constraints in Morey, 2015b). The 
computed HDI, generated as it is from all data in the design, 
can be taken as a general estimate of the stability of the dif-
ference between any two means in the design. Hence, in a 
within-subject design with three or more conditions and, for 
example, n = 24, if any two means are separated by about 
73% of the length of the JZS-HDI, one can safely conclude 
(provided that the assumption of circularity holds reason-
ably well, i.e., the variances of the differences between any 
pair of within-subject conditions are roughly equal) that a 
Bayes factor computed to compare just those two condi-
tions would turn out to be about 3; a larger separation would 
imply an even larger Bayes factor. Should the assumption of 
circularity be violated, it would be advisable to modify this 
approach (see below).5 If only homoscedasticity is violated, 
then HDIs can be constructed using the method described 
by Nathoo et al. (2018, p. 5) for within-subject HDIs under 

Fig. 8   Scatter plots of the relationship between within-subject inter-
val separation and the Bayes factor for LH-HDI for one of the sets 
of parameters shown in Table 3 (Case 1) and two different priors for 

the standard deviation of the subject-specific random effects. Left: 
�
�

√
gb ∼ U(0, 1) ; right: �

�

√
gb ∼ HC(0, 1)

5  As a sufficient but not necessary condition for conducting repeated-
measures ANOVA, the compound symmetry assumption states that 
all conditions have equal population variance, and all pairs of condi-
tions have equal covariance. Hence, compound symmetry is a restric-
tive form of circularity. See remarks in Cousineau (2019, p. 232).
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heteroscedasticity, with Heck’s (2019) modification applied. 
The formulation is

An option to compute HDIs for the heteroscedastic case 
is available in the rmHDI R function.

If the equal covariance assumption is not met, then we 
recommend constructing a separate HDI for each pair of 
condition means to provide a more precise depiction of 
the relationship between those means (see Franz & Loftus, 
2012, for examples of plotting multiple confidence inter-
vals for different pairs of means in a within-subject design). 
One can have confidence that the relationship between HDIs 
constructed in this way and the corresponding Bayes factor 
would adhere to the benchmarks reported here.

Similar reasoning is relevant when considering more 
complex designs with multiple factors. Equation 12 models 
a two-way repeated-measures design, where �ijk

i.i.d.
∼ N

(
0, �2

�

)
 

and Yijk is the response for kth subject at the ith level of fac-
tor d and jth level of factor p for i = 1, ⋯, a, j = 1, ⋯, b, and 
k = 1, ⋯, n. Such a random slope model is often confused 
with a two-factor factorial design with blocking in Equa-
tion 13, which assumes that the interactions between treat-
ments and blocks are negligible, as in agricultural experi-
ments.6 Importantly, Equations 12 and 13 imply the same 
one-way model M1 from Equation 10, used for our reported 
simulations when there is only one factor and one observa-
tion per condition. In a design with multiple within-subject 
factors, one could treat all the conditions as levels of a single 
factor and compute HDIs using the methods described here. 
In a 2 × 3 within-subject design, for instance, there would be 
six conditions, and these could be treated as six levels of a 
one-way within-subject design. Concerns about the circular-
ity assumption would be important here, and the methods 
discussed above for addressing violations of this assumption 
would need to be considered. For mixed designs containing 
at least one within-subject and one between-subjects factor, 
one might choose to plot the means with either HDIs reflect-
ing within-subject variability or between-subjects variabil-
ity, taking into account possible violations of circularity for 
the within-subject factor and violations of homogeneity of 
variance for the between-subjects factor. If all assumptions 
are met, it might be informative to plot both between- and 
within-subject HDIs for each mean. In such a case, the 

(11)�

�
�i ±

�i√
n
⋅ t∗

1−
�

2
, n−1

∣ Data

�
.

relationship between the HDIs and the associated Bayes fac-
tor should adhere to the pattern revealed by our simulations. 
We note that these relationships would be expected to hold 
for the main effects of the factors, but we have not explored 
interaction effects here. Masson and Loftus (2003) provided 
some suggestions about plotting and visually assessing inter-
actions using confidence intervals.

Example application

To illustrate the use and interpretation of within-subject 
HDIs, we consider a real 2 × 2 within-subject data set taken 
from a published study by Bub et al. (2021, Exp. 2), which 
examined speeded classification of pictured hand cues 
according to their laterality (left versus right hand). The 
hand cue showed a left- or right-handed power grasp with 
the palm oriented horizontally or vertically. The task was 
to classify the hand’s laterality by making a key press using 
either the left or right hand, depending on which hand was 
shown. The hand cue was presented superimposed on a pic-
ture of a handled object (e.g., a frying pan) whose handle 
pointed left or right. The pictured hand’s laterality was either 
aligned or not aligned with the object handle’s location (e.g., 
a left hand with the object handle pointed left is an example 
of the aligned condition), and this variation was one of the 
two independent variables in the design. The other factor 
was compatibility between the horizontal/vertical orienta-
tion of the object’s handle (e.g., a frying pan had a horizon-
tal handle, and a beer mug had a vertical handle) and the 
pictured hand’s palm orientation. The dependent measure 
was time taken to make the key press to classify the hand 
cue’s laterality. For the present example, we used data from a 
condition in which the hand cue and object appeared simul-
taneously (0-ms stimulus onset asynchrony). The data and 
subsequent R scripts for this example are available at https://​
osf.​io/​x2pvw/. For each of the 37 subjects, a condition score 
was taken as the mean response time for correct responses 
made on trials in that condition.

Our first step in constructing 95% HDIs for the population 
means was to determine whether all four conditions in the 
design could be validly treated as four levels of a single-fac-
tor design. The advantage of treating the design this way is 
that a single HDI can be computed that would be suitable for 
making comparisons between any pair of conditions. This 
approach would require that the assumption of circularity 
holds for these four conditions. The assumption can be tested 

(12)
Yijk = � + �

�

(
sk + di + pj + (dp)ij + (ds)ik + (ps)jk

)
+ �ijk.

(13)Yijk = � + �
�

(
sk + di + pj + (dp)ij

)
+ �ijk.

6  At the time of writing, the ‘BayesFactor’ R package by Morey and 
Rouder (2022) implemented Equation 13 for multiway within-subject 
designs, but van den Bergh et al. (2022) have realized the misspeci-
fication and started to update the functions accordingly. See also 
Kruschke (2014, p. 606-608). Changes will not affect the one-way 
models used for simulations in this article.

https://osf.io/x2pvw/
https://osf.io/x2pvw/
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using the ezANOVA function in the ‘ez’ R package by Law-
rence (2016). The ezANOVA function computes the ANOVA 
for various designs and provides a statistical test of the cir-
cularity assumption (referred to in the output of ezANOVA 
as Mauchly’s test of sphericity). The function also provides 
Greenhouse-Geisser (GG) and Huynh-Feldt (HF) epsilon 
values, which can be used to adjust degrees of freedom for a 
significance test, should circularity be violated (Greenhouse 
& Geisser, 1959; Huynh & Feldt, 1976). In general, an epsi-
lon value of .75 or greater can be taken as sufficient support 
that the circularity assumption holds (e.g., Loftus & Mas-
son, 1994, p. 483). One could instead adopt a more stringent 
requirement, such as a nonsignificant Mauchly’s test of the 
circularity assumption. The output for our example data set 
indicates that Mauchly’s test is not significant (p-value of 
.59) and that both versions of the epsilon value are greater 
than .75 (GG = 0.93, HF = 1.02), so it is safe to treat the 
four conditions as levels of a single factor and to compute a 
single HDI. If the circularity assumption had not been met, it 
would be best to compute a separate HDI at each level of one 
of the two factors. For instance, in this data set, the greatest 
interest was in the alignment between the location of object’s 
handle and hand laterality, so one could compute an HDI for 
the aligned and misaligned laterality conditions within each 
level of the orientation compatibility factor.

Proceeding with the computation of a 95% HDI for all 
four conditions, we can use the rmHDI function in the 
‘rmBayes’ R package. For all but the first method (method 
0), MCMC sampling is used in computation of the HDI, 
so the function provides the option to specify the number 
of warmup iterations and the number of critical iterations 
to be used. We used more warmup iterations (2,000) and 
more critical iterations (10,000) than the default values 
because these larger values generally provide results with 
a low likelihood of the function producing warning mes-
sages regarding the operation of the MCMC sampling of 
parameters. Method 0 computes NKM-HDI, which does 
not use MCMC sampling and does not take into account 
possible shrinkage of or uncertainty about parameter val-
ues for between-subject variability. For the other methods, 
MCMC is used, and a Bayesian estimate of the posterior 
mean for each condition is generated. A 95% HDI is com-
puted by default, although other levels of credibility can be 
used instead. The output shows that the resulting HDI width 
using method 1 (the default method, which computes JZS-
HDI) is 6.78. We have plotted the posterior mean estimates 
and the HDI based on method 1 in Fig. 9. Keep in mind 
that because this is a homoscedastic within-subject HDI, 
the same HDI width is plotted for each mean and that it rep-
resents estimation error with respect to the relative values 
of these means, not their absolute values. Note that with the 
other methods, which differ regarding priors, the resulting 
HDI and posterior mean estimates vary somewhat, but they 

are not substantially different. The methods that use MCMC 
sampling generated for the present data have similar 95% 
HDI widths (around 6.78). Method 0, which does not take 
shrinkage or estimation error into account, produced a char-
acteristically smaller HDI width (5.83).

The separation between the HDIs for the first two condi-
tions, A-Com and A-Inc, is about 60%, so we can expect that 
there is no solid evidence for a difference between those 
two means, given n = 37. The reported tests are pairwise 
comparisons of factor combinations and not tests of main 
effects that are marginalized across the other factors. The 
next step is to perform a Bayesian test for the difference 
between these two population means (the data from the two 
irrelevant conditions are set aside, then the anovaBF func-
tion is used to compute a Bayes factor). This is a test of the 
effect of compatibility in orientation when the laterality of 
the object handle and the hand cue are aligned. The Bayes-
ian test produced a Bayes factor of 1.08 in favor of an effect, 
which is essentially an inconclusive result. By contrast, a 
comparison between the first and third conditions, A-Com 
and M-Com, which is a test of alignment of laterality when 
orientation is compatible, based on the HDI separation (over 
150%) suggests a strong difference. Indeed, the correspond-
ing Bayesian test of this effect yielded a Bayes factor of 
over 5,000 in favor of an effect. Finally, the HDIs for condi-
tions M-Com and M-Inc are separated by much less than the 
approximately 28% indicated in Figs. 7G and H as evidence 

Fig. 9   Estimated posterior means and 95% highest density interval 
for the four conditions in a 2 × 2 within-subject design (n = 37) com-
puted using the default method with the rmHDI function. The fac-
tor of alignment of object handle and hand is specified by A/M (A = 
aligned, M = misaligned), and the factor of orientation compatibility 
is specified by Com/Inc (Com = compatible, Inc = incompatible)
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for a null effect (separation is about 8%). This outcome pro-
vides evidence for a null effect of orientation compatibility 
when laterality is not aligned. Indeed, the test for a differ-
ence between those two conditions yielded BF01 = 4.03, 
which is moderate evidence for a null effect.

Conclusion

We discovered a quadratic exponential relationship between 
the Bayes factor and the separation of credible intervals in 
the linear model for a between-subjects design and the linear 
mixed-effects model for a within-subject design, each with 
two levels and a known sample size. In the case of a balanced 
one-way between-subjects design, this relationship is stated 
in Theorem 1 as an asymptotic relationship. In the more com-
plicated within-subject designs, we have presented simulation 
studies that demonstrate the relationship between the Bayes 
factor and within-subject intervals and how it varies across a 
number of settings. Based on the simulations, we conjecture 
that an asymptotic result similar to Theorem 1 will hold in 
the case of within-subject designs. The quadratic exponential 
relationship is less accurate when the sample size is insuf-
ficient or the observed effect size is enormous, placing some 
practical constraints on the use of this relationship.

Care must be exercised when examining the separation 
of standard HDIs (as is often done in practice) because these 
intervals can mask the presence of real effects in within-subject 
designs. The ‘rmBayes’ R package (v0.1.15; Wei et al., 2022a) 
incorporates all the essential functions and employs default 
priors from anovaBF (v0.9.12; Morey & Rouder, 2022) and 
the NUTS algorithm from Stan (v2.21.8; Stan Develop-
ment Team, 2023). We recommend using JZS-HDI (default 
method 1) in the rmHDI R function to implement within-
subject Bayesian intervals and assess the strength of evidence 
for effects by examining the separation between intervals and 
considering the sample size. We also explored the Monte Carlo 
sampling error in estimating the Bayes factor. The Bayes factor 
was computed on a simulated data set of typical dimensions 
with a larger Monte Carlo sample size (100,000 iterations) 
than the default (10,000 iterations). Changing the random seed 
resulted in values ranging from 4.3 to 5.4, with one outlier of 
11.7 (see Appendix C). Bayesian credible intervals are rela-
tively more stable, and as we have shown, credible interval 
separation can be well calibrated to model selections based on 
the Bayes factor for a given sample size.

The relationship between Bayes factors and credible inter-
vals also appears to hold when the null hypothesis is true. 
This relationship has been investigated using a broad set of 
simulations and confirmed under certain conditions through 
an analytic derivation. Although the relationship is approxi-
mately quadratic exponential, we note that its exact form is 

dependent on and must be interpreted with respect to sample 
size. This situation can lead to an example of the Jeffreys-
Lindley paradox (Bartlett, 1957; Jeffreys, 1935; Lindley, 
1957; Wagenmakers & Ly, 2023). For example, one may con-
ceive of a scenario with a compelling Bayes factor in favor 
of M1 and a particular separation of the credible intervals. 
If one were to increase the sample sizes while keeping the 
degree of separation fixed, the Bayes factor should be less 
compelling. As the sample size continues to grow, the same 
separation will ultimately signal strong evidence against the 
presence of an effect. Practically speaking, however, HDI 
separation is the distance between two means divided by the 
twofold interval width, and in order to keep separation fixed 
as the sample size grows (narrower HDI width), it would be 
necessary to bring the two population means closer together. 
This scenario contrasts with an actual experimental situation 
where the true values of the parameters will not change if 
the sample size increases. A similar rule that approximates 
the objective Bayes factors from p-values and sample size is 
discussed in Wagenmakers (2022).

Future work will consider more general settings for the 
development of the within-subject Bayesian credible inter-
val. The inclusion of Bayesian semiparametric mixed models 
and exponential family mixed models, including Poisson and 
binomial regression, will be investigated.

Appendix A

Proof of Theorem 1
After some substitutions, the Pearson Bayes factor in 

Equation 9 becomes

By applying Stirling’s formula Γ(y + z) ∼ yzΓ(y) as 
y →  + ∞, the gamma ratio in Equation A1 becomes 
Γ
(

a(n−1)

2

)

Γ
(

an−1

2

) ∼
(

an

2

) 1−a

2  as n →  + ∞.

We calculated the separation for the standard between-
subjects confidence interval in Equation A2 as the absolute 
value of the difference between two sample means over the 
twofold interval width. Here, we consider only a = 2.

As n →  + ∞, t∗
1−

�

2
, a(n−1)

∼ z1− �

2

 , the sample means con-

verge to the population means, and (SSB/SSW)2 is assumed 

(A1)
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Γ
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2
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⋅ Γ
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to be the least significant in the exponential series. 
SSB = n

a∑
i=1

�
Mi⋅ −M

�2 reduces to 1
2
n
(
M1⋅ −M2⋅

)2when a = 2. 

Plugging Equation A2 in the limit below, we obtain

Hence, the asymptotic approximation of the log Pearson 
Bayes factor is a quadratic function of the separation of the 
standard confidence interval for population means in bal-
anced one-way between-subjects designs, as the number of 
subjects goes to infinity. To check the convergence of the 
limit, we plot the (solid black) fitted line for the relationship 
between the log JZS-BF10 and squared separation score, 
along with the (dashed red) analytic line from plugging the 
known values into the formula of Theorem 1, in Fig. 10. 
As the sample size increases, the two lines become closer. 
We still expect some variations between these lines even 
for very large n because Theorem 1 applies for the Pearson 
Bayes factor, whereas the quadratic exponential is interpo-
lated for the JZS Bayes factor.

Appendix B

R packages to perform Bayesian inference
The ‘rmBayes’ package performs Bayesian inter-

val estimation for both the homoscedastic and het-
eroscedastic cases in either between- or within-subject 
designs that include a single independent variable. The 
Stan-based R source package installation will take a 
few minutes because models need to be compiled into 
dynamic shared objects. We recommend using R ver-
sion 4.0.1 or later and installing the pre-compiled 
binary package so users do not have to worry about 
C++  compiler issues. The relevant commands are: 

> install.packages("rmBayes", type = 
"binary")
> library(rmBayes)

The rmHDI function in ‘rmBayes’ provides multiple 
methods to construct the credible intervals for population 
means, with each method based on different sets of priors. 
The default method implements the NUTS algorithm and 
constructs the within-subject HDI corresponding to the 
JZS-HDI case in Table 1. More methods documentation 
can be viewed on GitHub, https://zhengxiaouvic.github.io/
rmBayes/. The following example includes a partial data set, 

lim
n→+∞

[(
1 +

SSB

SSW

) a(n−1)

2
−1−γ

− exp

{
z2
1−

α

2

⋅ Sep2
}]

= lim
n→+∞
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1 +

SSB

SSW

) a(n−1)

2
−1−γ

− exp
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1

2
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}]

= lim
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1 +

SSB

SSW
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2
−1−γ

−

(
1 +

SSB

SSW
+ O

((
SSB

SSW

)2
)) a(n−1)

2

]
= 0.

a call to the rmHDI function, and the resulting output. The 
partial data set is also shown in wide format.

> ## Data are in the long format. 10 
subjects. 3 conditions.
> head(recall.long, 2)
Subject Level Response
1 s1 Level1 10
2 s2 Level1 6
> rmHDI(recall.long, whichSubject = 

"Subject", whichLevel = "Level", whi-
chResponse = "Response", seed = 277) 
#macOS (Apple chip)
$HDI
lower upper
Level1 10.47101 11.59361
Level2 12.39176 13.51436
Level3 13.55086 14.67346
$`posterior means`
Level1 Level2 Level3
11.03231 12.95306 14.11216
$width
[1] 0.5613014
> ## Same data are in the wide format.
> head(recall.wide, 2)
Level1 Level2 Level3
s1 10 13 13
s2 6 8 8
> rmHDI(data.wide= recall.wide, seed 

= 277)

An alternative method for computing HDIs is possible 
using the ‘BayesFactor’ package, which computes Bayes 
factors for several experimental designs. The anovaBF 
function can first be used to generate the Bayes factor for 
a within-subject design.

> library(BayesFactor); set.seed(277)
> anovaBF(Response ~ Level + Subject, 

data = recall.long, whichRandom = "Sub-
ject", iterations = 100000, progress = 
FALSE)
Bayes factor analysis
--------------
[1] Level + Subject : 36469.12 ±0.32%
Against denominator:
Response ~ Subject
---
Bayes factor type: BFlinearModel, JZS

Then, Gibbs sampling can obtain parameter estimates 
from the posterior distribution of the Bayes factor object 
numerator. Those estimates are plugged into the interval 
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equations for LH- or JZS-HDI in Table 1 to construct the 
within-subject HDI. This method can be implemented 
using the R code below, which defines a new anovaHDI 
function. Both anovaHDI and the default rmHDI func-
tions assume all the same priors but use different sam-
pling algorithms for establishing posterior distributions.

> anovaHDI <- function(data, which-
Subject, whichLevel, whichResponse, 
cred, iter) {
#' input arguments are defined as in 

the rmHDI function
n <- length(unique(data[,whichSubjec

t]))
a <- length(unique(data[,whichLe

vel]))
BF <- BayesFactor::anovaBF(as.

formula(paste(whichResponse, "~", 
whichLevel, "+", whichSubject)), data = 
data, whichRandom = whichSubject, iter-
ations = iter, progress = FALSE)
chains <- BayesFactor::posterior(BF, 

iterations = iter, progress = FALSE)
mu.chains <- chains[,2:(a+1)] + 

chains[,1]
widths <- qt((1 + cred) / 2, df = a * 

(n - 1)) * sqrt(chains[,"sig2"] / n)
uprs <- mu.chains + widths
lwrs <- mu.chains - widths

m a t r i x ( c ( c o l M e a n s ( l w r s ) , c o
lMeans(uprs)), nrow = a, dim-
names = list(paste("Level",1:a), 
c("lower","upper")))
}
> set.seed(277)
> anovaHDI(recall.long, "Subject", 

"Level", "Response", .95, 100000)
lower upper
Level 1 10.50752 11.64187
Level 2 12.41498 13.54934
Level 3 13.56208 14.69644

Appendix C

Monte Carlo error and a data permutation issue
Users should expect different results if they vary the num-

ber of iterations or the random seed used in MCMC. Such 
variability is referred to as Monte Carlo error. We examined 
Monte Carlo error in computing Bayes factors by applying 
the anovaBF function 500 times (each containing 100,000 
MCMC iterations; the default value is 10,000) with different 
random seeds on the same set of simulated within-subject 
data. Among these 500 runs, one Bayes factor outlier was as 
extreme as 11.7, although the vast majority of values ranged 
from 4.3 to 5.4. R scripts for this and the following examples 
are available at https://osf.io/x2pvw/.

Fig. 10   Plots of the relationship between the log Bayes factor and the squared separation score of the standard confidence interval for population 
means in between-subjects designs, with the fitted line in solid black and the analytic line in dashed red
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Similarly, Monte Carlo error is associated with the Bayes-
ian interval estimation. We replicated rmHDI and anovaBF 
functions 100 times (each containing 20,000 MCMC draws – 2 
chains with 10,000 iterations each in rmHDI) with different 
random seeds on the same simulated within-subject data. Fur-
thermore, we visualized the resulting variability of the posterior 
mean estimates, HDI widths, and HDI separation via density 
plots. The whole process was repeated several times for data sets 
having different Bayes factors, correlations between conditions, 
and sample sizes. One example is exhibited in Fig. 11. In differ-
ent realizations of the draws from the posterior distribution, it 
is also worthwhile to note a data permutation issue that affects 
the simulation. That is, the same experimental data are used 
but permuted by row (e.g., switch Subject 10 up to the second 
place) or by column (e.g., Level-high and Level-low rather than 
Level-low and Level-high order). Permutation of the entries in 
a data file will result in slightly different estimates even if the 
random seed stays the same. We randomly permuted the data 
by row but fixed the same random seed when calling rmHDI to 
assess the magnitude of the permutation issue relative to Monte 
Carlo error. In Fig. 11, two density plots (permuted data but 
using a constant random seed, or not permuted but varying the 
random seed) generated from results provided by the rmHDI 
function in the ‘rmBayes’ package highly overlap, indicating 
that permutation of the data produces variability in outcomes of 
a similar magnitude to setting different random seeds. Moreo-
ver, the functions in the ‘BayesFactor’ package returned less 

variability in estimates for posterior means but more variability 
in estimates for standard error of the mean (thus, interval width) 
and posterior mean difference, whereas the rmHDI performance 
is quite the opposite. The separation percentage is less variable 
when calling rmHDI, as shown in panel E of Fig. 11. Although 
the models and priors assumed by the two packages are identi-
cal, there may be differences in the actual code implementation, 
especially for Equations 2 and 4 and MCMC samplers (Gibbs 
sampling in the anovaBF and NUTS in the rmHDI), leading to 
differences in the variable results.

In the rmHDI function, the default setting for the argu-
ment permuted is TRUE, meaning the converted wide-
format data are first ordered by their column names in 
alphabetic order. Then, the data are placed in ascending 
order by the first and second columns.

Appendix D

Warning messages regarding sampling and effective 
Monte Carlo sample size

The Stan website https://mc-stan.org/misc/warnings lists 
all the potential warnings in running an MCMC. Three 
common warnings are related to the exceeded maximum 
tree depth (a concern for long execution time), low bulk 
effective samples size (ESS, indicating posterior means and 
medians may be unreliable), and low tail ESS (indicating 

Fig. 11   Density plots of the simulations from replicating R func-
tions. A: posterior mean difference; B: HDI width; C: posterior 
mean of one condition; D: posterior mean of the other condition; E: 
HDI separation percentage. The same random seed was fixed when 

investigating the permutation issue, denoted as ‘rmBayes (per-
muted)’, whereas different random seeds were used for investigating 
the Monte Carlo error in ‘BayesFactor’ and ‘rmBayes’
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posterior variances and tail quantiles may be unreliable). 
The relevance of these warnings depends on the specific 
data being analyzed. Visit the website https://osf.io/x2pvw/ 
for an example.

We suspect that a high correlation between conditions in a 
within-subject design might result in slower, inefficient sam-
pling due to a computed likelihood with elongated elliptical 
contours. The latter two warnings indicate that the sampler 
is moving slowly. After accounting for the correlation across 
successive draws of the Markov chain sampler, the ESS is 
low. For example, if the lag-1 autocorrelation of the MCMC 
sampling output is high (e.g., above .97), then 2,000 itera-
tions can be worth, say fewer than 100 independent draws. 
The warning disappears with 10,000 iterations because the 
effective sample size may then be sufficiently high to cross 
the threshold in Stan (it might be an ESS of approximately 
500).
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