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Abstract

In a conditional moment model, we develop a new integrated conditional mo-

ment (ICM) estimator which directly exploits factor-based conditional moment

restrictions without having to first parametrize, or estimate such restrictions. We

focus on a time series framework where the large number of available instruments

and associated lags is driven by a relatively small number of unobserved factors.

We build on the ICM principle originally proposed by Bierens (1982) and combine

it with information reduction methods to handle the large number of potential

instruments which may exceed the sample size. Under the maintained validity of

the true factors, but not that of observed instruments, and standard regularity

assumptions, our estimator is consistent, asymptotically normally distributed,

and easy to compute. In our simulation studies, we document its reliability and

power in cases where the underlying relationship between the endogenous vari-

ables and the instruments may be heterogeneous, non-linear, or even unstable

over time. Our estimation of the New Keynesian Phillips curve with US data

reveals that forward- and backward-looking behaviors are quantitatively equally

as important, while the driver’s role is nil.

Keywords: Endogeneity; Conditional mean independence; Dimension reduc-

tion; Nonlinearity; Instability.

JEL Classification: C13; C12.
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1 Introduction

In many econometric models with endogenous variables, the structural parameters of

interest are identified through (conditional) moment restrictions. Their informativeness

often depends on the quality of available instruments, and, in practice, it can be quite

challenging to find good informative instruments from observed data. Such difficulties

have been at the heart of IV-based econometrics since the early 1990s, and various

alternatives are now available: some are identification-robust methods which account

- and correct - for the possibility of less informative (so-called weak) instruments,

while others exploit additional sources of information in order to improve the quality

of the instrument. Even though progress has been made, one important question

remains open, and concerns issues arising from the number of considered instruments

- particularly in time series frameworks where lags of observed variables often serve as

valid instruments. Since commonly used economic models rarely provide guidance for

instrument choice, the number of instruments used in empirical studies can be much

larger than the number of instrumented variables and, sometimes, quite large relative

to the sample size. This practice uses up degrees of freedom, which is likely to cause

size distortions and/or power losses. In this paper, we consider this problem from a

conditional moment perspective, and rely on information reduction methods - including

principal components and factor analysis - to get around it, while maintaining (strong)

identification of the parameters of interest.

More specifically, we contribute to the second stream of above-mentioned litera-

ture by developing a flexible and convenient alternative to standard estimators such as

2SLS or GMM which directly exploits all the informational content of (factor-based)

conditional moment restrictions without having to first either parametrize, or estimate

such restrictions. We build on the ICM principle originally proposed by Bierens (1982)

and combine it with information reduction methods to handle the large number of

potential instruments and associated lags. We focus on a time series framework where

the large number of available instruments (which may exceed the sample size) is driven

by a relatively small number of unobserved factors. It is important to mention that

the validity of the instruments is not maintained; rather, it is only the validity of the

(unobserved) true factors which is required. Since our approach does not need to spec-

ify, characterize, or estimate the relationship between the endogenous variable and the

instruments, we are especially interested in studying - and documenting - the reliability

and power of our approach when such a relationship may be heterogenous, non-linear,

or even unstable over time. Overall, our factor-based estimator is easy to compute and
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asymptotically normally distributed under standard regularity assumptions.

ICM-based estimation (see e.g. Dominguez and Lobato (2004), Lavergne and Patilea

(2013), Antoine and Lavergne (2014), Escanciano (2018), Antoine and Sun (2022)) is

appealing because it remains valid - that is, associated estimators are consistent - un-

der a weaker condition than that of standard IV-estimation: namely, conditional mean

independence, rather than uncorrelatedness, which is directly exploited without relying

on its parametrization. This is in contrast with standard inference procedures such as

2SLS which often build on a linear first-stage: such a linear first-stage may artificially

appear weak if the underlying relationship between the endogenous variable and the

instrument(s) is non-linear. For further discussions - and numerical illustrations - on

the potential threat to the relevance of standard IV-estimation (including 2SLS) asso-

ciated with an incorrect, or inappropriate functional form for the first-stage equation,

see Antoine and Lavergne (2023) and Tsyawo (2023); see also Experiment #2c) in our

Monte-Carlo section. In this paper, we build on the smooth minimum distance (SMD)

estimator of Lavergne and Patilea (2013) developed under the i.i.d. setup and extend

their approach to the time series framework.

Information reduction methods including principal components and factor analy-

sis are not only popular and convenient, but they have also been shown to improve

standard IV methods in economics - including the 2SLS estimator, especially with

time series and small samples, as occurs, for example, in macroeconomics: see e.g.

Bai and Ng (2010), Kapetanios and Marcellino (2010), and references therein; see also

the recent survey by Mikusheva (2021). We demonstrate that the same holds for ICM-

based estimators. To do so, we follow Bai and Ng (2010), and rely on factor models

as a tool for constructing a relatively small number of higher quality instruments. We

assume that the (large) number of available instruments depends on a small number of

true (unobserved) factors. The validity of the true factors is maintained throughout,

but not that of observed instruments. Importantly, in our conditional moment frame-

work, validity of the true factors means that the conditional mean of the error term on

the factors is zero.

Our work is also related to alternative strategies that have been proposed in the

literature to handle issues related to large dimensions (e.g. when using a large number

of covariates, moment restrictions, or conditioning variables) such as regularization or

penalization. On regularization, our work relates to Carrasco (2012) who propose an

original approach based on regularized 2SLS to solve the problem of many instruments:

several regularization schemes (such as Tikhonov and Principal Component Analysis)

are considered. On penalization, our work relates to the inference procedure recently

3



proposed by Chen et al. (2022) for parameters identified by conditional moments: it

is designed to handle a large number of conditioning variables through a penalized

Bierens maximum statistic, Bierens (1990). Our estimation procedure does not involve

any penalty since we rely instead on information reduction methods.

Overall, in a linear framework that is realistic and well-suited for time series appli-

cations, we propose a new convenient and flexible alternative to standard estimators

such as 2SLS or GMM. Our estimator exploits all the information contained in condi-

tional moments based on instruments, allows for many available candidate instruments,

and bypasses the characterization of the first-stage regression by not having to model

it, linearly or otherwise. We also consider extensions to allow for invalid and/or weak

instruments while maintaining the validity and relevance of the underlying (latent)

factors.

In a series of simulation studies, we document the reliability and power of our

proposed estimator in cases where the underlying relationship between the endogenous

variables and the instruments may be heterogenous, non-linear, or even unstable over

time. Finally, we revisit an important tool in recent monetary policy analysis, the

New Keynesian Phillips Curve (NKPC) which explains inflation dynamics through the

relation between expected inflation and marginal cost. Our empirical analysis with

quarterly US data from 1960 to 2022 provides strong support for the hybrid NKPC

introduced by Gali and Gertler (1999). In addition, our estimation results are relatively

stable over time and quite precise. They reveal that forward- and backward-looking

behaviors are quantitatively equally as important, while the driver’s role is nil. Our

empirical analysis also explores macro-finance linkages by augmenting traditional sets

of (macro) instruments with macro-finance variables. Overall, our results remain quite

similar with and without these additional variables.

Our paper is organized as follows. In section 2, we introduce and motivate our

framework. In section 3, we present the asymptotic properties of our factor-based ICM

estimator. In section 4, we generalize our framework to allow for weak and/or invalid

instruments. In section 5, we illustrate its finite sample properties and compare its

performance to standard IV estimators such as 2SLS and GMM. Our main empirical

analysis of the NKPC with US data is conducted in section 6. Proofs, tables of re-

sults and graphs are collected in the Appendix. Additional empirical results are also

presented in a Supplementary Appendix.
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2 Framework and Motivation

We consider the (standard) linear regression model1 with scalar dependent variable yt

and p endogenous variables Yt,

yt = Y ′
t β0 + ut , (1)

where β0 is the unknown vector of p parameters of interest. We are interested in

estimating β0, and we rely on a vector Wt of weakly exogenous instruments that may

include lags of the dependent variable as well as other exogenous variables such that,

E(ut|I(Wt)) = 0 with probability 1 (hereafter w.p. 1), (2)

where I(Wt) denotes the information set available at time t, that is the sigma-algebra

generated byWt and its lags. In such a framework, it is standard to derive unconditional

moment restrictions from (2) using a matrix of instruments2, say A[I(Wt)], and to

estimate β0 by GMM based on the following moment restrictions

E(A[I(Wt)]ut) = 0 . (3)

Under maintained homoskedasticity, one may even rely on a linear reduced form equa-

tion to explicitly - and parametrically - link the endogenous variables to (some of) the

instruments such as,

Yt = ΠWt + Vt with E(WtVt) = 0 , (4)

and estimate β0 by 2SLS.

In this paper, we develop an alternative estimation strategy which aims at directly

using the informational content of (2) without having to, either discard any informa-

tion, as done in (3), or rely on the parametrization and estimation of a “first-stage”

equation, such as (4). To do so, we adapt and combine two approaches. First, to

handle the large number of candidate instrumental variables, we extend the factor-

based IV regression model which offers a convenient and parsimonious description of

the cross-series dependence between instruments: see e.g. Kapetanios et al. (2016)

and Mikusheva (2021). Specifically, while the instruments are assumed to be driven

1For simplicity and ease of exposition, we abstract - for now - of the presence of additional (exoge-
nous) regressors that enter linearly in (1) and may be partialled out.

2Specifically, a matrix of instruments is built by taking measurable functions of the information
set.
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by a small number of common unobserved factors denoted Ft, we neither restrict, nor

estimate the relationship between the endogenous variables and these common fac-

tors: said differently, the conditional mean of the endogenous variables on the factors,

E[Yt|I(Ft)], is not “modelled” - either parametrically (e.g. linear) or nonparametrically

- as we do not aim to estimate it. Instead, we rather adapt an original idea from Bierens

(1982) (see also de Jong (1996) and Bierens and Ploberger (1997) for time series exten-

sions), and exploit the conditional mean independence of the factors by rewriting (2) as

an equivalent continuum of unconditional moment restrictions based on the (complex)

exponential function. Overall, our factor-IV framework can be written as:

yt = Y ′
t β0 + ut , (5)

Wt = ΛFt + Et , (6)

with Ft vector of k unobservable and independent factors, Wt vector of wq (observed)

instruments, and Λ the (wq, k)-matrix of factor loadings. In our flexible framework,

we do not explicitly model E(Yt|I(Ft)] since we are not interested in estimating it, or

characterizing it either. All we rely on is the conditional mean independence of the

error term ut with respect to the information set based on the factors Ft,

E[ut|I(Ft)] = 0 w.p. 1 , (7)

under the maintained assumption that E(Yt|I(Ft)] is not almost surely 0,

E(Yt|I(Ft)] 6= 0 w.p. 1 . (8)

Notice also that, similar to Kapetanios et al. (2016), the validity of the instruments

Wt is not maintained: it is only the validity of the (unobserved) true factors Ft which

is required instead of the standard one (see e.g. (2) above). Finally, it is important

to mention that our framework is general enough to accommodate two interesting

sub-cases: (i) the case where the number of instruments wq exceeds the number of

observations T - as long as k remains small; (ii) the hybrid case where the factors

Ft may combine a small number of (chosen) instruments with (true) latent factors3.

3See Section 6 for some illustrations.

6



Accordingly, equation (6) would then be rewritten as,

Wt ≡
(

W1,t

W2,t

)

= ΛFt + Et with Λ =

(

I 0

0 Λ̃

)

and Ft ≡
(

W1,t

F̃t

)

.

To directly use the informational content of the above-mentioned conditional mean

independence, we rewrite (7) as an equivalent continuum of unconditional moments

indexed by ξ,

E






ut exp



ι
c
∑

j=0

ξ′jFt−j










= 0 , (9)

where ξ ∈ Ξ some compact subset of Rk, and c some positive (finite) constant. Beyond

the complex exponential, other functions have been used: in time series, see de Jong

(1996) and Bierens and Ploberger (1997) who rely on the real (non-complex) exponen-

tial function; see also Stinchcombe and White (1998) for a characterization of a large

class of suitable functions in the i.i.d framework. The main idea is then to combine the

above continuum of restrictions into a single theoretical criterion, uniquely minimized

at β0, and convenient to compute.

Accordingly, our estimator is defined as the minimizer of

1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

us(β)ut(β)K

(

Ft − Fs

h

)

where ut(β) ≡ yt − Y ′
t β ∀ t , (10)

with K(.) a kernel function defined on R
k such that

K(ft) =

∫

Ξ

exp



ι

c
∑

j=0

ξ′jft−j



 dµ(ξ) , (11)

for some strictly positive measure µ (except possibly for a set of isolated points), and h

some positive (bandwidth) parameter. Our estimation procedure has a built-in way to

capture past information through the kernel function which incorporates up to c lags

of the factors4. In the i.i.d. framework - with c = 0 and observed Ft - the estimator

4As a result, a given factor should only enter the (conditioning) information set once - say as its
current value, and not multiple times as its current and lagged values. Alternatively, lags of factors
can be directly incorporated in the conditioning set, say (Ft, Ft−1), after adjusting the constant c that
enters the kernel function (e.g. by setting c = 0). We can actually show that these two implementations
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that minimizes (10) was introduced by Lavergne and Patilea (2013) who motivate it

by the following equality,

E

[

us(β)ut(β)K

(

Ft − Fs

h

)

]

=

∫

Ξ

|E[ut(β) exp



ι

c
∑

j=0

ξ′jFt−j



]|2dµ(ξ) ,

where (ys, Ys,Ws, Fs) is an independent copy of (yt, Yt,Wt, Ft), and the observation

that the objective function on the left-hand side is more convenient to handle as it

avoids computing the derivative of the norm of a complex function.

As pointed out by Antoine et al. (2020), the above equality does not usually hold

in general time series models, and they suggest combining the Law of Iterated Expec-

tations with additional regularity assumptions that pertains to the exogeneity of the

factors and the dynamics of the error terms (see Assumption 1(iv) below) to ensure

M∞(β) ≡ E

[

us(β)ut(β)K

(

Ft − Fs

h

)

]

(12)

= E

[

E
[

us(β)|I(Fs)
]

E[ut(β)|I(Ft)]K

(

Ft − Fs

h

)

]

where we assume that s < t without loss of generality.

Then, at least for h sufficiently small, minimizing the population objective function

(12) amounts to searching for a value of β that is as close as possible to fulfilling the

conditional moment restrictions (2), or equivalently the continuum of unconditional

moments (9).

Assumption 1 below gathers all the regularity assumptions discussed so far in order

to ensure β0 is identified and that (12) is uniquely minimized at β0.

Assumption 1. (Regularity assumptions)

(i) E[ut|I(Ft)] = 0 with probability 1, and ut has finite fourth moments.

(ii) E[YtY
′
t ] is non-singular, and E[Yt|I(Ft)] 6= 0 with probability 1.

of our estimation procedure are equivalent. For simplicity, consider the case where current and first
lags of factors are relevant. Our kernel function relies on the kernel function based on Ft with c = 1
as defined in (11) which can be rewritten as a kernel function based on (Ft, Ft−1) with c = 0,

∫

Ξ

(

exp[ιξ′
0
ft]
)

×
(

exp[ιξ′
1
ft−1]

)

dµ(ξ) .
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(iii) Let µ be a given strictly positive measure defined on Ξ a compact subset of Rk.

Let K(.) be the kernel function defined on R
k such that:

K(ft) =

∫

Ξ

exp



ι
c
∑

j=0

ξ′jft−j



 dµ(ξ) ,

where ξ ∈ Ξ some compact subset of Rk, and c some positive (finite) constant.

We assume that K(.) is a symmetric bounded density function on R
k and that

its Fourier transform is strictly positive.

(iv) Let ut(β) ≡ yt − Y ′
t β for any t. We assume that:

E
[

ut(β)|I(Ft)
]

= E
[

ut(β)|I(Ft, yt−1, Yt−1)
]

for any t.

E
[

us(β)|I(Fs)
]

= E
[

us(β)|I(Ft)
]

for any s < t.

Assumption 1(i) maintains the validity of the (true) factors - and associated infor-

mation set, while (ii) is akin to maintaining their relevance; together, they ensure that

β0 is (non-parametrically) identified. (iii) imposes mild restrictions on the measure

µ(.) and associated kernel K(.). Finally, (iv) maintains that the (exogenous) factors

summarize the dynamics of the errors, and ensures that the factors are strictly exoge-

nous. When thinking about the factors as state variables, such assumptions are not

uncommon in asset pricing models: see section 6 in Antoine et al. (2020) and refer-

ences therein for further discussion of these additional regularity conditions, and their

interpretation in the context of asset pricing models.

Proposition 1. (Identification of β0)

Under Assumption 1, β0 is the unique minimizer of (12) with M∞(β0) = 0 and

β0 = E

[

YtY
′
sK

(

Ft − Fs

h

)

]−1

E

[

YtysK

(

Ft − Fs

h

)

]

.

The invertibility of E
[

YtY
′
sK
(

Ft−Fs

h

)

]

follows from Assumptions 1(i) and (ii), as

shown formally in the appendix. Intuitively, it can be interpreted as a generalization

of the traditional rank condition. In practice, it implies that the p-vector β0 of interest

can be identified from a much smaller number of factors (e.g. one factor only!) as

long as there does not exist a linear combination of the endogenous variables that is

conditionally mean-independent of the factor; that is, E(a′Yt|Ft) 6= 0 a.s. for any non-
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zero real vector a. For example, with two endogenous variables, say Y1,t and Y2,t and

one factor F1,t, the conditional means of Y1,t and Y2,t cannot be proportional to each

other almost surely: that is, for any a = (a1, a2) 6= (0, 0),

a1E(Y1,t|F1,t) + a2E(Y2,t|F1,t) 6= 0 a.s.

In our empirical analysis of the hybrid NKPC, there are two endogenous variables

which can be identified - and consistently estimated - with only one factor; see also

section B.1 in the appendix for additional discussions and examples.

Let F denote the (T, k) matrix with rows F ′
t with t = 1, · · · , T . A natural (infea-

sible) estimator of β0 is defined as the minimizer of a sample analog of (12),

β̃T = argmin
β∈B

MT (β, F ) (13)

with MT (β, F ) =
1

T (T − 1)

T
∑

t=1

T
∑

s 6=t,s=1

us(β)ut(β)K

(

Ft − Fs

h

)

. (14)

The infeasible estimator β̃T defined in (13) is a special case of the Smooth Minimum

Distance (SMD) estimator introduced by Lavergne and Patilea (2013) when F is ob-

served, a fixed bandwidth h is used, and c = 0. In their i.i.d framework, they show that

it is consistent and asymptotically normally distributed, while Antoine et al. (2020) ex-

tend these results to time series data. In our (linear) factor-IV framework, the infeasible

estimator β̃T is available in closed-form,

β̃T =
[

Y ′κY
]−1

Y ′κy ,

with Y the (T, p)-matrix with row t as Y ′
t , y the (T, 1)-vector, and κ the (T, T )-matrix

with element (t, s) as K((Ft − Fs)/h).

In section 3, we introduce our (feasible) factor-based SMD (or F-SMD) estimator,

and show that it shares the asymptotic properties of β̃T which are presented next.

3 Large sample theory of F-SMD

In this section, we first present the asymptotic properties of β̃T , the infeasible factor-

based SMD estimator of β0 defined in (13). Then, we introduce our Factor-SMD (F-

SMD hereafter) estimator β̂T , as a feasible estimator of β0 with the same asymptotic

properties as β̃T .
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3.1 The infeasible factor-based SMD estimator

The infeasible factor-based estimator β̃T defined in (13) is a special case of the Smooth

Minimum Distance (SMD) estimator introduced by Lavergne and Patilea (2013) when

F is observed, and its asymptotic properties with dependent data have been derived

in Antoine et al. (2020) (see their sections 7.4 and 7.5). Before presenting these re-

sults in our factor-IV framework, we introduce our regularity assumptions on the data

generating process.

Assumption 2. (Regularity assumptions on the data generating process)

(i) (yt, Yt,Wt, Ft) is a stationary weakly dependent process.

(ii) (yt, Yt,Wt, Ft) satisfy sufficient regularity conditions so that central limit theorems

for all appropriate U-statistics apply.

Assumption 2 allows for general weak dependence in the data, while maintaining

high-level restrictions (e.g. on the strength of the mixing property) to ensure CLTs

apply on all relevant U-statistics. For explicit conditions, see e.g. Fan and Li (1999) for

a general CLT for second order U-statistics with variable kernels for absolutely regular

processes; for results beyond absolute regularity see e.g. Dehling and Wendler (2010).

Proposition 2. (Asymptotic properties of β̃T )

Under Assumptions 1 and 2, the (infeasible) factor-based estimator defined in (13) is

consistent for β0 and asymptotically normally distributed,

√
T (β̃T − β0)

d→ N (0,Σ)

where Σ = [E(YtY
′
sκt,s)]

−1H∞[E(YtY
′
sκt,s)]

−1 and H∞ is explicitly5 defined in the Ap-

pendix (see equation (26) on page 32).

3.2 Our proposed F-SMD estimator

In the context of our factor-IV framework (5)-(6), let F̂ denote the (T, k) matrix of the

first k principal components obtained from the (T, wq) matrix W ; these are commonly

used as estimators for F and are in line with Stock and Watson (2002). To deliver our

5The matrix H∞ corresponds to the long-run variance of the underlying U-statistics defined from
the first-order conditions. In practice, it involves a double sum of terms such as (Ytusκt,s). See the
proof in the Appendix for computational details and explicit expressions.
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F-SMD estimator, we aim to replace F by F̂ in the objective function MT (β, .) defined

in (14). The corresponding F-SMD estimator is denoted β̂T and defined as:

β̂T =
[

Y ′κ̂Y
]−1

Y ′κ̂y , (15)

with Y the (T, p)-matrix with row t as Y ′
t , y the (T, 1)-vector, and κ̂ the (T, T )-matrix

with element (t, s) as K((F̂t − F̂s)/h). We show that, under mild conditions, β̂T is

asymptotically equivalent to the (infeasible) factor-based estimator β̃T studied in the

previous section. We start with our regularity conditions on the factor structure, and

associated estimated factors.

Assumption 3. (Regularity assumptions on the factor structure)

(i) E‖Ft‖4 ≤ M < ∞;
∑

t FtF
′
t/T

p→ ΣF with ΣF some (k, k)-positive definite

matrix; Λ has bounded elements, and ‖ΛΛ′/wq −D‖ → 0 as wq → ∞ with D a

positive definite matrix.

(ii) E(ej,t) = 0, E[|ej,t|8] < ∞, where Et = (e1,t, e2,t, · · · , ewq,t)
′. The variance of Et

is denoted by ΣE. Ft and Es are independent for all (t, s).

(iii) Let τj,l,t,s ≡ E[ej,tel,s]. We assume that:

(a)

wq
∑

j,l=1

|τj,l,s,s|/wq < ∞ for all s

(b)

T
∑

s,t=1

wq
∑

j,l=1

|τj,l,t,s|/(Twq) < ∞

(c) E





wq
∑

j=1

|ej,sej,t − τj,j,t,s|4/√wq



 < ∞ for all (t, s).

(iv)
√
T/wq → 0.

Assumption 3 is rather standard in the factor literature - see e.g. Bai and Ng

(2002), Stock and Watson (2002), Bai (2003), Bai and Ng (2006)) - and it is similar

to Kapetanios et al. (2016). It is used to obtain consistency of the estimator of the

factors and that of the parameters in factor-augmented models; (iv) further ensures

that the estimation error in the estimated factors is asymptotically negligible. Thus,

for large wq, the factors can be treated as known. This is reflected in our next result.
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Theorem 1. (Asymptotic properties of F-SMD)

Under Assumptions 1 to 3, our F-SMD estimator β̂T defined in (15) is consistent for

β0 and asymptotically normally distributed,

√
T (β̂T − β0)

d→ N (0,Σ)

where Σ = [E(YtY
′
sκt,s)]

−1H∞[E(YtY
′
sκt,s)]

−1 and H∞ is explicitly defined in the Ap-

pendix (see equation (26) on page 32).

Theorem 1 shows that, under our regularity conditions, our proposed F-SMD esti-

mator is asymptotically equivalent to the infeasible factor-based estimator β̃T . When√
T/wq → 0 does not hold, the estimation effect of F̂t cannot be ignored and the limit-

ing distribution of β̂T will also depend on the limiting distribution of F̂t: the treatment

of this case is beyond the scope of this paper. In our Monte-Carlo experiments and in

our empirical studies, such an assumption is credible.

Under our maintained assumptions, a consistent estimator of Σ can be obtained

after replacing each term by its sample counterpart,

[

n
∑

t=1

n
∑

s 6=t

κ̂t,sYtY
′
s ]

−1Ĥ∞,T [

n
∑

t=1

n
∑

s 6=t

κ̂t,sYtY
′
s ]

−1 = [Y ′κ̂Y ]−1Ĥ∞,T [Y
′κ̂Y ]−1 ,

with Ĥ∞,T a consistent estimator of H∞ explicitly defined in Appendix; see equation

(27) on page 35. For example, in absence of serial dependence, we use

Ĥ∞,T = Y ′κ̂ΩT κ̂Y with ΩT a consistent estimator of the variance-covariance matrix of

the associated residuals, ût ≡ yt − Y ′
t β̂T . See also Appendix B.2.

4 Extended Framework

In this section, we generalize our framework to allow for weak and/or invalid instru-

ments. Specifically, we consider:

yt = Y ′
t β0 + ut with ut = ũt + b′TEt (16)

Wt = Λwq
Ft + Et (17)

Such a generalized framework encompasses the factor-IV framework introduced in equa-

tions (5)-(6), while also allowing for the instruments Wt to be weak - when Λwq
is close

to zero - and/or invalid - when bT is non-zero. More specifically, we start by highlighting
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the following features of our extended framework:

• when bT = 0 and Λwq
= Λ, we are back to our standard Factor-IV framework

from section 2 where the observed instruments Wt are valid and driven by a small

number of latent (strong) factors Ft.

• when bT 6= 0, at least one component of the vector bT is non-zero and the struc-

tural error ut is correlated6 with the observed instruments Wt through Et. We

will consider

bT =
b

T ν
with b 6= 0 fixed vector and 0 ≤ ν ≤ 1/2 .

This allows us to capture instruments that are always invalid when ν = 0 as well

as instruments that are invalid for any T when ν > 0, but remain asymptotically

valid since bT → 0.

• we consider the weak factor structure suggested by Kapetanios and Marcellino

(2010) which relies on local-to-zero factor loadings,

Λwq
=

Λ

wα
q

with 0 ≤ α ≤ 1/2 .

The associated factor structure is weak in the sense that, as the cross-sectional

dimension of the dataset wq increases, the factors explain a diminishing propor-

tion of the variance of the data. Kapetanios and Marcellino (2010) show that

such a model can accommodate a variety of weak factor loading structures that

are relevant in practice; we refer to their section 2.3 for additional discussions

and illustrations. Assumption 3 will need to be updated accordingly.

It is important to mention that, in our extended framework, the factors remain valid

and strong throughout since Assumptions 1(i)-(ii) continue to hold, that is

E(ut|I(Ft)) = 0 a.s. and E(Yt|I(Ft)) 6= 0 a.s.

Accordingly, the asymptotic properties of the infeasible F-SMD estimator β̃T - which is

computed using the latent factors Ft - remain the same as those established in section 3.

6The potential correlation between the observed instruments and the structural error is related to
the work of Carrasco and Tchuente (2015) who study issues associated with using many instruments
to (efficiently) estimate a linear IV model and introduce a regularized LIML-type estimator.
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Next, we derive the asymptotic properties of the (feasible) F-SMD estimator β̂T which

relies on the estimated factors that are extracted by PCA, as previously explained.

To derive the asymptotic behavior of our proposed F-SMD estimator β̂T , we rely on

Theorem 4 in Kapetanios and Marcellino (2010) which establishes a sufficient condition

on α to ensure the consistent estimation of the (space spanned by the) factors using

principal components. Assumptions 3(i) and (iv) are updated as follows.

Assumption 4. (Regularity assumptions in the extended framework)

(i) E‖Ft‖4 ≤ M < ∞;
∑

t FtF
′
t/T

p→ ΣF with ΣF some (k, k)-positive definite

matrix.

(ii) Λwq
= Λ/wα

q with 0 ≤ α < 1/4, Λ has bounded elements, and ‖ΛΛ′/wq −D‖ → 0

as wq → ∞ with D a positive definite matrix.

(iii) wq = o(T 1/(4α)).

Specifically, a sufficient condition for estimation in weak factor model is the presence

of a “relatively strong” local-to-zero factor model with α < 1/4. This condition allows

us to show that β̂T remains asymptotically equivalent to β̃T .

Theorem 2. (Asymptotic properties of β̂T in the extended framework)

Under Assumptions 1, 2, 3(ii)-(iii), and 4, the F-SMD β̂T defined in (15) is consistent

for β0 and asymptotically normally distributed as in Theorem 1.

The condition on α is not necessary: in specific cases, such as those considered in our

Monte-Carlo experiments, it is possible to obtain consistent estimators of the factors

even when α < 1/2; we refer the interested reader to section 2.3 in Kapetanios and Marcellino

(2010).

5 Monte-Carlo study

We investigate the small sample properties of our F-SMD estimator in the following

(linear) structural model,

yt = α0 + β0Yt + ut

where yt and Yt are both univariate. We maintain α0 = 0 throughout and focus on the

properties of the estimator of β0 exclusively. We consider two main frameworks:
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(i) A small number of (exogenous) instruments Zt - or observable factors - is avail-

able. These are used directly - e.g. without relying on a preliminary PCA -

through their conditional mean independence to implement F-SMD,

E(ut|I(Zt)) = 0 .

We consider cases where the first-stage (or reduced-form equation) is either het-

erogenous, or unstable over time and show that our F-SMD estimator is reliable

and well-behaved without having to specify or estimate the first-stage equation.

(ii) A large number of instruments Wt is available. A small number of (exogenous)

factors F̂t is first extracted from the observed instruments by PCA before imple-

menting our F-SMD estimator based on the conditional mean independence of

the underlying true factors Ft,

E(ut|I(Ft)) = 0 .

In all our simulation designs, performance of the competing estimators7 (e.g. F-

SMD, 2SLS, and efficient GMM) is evaluated by reporting the Monte-Carlo average bias

(Bias), standard error (SE), median bias, median standard error, and median absolute

deviation; we also report the Monte-Carlo average of the standard errors computed us-

ing the heteroskedasticity-robust formula from the asymptotic distribution, the average

of the t-statistic when testing the true unknown parameter value, and the associated

rejection rate of the t-test. All are computed over 5,000 replications.

5.1 Experiment #1: Small number of observed instruments

We first consider a time series setup with a small number of observed exogenous in-

struments and first-stage instability8. More specifically, there is a structural break in

the coefficients of the underlying first-stage equation:

yt = Ytβ0 + σtut

Yt = 10× (2Z2,t − 1)(Z1,t − 2Z3
1,t/5) + vt

7Implementation details are provided in Appendix B.2.
8Results with a heterogenous first-stage are presented in the Supplementary Appendix.
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where Z1 is uniformly distributed over [−2, 2], and Z2 is the break point indicator:

it equals 0 up to Tbreak and 1 afterwards where Tbreak is such that the corresponding

break fraction, ⌊(T − Tbreak)/T ⌋, is either 0.2 or 0.05. We consider three versions of

the model based on the specification of σt:

- homoskedastic with σ2
t = 1;

- heteroskedastic (HET1) with σ2
t =

√

3× (1 + Z2
1,t)/7;

- heteroskedastic-GARCH(1,1) (HET2) with σ2
t = 0.1 + 0.6σ2

t−1u
2
t−1 + 0.3σ2

t−1.

The error terms (ut, vt) are independently generated according to a bivariate normal

distribution with mean 0, variance 1 and correlation 0.6.

We consider different information sets with respect to the break: (i) the struc-

tural break is unknown and ignored, (ii) the existence of the break is known and its

location is estimated9, or (iii) both the existence and the location of the break are

known. Accordingly, the econometrician either only observes Z1, or (Z1, Ẑ2) where Ẑ2

is computed after estimating the break fraction, or (Z1, Z2). We then compare the

performance of the following estimators: F-SMD, 2SLS, (efficient) GMM, as well as

BGMM and B2SLS10. Notice that estimating the break fraction requires modelling the

first-stage equation - which is precisely what our estimation approach with F-SMD is

trying to avoid: as a result, we only implement F-SMD in cases (i) and (iii) when the

break is either ignored or fully known.

The results are reported in Tables 1 to 6. We discuss the results from Table 1

obtained in the homoskedastic setup when the break fraction is 0.2, since results un-

der heteroskedasticity are qualitatively similar. When the structural break is ignored

(Panel A), the F-SMD estimator performs substantially better than competitors - es-

pecially in terms of average and median bias, as well as standard error and overall size

control. When the sample size increases to T = 2, 000, F-SMD still performs better.

When the break is fully known, each estimator improves overall, but F-SMD is still

the preferred estimator.11

9The estimated break fraction is obtained by minimizing the SSR in the first-stage equation where
the endogenous variable Yt is regressed on the observed instrument Z1,t. Since we consider cases with
a small break fraction (0.05), we expand the usual range of candidate break fractions from 0.04 to
0.96.

10BGMM and B2SLS, respectively Break-GMM and Break-2SLS, are two estimators introduced in
Antoine and Boldea (2018) that use structural changes in the first-stage equation to estimate more
efficiently the (stable) structural parameters: e.g. by interacting instruments with breaks from the
first-stage. See implementation details in Appendix B.2.

11With a sample size of T = 200, 2SLS and GMM display erratic behavior and (very) large standard
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5.2 Experiment #2: Large number of observed instruments

Our second simulation design involves a large number of (observed) instruments Wt

driven by a small number of (unobserved) factors Ft. We consider the extended frame-

work introduced in section 4 where the instruments may be weak and/or invalid:

yt = Ytβ0 + σtut (18)

Yt = 10× (2F2,t − 1)(F1,t − 2F 3
1,t/5) + vt (19)

Wt =
1

wα
q

[

Λ1F1,t + Λ2F2,t

]

+ Et (20)

ut = ũt +
b′

T υ
Et , (21)

σ2
t = 1 or 0.1 + 0.6σ2

t−1u
2
t−1 + 0.3σ2

t−1 , (22)

where Wt is a vector of wq = 50 observed instruments driven by two unobservable

independent factors: F1 is uniformly distributed over [−2, 2] and F2 is reminiscent of a

break indicator which equals 0 for the first Tbreak observations, and 1 afterwards where

Tbreak = ⌊0.95T ⌋. The factor loadings Λ1 and Λ2 are two vectors of size wq whose

elements are all i.i.d. drawn from a normal distribution with mean 1 and variance

1. The error terms Et are i.i.d. standard normal, independent of the factors and of

all the other errors in the model; the error terms (ũt, vt) are independently generated

according to a bivariate normal distribution with mean 0, variance 1 and correlation 0.6.

The model is either heteroskedastic of the GARCH(1,1)-type or homoskedastic. The

parameter α controls the strength of the factors: when α = 0, it is the standard case

with strong factors; we also consider weaker factor structures with α = 0.125 or 0.25.

The parameter b controls the validity of the instruments: when b = 0, the instruments

are valid; when b 6= 0, the instruments become invalid, either always invalid when

υ = 0, or weakly exogenous when υ 6= 0. We consider the following cases12: either

b = 0 or b 6= 0 when its first 10 elements are equal to 1 and the remaining 40 are set

to 0 and υ is either 0, 0.25, or 0.5.

errors. These are due to a small number of runs; see section B.4 in the appendix for additional
discussions and further analyses.

12In the Supplementary Appendix, we also consider a more severe case of invalid instruments where
the first 25 elements of b are set to 1, and the remaining ones to 0.
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5.2.1 Experiment #2a): strong and valid instruments

We consider the standard framework where the instruments are valid (b = 0) and the

factor structure is strong (α = 0) with GARCH-type heteroskedasticity.

Our results are reported in Table 8 where we consider F-SMD, 2SLS and (efficient)

GMM using either one, two or three estimated factors; these observed factors are

estimated using Principal Component Analysis on the matrix of observed instruments,

W = [W1,W2, · · · ,WT ] .

Once again, the performance of F-SMD is excellent throughout, and dominates

that of others in terms of bias and standard deviation. In addition, the performance of

F-SMD is particularly insensitive to the number of estimated factors. This is in sharp

contrast with 2SLS and GMM that are both negatively affected when the number of

estimated factors is less than the true one: in such cases, both display large biases

and standard deviations when the sample size is small. These issues are somewhat

mitigated when the sample size increases, but these estimates are still more biased and

less precise than corresponding F-SMD estimates.

As a robustness check, we also consider a design that is fully linear with strong and

valid instruments: the results can be found in the Supplementary Appendix.

5.2.2 Experiment #2b): possibly weak and invalid instruments

We now consider DGPs where the instruments may either be weak or invalid. To model

invalid instruments (b 6= 0), we consider cases where the first 10 elements of the vector

b are set to 1, while the remaining elements are set to 0. We set ν to either 0, 0.25 or

0.5. To model weaker instruments, we consider cases where α ranges from 0 to 0.25.

Our results with invalid instruments (b 6= 0) are reported in Tables 10 to 12, while the

baseline results with valid instruments (b = 0) are collected in Table 13.

Overall, the performance of F-SMD is excellent throughout: as previously noted,

it remains insensitive to the number of estimated factors, even when the instruments

may be weak or invalid. This is in line with our asymptotic results. By contrast, the

performance of GMM is affected by the number of estimated factors in all cases; in

addition, it deteriorates when the instruments become invalid and/or weak - both in

terms of bias and standard errors. Even when considering GMM computed using the

correct number of factors in an ideal DGP with strong and valid instruments (as in

Panel A of Table 13), it does not perform as well as F-SMD: bias and standard errors
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are always much smaller with F-SMD, even with median-based measures that are not

sensitive to outliers.

5.2.3 Experiment #2c): artificially weak first-stage

We now consider a DGP where the first-stage artificially appears weakly identified.

Said differently, the relationship between the endogenous variables Yt and the factor Ft

is strong and non-linear: however, when incorrectly fitting a linear model, as commonly

done in practice, it appears weak. Specifically, we replace equation (19) in the above

model by:

Yt = 3F1,t − F 3
1,t + F 2

1,t − 1 + vt

and F1 is normally distributed with mean 0 and variance 1; everything else remains as

is. Notice than when a linear (factor) model is fitted, the solution of

min
π

E(Y − πF1)
2 = min

π
E(3F1 − F 3

1 + F 2
1 − 1− πF1)

2

is π = 0. Hence, relying on a linear (factor) model effectively destroys the explanatory

power of F1 - and that of associated instruments driven by F1. Consequently, standard

inference procedures such as 2SLS, or GMM based on the estimated factor F̂1 will

suffer from identification issues.13

In Table 14, we report results obtained with F-SMD, 2SLS and GMM. In addition,

we report: (i) the rejection frequencies associated with the (diagnostic) test of the null

of weak identification based on the F-test, (ii) the proportion of identification-robust

confidence intervals obtained with the Anderson-Rubin method that are infinitely large,

and (iii) the average length of (finite) confidence intervals obtained with the Anderson-

Rubin method and with F-SMD.

Overall, the performance of F-SMD is excellent throughout: as previously noted,

it remains insensitive to the number of estimated factors even with a sample size of

T = 200. It outperforms GMM in all cases in terms of bias and standard errors.

As previously explained, this design is artificially weak. Indeed, the null of weak

identification is rejected with probability at most 0.4 including when the sample size

is large (T = 2, 000). When using identification-robust inference with the Anderson-

Rubin method, associated confidence intervals are infinitely large in at least 60% of

the cases. And, even when we focus on cases where theses intervals are finite, they are

13Antoine and Lavergne (2023) were first to highlight this point in a standard linear IV model. Our
simulation design is inspired by theirs.
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much wider than those obtained with F-SMD: e.g. at least four times wider even with

large sample sizes.

5.3 Experiment #3: Empirically-motivated design

In our last experiment, we consider a design that is motivated by our empirical appli-

cation. Similar to the NKPC model estimated in section 6, the dependent variable yt

depends linearly on two endogenous variables, Y1,t and Y2,t (e.g. inflation and driver),

and a constant,

yt = c+ γfY1,t + λY2,t + ũt + ρũt−1

with c = 0, γf = 0.55 and λ = 0.05. These endogenous variables are generated from

two (latent) factors, F1,t and F2,t, which correspond to the two factors extracted by

PCA from the large number of instruments available in our application (see e.g. section

6.1),

Yj,t = gj(F1,t, F2,t) + cjvj,t for j = 1, 2

Further, the functions g1 and g2 are obtained by fitting a flexible non-linear model

between the two observed endogenous variables from our empirical application (e.g.

inflation and driver) and these two extracted factors. Finally, our (observed) exogenous

instruments Wt are generated as follows:

Wt = Λ1F1,t + Λ2F2,t + Et

(ut, v1,t, v2,t) are independently generated according to a trivariate normal distribution

with means 0, variances 1 and correlations 0.6 between vj,t and ut and 0 between v1,t

and v2,t; c1 and c2 are set at 0.025 and 0.05 respectively, and

ũt = 0.01v1,t + 0.01v2,t + 0.02ut .

Et are independently generated as multivariate uncorrelated normals with means 0

and variances 0.1 - independently of (ut, v1,t, v2,t). Finally, ρ is either set at 0 or 0.5 to

generate MA-dynamics in the structural errors. The results are collected in Table 15

where we report estimation results obtained with F-SMD implemented using either 1 or

2 estimated factors, and GMM using 2 estimated factors. As we already explained, the

coefficients of both endogenous variables can be estimated with F-SMD implemented

with only one estimated factor, whereas GMM needs two.

Overall, the performance of F-SMD is excellent throughout, and, as previously
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noted, it remains insensitive to the number of estimated factors. In addition, the

presence of MA-dynamics in the structural errors does not affect its performance either.

GMM delivers reliable estimation results for both parameters in all cases. However,

it is important to note that γf is always less precisely estimated by GMM. When the

number of instruments decreases (from 50 to 6), both estimators still perform well: the

standard errors are comparable, and there is only a slight increase in the bias of γf .

6 Inflation dynamics and the NKPC

The New Keynesian Phillips Curve (NKPC) has played an important role in recent

monetary policy analysis. In its canonical form, the NKPC model expresses current

inflation as a (linear) function of expected inflation and marginal costs. To respond to

criticisms stemming from the model’s inability to sufficiently explain the persistence

of US inflation dynamics, Gali and Gertler (1999) introduced the hybrid NKPC which

also includes a backward-looking component and can be written as,

πt = γ0 + γfπ
e
t+1 + γbπt−1 + λmct , (23)

where πt is the rate of inflation, πe
t+1 is the expected inflation for (t + 1) at time

t, and mct is the marginal cost of production. Notice that the hybrid NKPC (23)

encompasses the canonical NKPC, as it reduces to it when γb = 0. Choosing between

the canonical model and the hybrid one has been an important empirical issue, not

only to understand inflation dynamics, but also to design effective monetary policy.

Indeed, the presence of lagged inflation in (23) indicates the lagged effect of monetary

policy by changing the real economy, while the forward-looking term captures its direct

effect by changing economic agents’ expectations.

Previous studies deliver conflicting results as to the relative importance of forward-

and backward-looking behaviors, depending on the chosen empirical specification and

econometric method. This paper contributes to this important issue by implement-

ing our flexible F-SMD estimation procedure with various instrumental variables, from

traditional ones (taken as lags of included variables) to additional ones, either using

alternative measures (e.g. of inflation), or built as comprehensive indicators of broad

macro-economic conditions. Our estimation procedure is flexible in two important

ways: first, it can easily accommodate (many) instrumental variables; second, it is ro-

bust to the specification of the first stage (such as structural breaks, or non-linearities).

Using quarterly US data from 1960 to 2022, our main empirical analysis provides
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strong support for the hybrid NKPC. In addition, our estimation results are relatively

stable over time and quite precise. They reveal that forward- and backward-looking

behaviors are quantitatively equally as important, while the driver’s role is nil. Our

empirical analysis also explores macro-finance linkages by augmenting traditional sets

of (macro) instruments with macro-finance variables. Overall, our results remain quite

similar with and without these additional variables.

6.1 Main empirical analysis

In our main empirical analysis, we consider the following hybrid NKPC model where

expected inflations are simply replaced by future realizations of inflation as commonly

done under the maintained assumption that expectations are rational:

πt = c+ γfπt+1 + (1− γf)πt−1 + λmct + ut . (24)

Our set of instruments include standard instruments taken as lags of the variables

included in the model, as well as lags of another common driver and alternate measures

of inflation14: namely, one lag of inflation, marginal cost, output gap, wage inflation,

spread between long and short interest rates and inflation on commodity price. We also

consider more comprehensive instruments obtained from the large dataset of macro-

finance variables from McCracken and Ng (2020).

We consider quarterly US data from 1960Q1 to 2022Q2 obtained from Federal Re-

serve Economic Data (FRED) of St. Louis. Specifically, inflation is defined as the

percentage change of the GDP deflator (series ID: GDPDEF). For the real marginal

cost, we use the HP-filtered series of the log of the labor income share of nonfarm busi-

ness sector (series ID: PRS85006173). Output gap is constructed by the log deviation

of real GDP (series ID: GDPC1), also measured by the HP-filter. Wage inflation is

created by the percentage change of the unit labor cost of nonfarm business sector

(series ID: ULCNFB). Our macro-factor is obtained by principal component analysis

(PCA hereafter) from the large macro-finance dataset of McCracken and Ng (2020)).

The above-mentioned inflation series is found to be non-stationary over the sam-

ple period, an issue previously reported in the literature: see e.g. section 3.4.1 in

Mavroeidis et al. (2014) for discussions and additional references. Following related

14In the recent empirical analysis by Choi (2021), these instruments have been found to be suffi-
ciently strong for standard GMM estimation to be reliable; see e.g. p652.
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literature, we then write our model in terms of changes in inflation,

∆πt = c+ γf(πt+1 − πt−1) + λmct + ut , (25)

and use one lag of ∆πt as instrument (instead of one lag of πt)
15. Hereafter, the

(current) marginal cost variable mct is not assumed to be exogenous.

Ultimately, our sample contains 247 observations. We use HAC standard errors

throughout.

6.2 Empirical results and discussion

In Table 16, we estimate the model by F-SMD, GMM and B-GMM using different

instrument sets, chosen as one lag of either, marginal cost, output gap, commodity

inflation, spread, wage-inflation, or our macro-factor. To be clear, we are in the hybrid

situation described on page 7 where our factors combine chosen (observed) instruments

- as done in the literature - with a (true) factor extracted by PCA from the large macro-

finance dataset mentioned above.

Overall, the estimation results for F-SMD are fairly consistent regardless of the

selected instrument set. They reveal that forward- and backward-looking behaviors

are quantitatively equally as important with estimates for γf close to 0.50 (or slightly

above), and statistically significantly different from 0 and from 1 at 95% - but not

from 0.50 - which also provides support to the hybrid NKPC. Further, the driver is

systematically found to have little to no effect with the estimation of λ, the slope

parameter of the marginal cost, approximately zero throughout and not statistically

significant at any reasonable level.

These results are in sharp contrast with those obtained using GMM which are

economically implausible, very noisy, and very sensitive to the instrument set: for

example, while some estimates of γf are negative, all 95% confidence intervals are

quite wide and always include both 0 and 1; estimates of λ are more reasonable and

on par with those obtained by F-SMD.

It is quite remarkable that these issues and inconsistencies are resolved when impos-

ing a break point at the onset of the pandemic, 2020Q1, in the first-stage equation, and

using B-GMM to estimate the model instead. All B-GMM associated estimates for γf

are now very much in line with those obtained by F-SMD16: estimates are close to 0.50

15However, such an instrument appears to be extremely noisy compared to other ones, and we
choose to leave it aside.

16Recall that F-SMD estimates are obtained without imposing any restriction on the first-stage
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(or slightly above), and statistically significantly different from 0 and from 1 at 95% -

but not from 0.50. As robustness checks, we also report in Table 17 estimation results

obtained with F-SMD and GMM over the first subsample obtained with 238 observa-

tions. These results are very much in line with the results obtained by F-SMD over

the whole sample: this suggests that estimates of the structural parameters (γf and λ)

remain relatively stable, whereas the first-stage equation seems to display parameter

instability. In addition, it also appears appropriate to maintain the linearity of the

first-stage equation after accounting for parameter instability. Indeed, while F-SMD

and B-GMM estimates for the structural parameters γf and λ reported in Table 16

remain quite close to each other, associated standard errors are not: e.g. they can be

quite a bit smaller with B-GMM, especially with larger sets of instruments. This may

be interpreted as the price to implement our robust estimation strategy which remains

immune to potential misspecification of the first-stage equation. Given the noisy and

unreliable results obtained with a standard and non-robust procedure such as GMM,

this appears to be a modest price to pay.

Nonetheless, to mitigate potential concerns related to the implementation of F-SMD

with a larger number of instruments, our last set of results relies on using one instru-

ment only. In Table 18, we estimate the model by F-SMD using only one instrument,

chosen as one lag of either, marginal cost, output gap, commodity inflation, spread,

wage-inflation, or the macro-factor, as well as the first PCA extracted from these six

instruments (PCA1) and the first PCA extracted from the joint set of these five macro

instruments and all macro-finance variables from McCracken and Ng (2020) (one-step

PCA1). Once again, the estimation results are quite stable with many estimates of γf

around 0.5017. Noticeably, standard errors associated with the generated instrument

labelled one-step PCA1 are among the smallest ones.

Overall, our empirical results emphasize the convenience and reliability of our esti-

mation strategy which does not require the specification of the first-stage equation, or

its estimation, even when using modest sample sizes.
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A Proofs of the theoretical results

• Proof of Proposition 1:

Without loss of generality, take s < t. Under Assumption 1, we have:

M∞(β)

≡ E

[

us(β)ut(β)K

(

Ft − Fs

h

)

]

= E

[

us(β)E
[

ut(β)|I(Ft), yt−1, Yt−1

]

K

(

Ft − Fs

h

)

]

= E

[

us(β)E
[

ut(β)|I(Ft)
]

K

(

Ft − Fs

h

)

]

= E

[

E
[

us(β)|I(Ft)
]

E[ut(β)|I(Ft)]K

(

Ft − Fs

h

)

]

= E

[

E
[

us(β)|I(Fs)
]

E[ut(β)|I(Ft)]K

(

Ft − Fs

h

)

]

=

∫

Ξ

E



E[us(β) exp(−ι

c
∑

j=0

ξ′jFs−j/h)|I(Fs)]E[ut(β) exp(ι

c
∑

j=0

ξ′jFt−j/h)|I(Ft)]



 dµ(ξ)

=

∫

Ξ







E[ut(β) exp(ι

c
∑

j=0

ξ′jFt−j/h)]
2

+ Cov






E[us(β) exp



−ι

c
∑

j=0

ξ′jFs−j/h



 |I(Fs)], E[ut(β) exp(ι

c
∑

j=0

ξ′jFt−j/h)|I(Ft)]

















dµ(ξ)

Hence, we have M∞(β) ≥ 0 since the first term on the RHS is non-negative, while the

second tends to zero as |t−s| → ∞; further, we haveM∞(β0) = 0 since E[ut(β0)|I(Ft)] =

0 w.p.1 ∀ t, and we conclude that β0 minimizes M∞(.).

Let κt,s ≡ K
(

(Ft − Fs)/h
)

for convenience. Then, the associated FOC write:

E(Yt(ys − Y ′
sβ0)κt,s + (yt − Y ′

t β0)Ysκt,s) = 0

⇒ E(Yt(ys − Y ′
sβ0)κt,s) + E((yt − Y ′

t β0)Ysκt,s) = 0

⇒ β0 = E[(YtY
′
s + YsY

′
t )κt,s]

−1E[(Ytys + Ysyt)κt,s]

⇒ β0 = [E(YtY
′
sκt,s)]

−1E[Ytysκt,s]
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where the last expression follows from E(YtY
′
sκt,s) being positive definite hence sym-

metric. We now show that E[YtY
′
sκt,s] is positive definite.

For any a real vector of size p, we have:

E
[

a′YtY
′
saκt,s

]

= E
[

a′E
[

Yt|I(Ft)
]

E[Y ′
s |I(Fs)]aκt,s

]

=

∫

Ξ
E



a′E
[

Yt|I(Ft)
]

exp(ι

c
∑

j=0

ξ′jFt−j/h)E[Y ′
s |I(Fs)]a exp(−ι

c
∑

j=0

ξ′jFs−j/h)





=

∫

Ξ
E



a′E[Yt|I(Ft)] exp(ι
c
∑

j=0

ξ′jFt−j/h)



 × E



E[Y ′
s |I(Fs)]a exp(−ι

c
∑

j=0

ξ′jFs−j/h)



 dµ(ξ)

+

∫

Ξ
Cov



a′E[Yt|I(Ft)] exp(ι

c
∑

j=0

ξ′jFt−j/h), E[Y ′
s |I(Fs)]a exp(−ι

c
∑

j=0

ξ′jFs−j/h)



 dµ(ξ)

Notice that this expression is non-negative since the first term on the RHS is non-

negative, wile the second becomes negligible as s and t are further apart. To see this,

it is useful to rewrite the first term as follows after introducing F̄t = (Ft, Ft−1, · · · , Ft−l)

with some l ≥ c and its density fF̄ (.):

∫

Ξ

|





∫

a′E[Yt|I(Ft)] exp(ι
c
∑

j=0

ξ′jFt−j/h)fF̄ (F̄t)d(F̄t)



 |2dµ(ξ)

= (2π)2k
∫

Ξ

|
(

F [a′E(Yt|I(Ft))fF̄ (F̄t)](ξ)
)

|2dµ(ξ)
≥ 0 ,

since µ strictly positive on Ξ and with F [g] the Fourier transform of a well-defined

function g(.) on Ξ formally defined as,

F [g](ξ) =
1

(2π)k

∫

exp



ι
c
∑

j=0

ξ′jut−j



 g(ut, ut−1, · · · , ut−l)d(ut, ut−1, · · · , ut−l) .

We then have:

E(a′YtY
′
saκt,s) = 0 ⇔ ∃ a 6= 0 s.t. a′E[Yt|I(Ft)]fF̄ (F̄t) = 0 a.s.

⇔ ∃ a 6= 0 s.t. a′E[Yt|I(Ft)] = 0 a.s.

30



This cannot hold, since, under Assumption 1, E(Yt|I(Ft)) 6= 0 a.s. and E(YtY
′
t ) is

nonsingular. �

• Proof of Proposition 2:

From the FOC, we have:





1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κt,sYtY
′
s



 β̃T =





1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κt,sYtys





⇔





1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κt,sYtY
′
s





(

β̃T − β0

)

=





1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κt,sYtus





⇔ AT

(

β̃T − β0

)

= BT

with obvious notations. We now show that AT and BT are both U-statistics, and find

their asymptotic distributions by applying appropriate CLTs.

(i) To show that AT is a U-statistic, notice that

AT =
1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κt,sYtY
′
s

=
1

2

2

T (T − 1)

∑

1≤s<t≤T

(κt,sYtY
′
s + κs,tYsY

′
t )

=
1

2
ÃT

Hence, AT is a half of a U-statistics denoted ÃT . Let us denote Xt ≡ (yt, Yt,Wt, Ft)

for any t. Using the Hoeffding decomposition, ÃT can be rewritten as:

ÃT = E[h(Xt, Xs)] +
2

T

T
∑

t=1

h1(Xt) +
2

T (T − 1)

∑

t<s

h2(Xt, Xs)

with h(Xt, Xs) ≡ YtY
′
sκt,s + YsY

′
t κs,t

h1(x) ≡ E[h(x,Xs)]− E[h(Xt, Xs)]

h2(x, z) ≡ h(x, z)− h1(x)− h1(z)−E[h(Xt, Xs)]

Then, a CLT applies to (a′ÃT ) for any a ∈ R
p (e.g. Theorem 1.8 in Dehling and Wendler
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(2010)), and implies that:

√
Ta′(ÃT − E[h(Xt, Xs)]) = OP (1)

⇒ ÃT
P→ E[h(Xt, Xs)]

with E[h(Xt, Xs)] = E(YtY
′
sκts + YsY

′
t κst) = 2E(YtY

′
sκt,s)

which is a nonsingular matrix as shown previously in the proof of Proposition 1.

(ii) We follow the same steps for BT :

BT =
1

2
B̃T =

1

2

2

T (T − 1)

∑

1≤s<t≤T

g(Xt, Xs)

where B̃T =
2

T

T
∑

t=1

g1(Xt) +
2

T (T − 1)

∑

t<s

g2(Xt, Xs)

with g(Xt, Xs) ≡ Ytusκt,s + Ysutκs,t

E[g(Xt, Xs)] = 0 (shown at the end of the proof)

g1(x) ≡ E[g(x,Xs)]

g2(x, z) ≡ g(x, z)− g1(x)− g1(z)

Then, a CLT applies to (a′B̃T ) for any a ∈ R
p (e.g. Theorem 1.8 in Dehling and Wendler

(2010)), and we get: √
Ta′B̃T

d→ N (0, 4σB(a))

with σ2
B(a) = V ar[a′g1(Xt)] + 2

∑∞
k=1Cov(a′g1(Xt), a

′g1(Xt+k)).

The asymptotic distribution of B̃T follows from the application of the Cramér-Wold

theorem,
√
TB̃T

d→ N (0, 4H∞), with

H∞ ≡ V ar[g1(Xt)] +

∞
∑

k=1

(Cov(g1(Xt), g1(Xt+k)
′) + Cov(g1(Xt+k), g1(Xt)

′)) . (26)

The expected result follows with Σ = [E(YtY
′
sκt,s)]

−1H∞[E(YtY
′
sκt,s)]

−1. We conclude
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the proof by showing that E[g(Xt, Xs)] = 0.

E[g(Xt, Xs)] = 2E[Ytusκt,s]

= 2

∫

Ξ

E






Ytus exp



ι

c
∑

j=0

ξ′j(Ft−j − Fs−j)/h










dµ(ξ)

= 2

∫

Ξ

E






E[Yt exp



ι
c
∑

j=0

ξ′jFt−j/h



 |I(Ft)]

×E[us exp



−ι
c
∑

j=0

ξ′jFs−j/h



 |I(Fs)]






dµ(ξ)

= 0

which follows from E[us exp
(

−ι
∑c

j=0 ξ
′
jFs−j/h

)

|I(Fs)] = 0 under Assumption 1(i).

�

• Proof of Theorem 1 :

From the FOC, we have:





1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κ̂t,sYtY
′
s



 β̂T =





1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κ̂t,sYtys





⇔





1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κ̂t,sYtY
′
s





(

β̂T − β0

)

=





1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κ̂t,sYtus





⇔ AT (F̂ )
(

β̂T − β0

)

= BT (F̂ )

with obvious notations, including κ̂t,s ≡ K((F̂t− F̂s)/h). We now study the asymptotic

properties of AT (F̂ ) and BT (F̂ ) and show how they relate to those of AT and BT defined

in the proof of Proposition 2.

33



AT (F̂ ) =
1

T (T − 1)

T
∑

t=1

T
∑

s=1, s 6=t

κ̂t,sYtY
′
s

where κ̂t,s =

∫

Ξ

exp





c
∑

j=0

ξ′j

(

F̂t−j − F̂s−j

h

)



 dµ(ξ)

=

∫

Ξ

exp





c
∑

j=0

ξ′j

(

H ′(Ft−j − Fs−j)

h
+ cT

)



 dµ(ξ)

= exp(cT )× κt,s ,

with H invertible matrix and cT which follow from Lemma 1 below,

cT = Op

(

1

min(
√
wq, T )

)

.

This implies that:

AT (F̂ ) = exp(cT )× AT

Similarly, we have:

BT (F̂ ) = exp(cT )×BT .

As a result, under Assumption 3(iv), it follows immediately that
√
T (β̂T−β0) is asymp-

totically equivalent to
√
T (β̃T − β0).

We conclude the proof by detailing how to consistently estimate the asymptotic

variance Σ of β̂T with

Σ = [E(YtY
′
sκt,s)]

−1H∞[E(YtY
′
sκt,s)]

−1 .

As explained in the main text, under our maintained assumptions, the estimation of

the factors can be ignored; this also means that a consistent estimator of Σ can simply

be obtained after replacing each term by its sample counterpart as follows:

[

n
∑

t=1

n
∑

s 6=t

κ̂t,sYtY
′
s ]

−1Ĥ∞,T [

n
∑

t=1

n
∑

s 6=t

κ̂t,sYtY
′
s ]

−1 = [Y ′κ̂Y ]−1Ĥ∞,T [Y
′κ̂Y ]−1 ,
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with Ĥ∞,T a consistent estimator of H∞ such as

T
∑

t=1











T
∑

s=1

κt,sYs









T
∑

s=1

κt,sYs





′

u2
t







+
M
∑

k=1

T
∑

t=1+k

(1− k

M + 1
)











T
∑

s=1

κt,sYs









T
∑

s=1

κt−k,sYs





′

utut−k







+

M
∑

k=1

T
∑

t=1+k

(1− k

M + 1
)











T
∑

s=1

κt−k,sYs









T
∑

s=1

κt,sYs





′

utut−k






. (27)

�

Lemma 1. Under Assumptions 1 to 3(i),(ii),(iii), there exists an invertible matrix H

such that

F̂t −H ′Ft = Op

(

1

min(
√
wq, T )

)

. (28)

Proof of Lemma 1. Lemma 1 follows directly from Theorem 1 in Bai (2003): see

e.g. the discussions that follow Theorem 1 on page 12. We first recall the maintained

assumptions in Theorem 1 in Bai (2003) (Assumptions A to G). Then, we verify that

Theorem 1 in Bai (2003) applies in our framework.

• Assumption A. E‖Ft‖4 ≤ M < ∞ and T−1
∑T

t=1 FtF
′
t

p→ ΣF , some (k, k) positive

definite matrix.

• Assumption B. Λ has bounded elements λi, and ‖Λ′Λ/wq − ΣΛ‖ → 0 for some

(k, k) positive definite matrix.

• Assumption C. There exists a positive constant M such that for all wq and T ,

1. E(eit) = 0, E|eit|8 ≤ M < ∞.

2. E(e′set/wq) = E(
∑wq

i=1 eiseit/wq) = γwq
(s, t), |γwq

(s, t)| ≤ M for all s

and
∑T

s=1

∑T
t=1 |γwq

(s, t)|/T ≤ M .

3. E(eitejt) = τij,t with |τij,t| ≤ |τij | for some τij and for all t. In addition,
∑wq

i=1

∑wq

j=1 |τij | ≤ M .

4. E(eitejs) = τij,ts and
∑wq

i=1

∑wq

j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ M .

5. For every (t, s), E|∑wq

i=1[eiseit − E(eiseit)]/
√
wq|4 ≤ M .
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• Assumption D.

E





1

wq

wq
∑

i=1

‖ 1√
T

T
∑

t=1

Fteit‖2


 ≤ M

• Assumption E. There exists M < ∞ such that, for all T and wq, and for every

t ≤ T and every i ≤ wq,

1.
∑T

s=1 |γN(s, t)| ≤ M .

2.
∑wq

k=1 |τki| ≤ M .

• Assumption F. There exists M < ∞ such that, for all T and wq,

1. For each t,

E‖ 1
√

wqT

T
∑

s=1

wq
∑

k=1

Fs[eksekt −E(eksekt)]‖2 ≤ M

2. The (k, k) matrix satisfies

E‖ 1
√

wqT

T
∑

t=1

wq
∑

k=1

Ftλ
′
kekt‖2 ≤ M

3. For each t, as wq → ∞,

1
√
wq

wq
∑

i=1

λieit
d→ N (0,Γt) where Γt = lim

wq→∞

wq
∑

i=1

wq
∑

j=1

λiλ
′
jE(eitejt)

4. For each i, as T → ∞

1√
T

T
∑

t=1

Fteit
d→ N (0,Φi) where Φi = plimT

T
∑

s=1

T
∑

t=1

E[FtF
′
seiseit]

• Assumption G. The eigenvalues of the (k, k) matrix (ΣΛ.ΣF ) defined in Assump-

tions A and B are distinct.

Assumptions A and B are the same as Assumption 3(i). Assumption C is the

same as Assumption 3(ii)-(iii). Assumption D maintains weak dependence between

factors and idiosynchratic errors, and it is more general than Assumption 3(ii) which

imposes independence between them. Assumption E maintains weak dependence on

the idiosynchratic errors, and it is more general than Assumption 3(ii) which imposes
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their time series and cross-section independence. As explained in section 3.1 in Bai

(2003), F and Λ are not separately identifiable; however, they can be estimated up to

an invertible (k, k) matrix transformation. Bai (2003) relies on his Assumption G to

define the invertible matrix H . We follow instead Bai and Ng (2006) (see e.g. their

section 2.1) and define the invertible matrix H - without imposing Assumption G - as

H = Ṽ −1

(

F̂ ′F

T

)(

Λ′Λ

wq

)

,

with Ṽ the (k, k) diagonal matrix consisting of the k largest eigenvalues of WW ′/(wqT )

with W the (T, wq)-matrix with row t as W ′
t . �

• Proof of Theorem 2 :

The proof of Theorem 2 closely follows the proof of Theorem 1. In particular, it means

that we need to extend Lemma 1 to our new framework: this is done in Lemma 2 below

by using several results from Kapetanios and Marcellino (2010) (e.g. Theorem 4) to

update the rate of convergence, accordingly. Specifically, instead of the rate in Lemma

1, min{√wq, T}, we use the rate derived in Kapetanios and Marcellino (2010),

δwqTα = w−2α
q ×min{√wq, T} .

Ultimately - and similarly to the proof of Theorem 1 - we end up with a new quantity cT

that mimics the updated rate and is shared by both AT (F̂ ) and BT (F̂ ). Consequently,

the asymptotic properties of β̂T are as in Theorem 1. �

Lemma 2. Under Assumptions 1, 2, 3(ii),(iii) and 4, there exists an invertible matrix

H such that

F̂t −H ′Ft = Op

(

1

w−2α
q min{√wq, T}

)

. (29)

Proof of Lemma 2. We start from the decomposition of F̂t − H ′Ft which is similar

to the one used in the proof of Theorem 4 in Kapetanios and Marcellino (2010). In

particular, we rely on the same normalization for Λ, that is, we use: Λ′Λ/w1−2α
q = I

which leads to:

F̂ = w−1+2α
q W Λ̃ and Λ̃ = T−1W ′F̃ ,

with F̃ the solution of the optimization problem of maximizing tr(F ′(W ′W )F ) subject

to F ′F/T = I. Let H = ((F̃ ′F/T )(Λ′
wq
Λwq

/w1−2α
q ))′. Then,
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F̂t −H ′Ft = w2α
q T−1





T
∑

s=1

F̃sγwq
(s, t) +

T
∑

s=1

F̃sζst +

T
∑

s=1

F̃sηst +

T
∑

s=1

F̃sξst





⇒ w−2α
q (F̂t −H ′Ft) = T−1





T
∑

s=1

F̃sγwq
(s, t) +

T
∑

s=1

F̃sζst +

T
∑

s=1

F̃sηst +

T
∑

s=1

F̃sξst





where ζst =
e′set
wq

− γwq
(s, t)

ηst = F ′
sΛwq

et/wq

ξst = F ′
tΛwq

es/wq = ηts .

We analyze each term separately to show that, under the assumptions maintained in

Lemma 2, with δwqT = min{√wq,
√
T}, we have:

(a) T−1

T
∑

s=1

F̃sγwq
(s, t) = Op

(

1√
TδwqT

)

(b) T−1
T
∑

s=1

F̃sζst = Op

(

1
√
wqδwqT

)

(c) T−1

T
∑

s=1

F̃sηst = Op

(

1√
wqδwqT

)

(d) T−1
T
∑

s=1

F̃sξst = Op

(

1
√
wqδwqT

)

These results follow, in part, from results proved by Kapetanios and Marcellino (2010)

in the proof of Theorem 4 as well as results proved by Bai (2003) in the proof of Lemma

A.2. It then follows that the sum of these four terms is Op(1/min{T,√wq}).
(a)

T−1|
T
∑

s=1

F̃sγwq
(t, s)| ≤ |T−1

T
∑

s=1

‖F̃s‖2|1/2 × T−1/2|
T
∑

s=1

γ2
wq
(t, s)|1/2

= Op(1/δwqT )×
1√
T
Op(1)

= Op(1/(
√
TδwqT ))
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(b)

T−1|
T
∑

s=1

F̃sζst| ≤ |T−1
T
∑

s=1

‖F̃s‖2|1/2 × |T−1
T
∑

s=1

ζ2st|1/2

= Op(1/δwqT )× |Op(1/
√
wq)

= Op(1/(
√
wqδwqT ))

(c)

T−1|
T
∑

s=1

F̃sηst| ≤ |T−1

T
∑

s=1

‖F̃s‖2|1/2 × |T−1

T
∑

s=1

η2st|1/2

= Op(1/
√
wqδwqT )

since

T−1

T
∑

s=1

η2st = T−1

T
∑

s=1

(F ′
sΛet)

2w−2−2α
q

≤ T−1
T
∑

s=1

‖Fs‖2 × ‖Λet‖2w−2−2α
q

= Op(w
−1−2α
q )

(d)

T−1|
T
∑

s=1

F̃sξst| ≤ |T−1

T
∑

s=1

‖F̃s‖2|1/2 × |T−1

T
∑

s=1

ξ2st|1/2

= Op(1/
√
wqδwqT )

�

B Monte-Carlo results

B.1 Identification

• Simulation designs #1 and #2

We first discuss identification of β0 in the simulation design #1 when one instrument

Z1 is used: similar results apply to our simulation design #2 and are not explicitly
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discussed here. These identification properties are related to general results in Sun

(2022), and are provided in our specific simulation setup for completeness. We show

that β0 is identified as long as, (i) Z2 is conditionally mean-dependent of Z1, or, (ii)

pz 6= 0.5 when Z2 is conditionally mean-independent of Z1.

Recall that, for the SMD estimator, the general identification condition can be writ-

ten as a rank condition that ensures that E(κj,lYjY
′
l ) is invertible. When E(κj,lYjY

′
l )

is not invertible, it means that there exists a 6= 0 such that:

a′E(κj,lYjY
′
l )a = 0 ⇔ a′E(Yj |Zj) = 0 a.s.

When implementing the SMD estimator with only one instrument, Z1, this condition

becomes,

a′E(Yj |Z1,j) = a′E
[

10(2Z2,j − 1)(Z1,j − 2Z3
1,j/5) + vj |Z1,j

]

= 10a′E
[

(2Z2,j − 1)|Z1,j

]

(Z1,j − 2Z3
1,j/5)

= 10a′
[

2E(Z2,j|Z1,j)− 1
]

(Z1,j − 2Z3
1,j/5)

= 0 .

Notice that, when Z2 is conditionally mean-independent of Z1 and Pr(Z2 = 1) = 0.5,

then, for any a, we have a′E(Yj|Z1,j) = 0, and, as a result, the parameter β0 is not

identified.

• Simulation design #3

We verify Assumptions 1(i) and (ii) in the simulation design #3. In this DGP, we have

(σtut) independent of Ft; hence, it follows that E(σtut|I(Ft)) = 0.

We also have:

E(YtY
′
t ) = E(Y 2

t ) since Yt is univariate here

= E(100(2F2,t − 1)2(F1,t − 2F 3
1,t/5)

2 + v2t + 20(2F2,t − 1)(F1,t − 2F 3
1,t/5)vt)

= 100× E(2F2,t − 1)2 × E(F1,t − 2F 3
1,t/5)

2 + 1

since vt, F1,t, F2,t are independent

> 0
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and

E(Yt|I(Ft)) = E(Yt|Ft)

= 10× (2F2,t − 1)× (F1,t − 2F 3
1,t/5)

6= 0 a.s. since F1,t ∼ U([−2, 2]) and 2F2,t − 1 6= 0 ∀ t

B.2 Implementation details

• F-SMD

All the results presented in the main paper are obtained with c = 0, and a Gaussian

kernel. Results with other values of c are presented in the Supplementary Appendix

and reveal that the value of c does not seem to play an important role in our framework

even for smaller sample sizes.

• B-2SLS and B-GMM

We first provide expressions for the B-2SLS and B-GMM estimators. The B-2SLS

estimator is defined as:

β̂B2SLS = (
T
∑

t=1

ŶtŶ
′
t )

−1
T
∑

t=1

Ŷtyt

with

Ŷ ′
t =







Z ′
1,tΠ̂t≤Tbreak

, if t ≤ Tbreak

Z ′
1,tΠ̂t>Tbreak

, if t > Tbreak.

and a consistent estimator of its asymptotic variance is obtained as:

V̂ arβ̂B2SLS = (
T
∑

t=1

ŶtŶ
′
t )

−1(
T
∑

t=1

ŶtŶ
′
t û

2
t )(

T
∑

t=1

ŶtŶ
′
t )

−1

with ût = yt − ŶtβB2SLS

The B-GMM estimator is defined as:

β̂BGMM = (Y ′Z(Z ′Z)−1Z ′Y )−1Y ′Z(Z ′Z)−1Z ′y

with

Z =

(

Z1,t≤Tbreak
0

0 Z1,t>Tbreak

)
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where Z1 is split as follows,

Z1 =

(

Z1,t≤Tbreak

Z1,t>Tbreak

)

And a consistent estimator of its asymptotic variance is obtained as:

V̂ arβ̂B2SLS = (

T
∑

t=1

ŶtŶ
′
t )

−1(

T
∑

t=1

ŶtŶ
′
t û

2
t )(

T
∑

t=1

ŶtŶ
′
t )

−1

The efficient B-GMM estimator is defined as:

β̂BGMM.eff = (Y ′Z(Z ′Ω̂1,TZ)
−1Z ′Y )−1Y ′Z(Z ′Ω̂1,TZ)

−1Z ′y

with Ω̂1,T the variance-covariance matrix of the B-GMM residuals, yt − Y ′
t βBGMM . A

consistent estimator of its asymptotic variance is obtained as:

V̂ arβ̂BGMM.eff = (Y ′Z(Z ′Ω̂TZ)
−1Z ′Y )−1 ,

with Ω̂B,T a consistent estimator of the variance-covariance matrix of the residuals,

yt − Y ′
t β̂BGMM.eff .

• Computation of standard errors.

We now detail how standard errors are computed throughout. In Experiment 1 in the

iid and HET1 cases, we compute robust standard errors. In Experiment 1 in the HET2

case and in Experiments 2 and 3, we compute HAC standard errors. In the empirical

application, we use HAC standard errors throughout.

B.3 Experiment #1: Small number of observed exogenous

instruments
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B.4 Erratic behavior of 2SLS and GMM

We specifically discuss the erratic behavior of 2SLS and GMM in Table 2. In this

table, “Asympt.Heterosk.SE” presents the average of standard errors computed from

the 5,000 rounds using the estimator of the variance formula, while “Median of SE”

displays the associated median. The difference between the mean and the median

suggests the presence of extreme cases for GMM and 2SLS when using only Z1 as an

instrument. Indeed, upon further inspecting the standard errors, we found that the

maximum standard error is 5.193 × 106. This pattern happens in the small sample

case when T = 200, demonstrating that extreme cases are more likely to happen when

the sample size is small. When we disregard these extreme cases, such as by setting a

maximum standard error and excluding simulations producing standard errors greater

than 10, we eliminate 5.56% of the 5,000 replications. Consequently, the average of

those standard errors becomes 0.623, and the median becomes 0.185 for both GMM

and 2SLS. In this scenario, the standard deviation calculated from the estimates of the

5,000 rounds is 0.303, significantly lower than the value of 20.863 in the “SE” row of

the same table. This is shown in Table 7. See also Table 9 for Experiment #2a.
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PANEL A: break either ignored or estimated

Break is ignored: Z1 only Break location is estimated: (Z1, Ẑ2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel A.1: sample size T = 200
Bias -0.003 -1.243 -1.243 0.018 0.018
SE 0.048 64.937 64.937 0.068 0.068
Asympt.Heterosk.SE 0.048 21336.756 21336.759 0.063 0.065
t-statistic -0.006 0.062 0.062 0.295 0.308
Median bias -0.002 0.010 0.010 0.017 0.017
Median Absolute Deviation 0.032 0.142 0.142 0.043 0.043
Median of SE 0.047 0.275 0.275 0.061 0.062
Rej. rate for Heterosk. SE 0.036 0.001 0.001 0.079 0.057
Panel A.2: sample size T = 2, 000
Bias 0.000 -0.040 -0.040 0.007 0.007
SE 0.013 2.953 2.953 0.044 0.044
Asympt.Heterosk.SE 0.013 35.552 35.552 0.043 0.044
t-statistic 0.011 0.052 0.052 0.167 0.176
Median bias 0.000 0.002 0.002 0.007 0.007
Median Absolute Deviation 0.009 0.058 0.058 0.027 0.027
Median of SE 0.013 0.088 0.088 0.041 0.042
Rej. rate for Heterosk. SE 0.054 0.005 0.005 0.050 0.032

PANEL B: break is fully known - use (Z1, Z2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel B.1: sample size T = 200
Bias -0.001 0.022 0.022 0.013 0.013
SE 0.034 0.329 0.329 0.133 0.133
Asympt.Heterosk.SE 0.034 0.530 0.511 0.113 0.152
t-statistic -0.005 0.131 0.131 0.149 0.149
Median bias -0.001 0.019 0.019 0.014 0.014
Median Absolute Deviation 0.023 0.096 0.096 0.065 0.065
Median of SE 0.034 0.163 0.162 0.092 0.099
Rej. rate for Heterosk. SE 0.047 0.003 0.003 0.057 0.010
Panel B.2: sample size T = 2, 000
Bias 0.000 0.002 0.002 0.002 0.002
SE 0.010 0.130 0.130 0.052 0.052
Asympt.Heterosk.SE 0.010 0.150 0.147 0.049 0.052
t-statistic 0.012 0.081 0.081 0.071 0.088
Median bias 0.000 0.005 0.005 0.003 0.003
Median Absolute Deviation 0.007 0.053 0.053 0.030 0.030
Median of SE 0.010 0.080 0.080 0.045 0.046
Rej. rate for Heterosk. SE 0.054 0.006 0.006 0.050 0.024

Table 1: Experiment #1: Small number of observed exogenous instruments with first-
stage instability under homoskedasticity when the true break fraction is 0.2. In panel
A, the break is either ignored (first 3 columns) or estimated (remaining 2 columns)
with a sample size of T = 200 (panel A.1) or T = 2, 000 (panel A.2); in panel B, the
break is fully known with a sample of T = 200 (panel B.1) or T = 2, 000 (panel B.2).
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PANEL A: break either ignored or estimated

Break is ignored: Z1 only Break location is estimated: (Z1, Ẑ2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel A.1: sample size T = 200
Bias -0.001 -0.035 -0.035 0.016 0.016
SE 0.029 20.863 20.863 0.068 0.068
Asympt.Heterosk.SE 0.028 2029.220 2029.220 0.063 0.065
t-statistic -0.007 0.060 0.060 0.268 0.282
Median bias -0.001 0.010 0.010 0.015 0.015
Median Absolute Deviation 0.019 0.114 0.114 0.043 0.043
Median of SE 0.028 0.200 0.200 0.061 0.061
Rej. rate for Heterosk. SE 0.051 0.001 0.001 0.081 0.060
Panel A.2: sample size T = 2, 000
Bias 0.000 0.000 0.000 0.006 0.006
SE 0.009 0.319 0.319 0.044 0.044
Asympt.Heterosk.SE 0.008 0.609 0.609 0.042 0.044
t-statistic 0.010 0.042 0.042 0.165 0.177
Median bias 0.000 0.001 0.001 0.008 0.008
Median Absolute Deviation 0.006 0.037 0.037 0.029 0.029
Median of SE 0.008 0.056 0.056 0.041 0.042
Rej. rate for Heterosk. SE 0.055 0.014 0.014 0.054 0.033

PANEL B: break is fully known - use (Z1, Z2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel B.1: sample size T = 200
Bias -0.001 0.014 0.014 0.011 0.011
SE 0.027 0.303 0.303 0.139 0.139
Asympt.Heterosk.SE 0.027 0.683 0.993 0.108 0.141
t-statistic -0.007 0.110 0.111 0.143 0.158
Median bias -0.001 0.014 0.014 0.013 0.013
Median Absolute Deviation 0.018 0.087 0.087 0.066 0.066
Median of SE 0.027 0.137 0.136 0.088 0.089
Rej. rate for Heterosk. SE 0.050 0.005 0.006 0.080 0.049
Panel B.2: sample size T = 2, 000
Bias 0.000 0.000 0.000 0.002 0.002
SE 0.008 0.067 0.067 0.051 0.051
Asympt.Heterosk.SE 0.008 0.065 0.065 0.049 0.051
t-statistic 0.011 0.069 0.069 0.068 0.088
Median bias 0.000 0.003 0.003 0.003 0.003
Median Absolute Deviation 0.006 0.036 0.036 0.031 0.031
Median of SE 0.008 0.054 0.054 0.045 0.046
Rej. rate for Heterosk. SE 0.053 0.015 0.015 0.050 0.026

Table 2: Experiment #1: Small number of observed exogenous instruments with first-
stage instability under homoskedasticity when the true break fraction is 0.05. In panel
A, the break is either ignored (first 3 columns) or estimated (remaining 2 columns)
with a sample size of T = 200 (panel A.1) or T = 2, 000 (panel A.2); in panel B, the
break is fully known with a sample of T = 200 (panel B.1) or T = 2, 000 (panel B.2).
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PANEL A: break either ignored or estimated

Break is ignored: Z1 only Break location is estimated: (Z1, Ẑ2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel A.1: sample size T = 200
Bias -0.002 -1.401 -1.401 0.019 0.019
SE 0.047 69.124 69.124 0.076 0.076
Asympt.Heterosk.SE 0.047 22398.280 22398.296 0.071 0.071
t-statistic -0.010 0.064 0.064 0.292 0.312
Median bias -0.002 0.013 0.013 0.020 0.020
Median Absolute Deviation 0.031 0.172 0.172 0.049 0.049
Median of SE 0.046 0.334 0.334 0.068 0.068
Rej. rate for Heterosk. SE 0.032 0.001 0.001 0.082 0.064
Panel A.2: sample size T = 2, 000
Bias 0.000 -0.057 -0.057 0.008 0.008
SE 0.013 4.138 4.138 0.052 0.052
Asympt.Heterosk.SE 0.013 50.052 50.052 0.051 0.052
t-statistic 0.010 0.051 0.051 0.162 0.172
Median bias 0.000 0.003 0.003 0.008 0.008
Median Absolute Deviation 0.009 0.068 0.068 0.033 0.033
Median of SE 0.013 0.106 0.106 0.049 0.050
Rej. rate for Heterosk. SE 0.051 0.005 0.005 0.051 0.031

PANEL B: break is fully known - use (Z1, Z2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel B.1: sample size T = 200
Bias -0.001 0.022 0.022 0.013 0.013
SE 0.034 0.368 0.368 0.156 0.156
Asympt.Heterosk.SE 0.033 0.612 0.584 0.129 0.177
t-statistic -0.009 0.130 0.131 0.142 0.145
Median bias -0.001 0.023 0.023 0.016 0.016
Median Absolute Deviation 0.022 0.107 0.107 0.073 0.073
Median of SE 0.033 0.182 0.178 0.105 0.112
Rej. rate for Heterosk. SE 0.047 0.003 0.004 0.060 0.011
Panel B.2: sample size T = 2, 000
Bias 0.000 0.002 0.002 0.002 0.002
SE 0.010 0.157 0.157 0.063 0.063
Asympt.Heterosk.SE 0.010 0.186 0.178 0.058 0.062
t-statistic 0.012 0.076 0.076 0.068 0.084
Median bias 0.000 0.006 0.006 0.003 0.003
Median Absolute Deviation 0.006 0.062 0.062 0.036 0.036
Median of SE 0.010 0.095 0.094 0.054 0.055
Rej. rate for Heterosk. SE 0.050 0.006 0.007 0.051 0.023

Table 3: Experiment #1: Small number of observed exogenous instruments with first-
stage instability under heteroskedasticity of type HET1 when the true break fraction
is 0.2. In panel A, the break is either ignored (first 3 columns) or estimated (remaining
2 columns) with a sample size of T = 200 (panel A.1) or T = 2, 000 (panel A.2); in
panel B, the break is fully known with a sample of T = 200 (panel B.1) or T = 2, 000
(panel B.2).
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PANEL A: break either ignored or estimated

Break is ignored: Z1 only Break location is estimated: (Z1, Ẑ2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel A.1: sample size T = 200
Bias -0.001 -0.056 -0.056 0.018 0.018
SE 0.028 24.319 24.319 0.077 0.077
Asympt.Heterosk.SE 0.028 2304.136 2304.136 0.071 0.071
t-statistic -0.011 0.061 0.061 0.269 0.291
Median bias -0.001 0.011 0.011 0.017 0.017
Median Absolute Deviation 0.019 0.139 0.139 0.048 0.048
Median of SE 0.028 0.244 0.244 0.068 0.067
Rej. rate for Heterosk. SE 0.048 0.001 0.001 0.083 0.070
Panel A.2: sample size T = 2, 000
Bias 0.000 0.000 0.000 0.007 0.007
SE 0.008 0.384 0.384 0.051 0.051
Asympt.Heterosk.SE 0.008 0.736 0.736 0.050 0.051
t-statistic 0.010 0.041 0.041 0.154 0.166
Median bias 0.000 0.002 0.002 0.008 0.008
Median Absolute Deviation 0.006 0.045 0.045 0.033 0.033
Median of SE 0.008 0.068 0.068 0.048 0.049
Rej. rate for Heterosk. SE 0.052 0.013 0.013 0.055 0.032

PANEL B: break is fully known - use (Z1, Z2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel B.1: sample size T = 200
Bias -0.001 0.015 0.015 0.012 0.012
SE 0.027 0.362 0.362 0.158 0.158
Asympt.Heterosk.SE 0.026 0.953 1.202 0.122 0.153
t-statistic -0.011 0.105 0.106 0.139 0.161
Median bias -0.001 0.015 0.015 0.014 0.014
Median Absolute Deviation 0.018 0.098 0.098 0.075 0.075
Median of SE 0.026 0.156 0.153 0.100 0.097
Rej. rate for Heterosk. SE 0.050 0.005 0.009 0.080 0.063
Panel B.2: sample size T = 2, 000
Bias 0.000 0.000 0.000 0.002 0.002
SE 0.008 0.080 0.080 0.061 0.061
Asympt.Heterosk.SE 0.008 0.077 0.076 0.058 0.061
t-statistic 0.011 0.062 0.061 0.062 0.081
Median bias 0.000 0.003 0.003 0.004 0.004
Median Absolute Deviation 0.005 0.043 0.043 0.037 0.037
Median of SE 0.008 0.064 0.064 0.054 0.055
Rej. rate for Heterosk. SE 0.053 0.014 0.015 0.049 0.026

Table 4: Experiment #1: Small number of observed exogenous instruments with first-
stage instability under heteroskedasticity of type HET1 when the true break fraction is
0.05. In panel A, the break is either ignored (first 3 columns) or estimated (remaining
2 columns) with a sample size of T = 200 (panel A.1) or T = 2, 000 (panel A.2); in
panel B, the break is fully known with a sample of T = 200 (panel B.1) or T = 2, 000
(panel B.2).
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PANEL A: break either ignored or estimated

Break is ignored: Z1 only Break location is estimated: (Z1, Ẑ2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel A.1: sample size T = 200
Bias -0.002 0.049 0.049 0.014 0.014
SE 0.050 15.569 15.569 0.065 0.065
Asympt.Heterosk.SE 0.043 1529.337 1529.337 0.054 0.050
t-statistic 0.003 0.065 0.065 0.267 0.303
Median bias -0.001 0.010 0.010 0.012 0.012
Median Absolute Deviation 0.026 0.119 0.119 0.032 0.032
Median of SE 0.038 0.231 0.231 0.046 0.044
Rej. rate for Heterosk. SE 0.030 0.001 0.001 0.073 0.077
Panel A.2: sample size T = 2, 000
Bias 0.000 0.039 0.039 0.005 0.005
SE 0.012 2.101 2.101 0.042 0.042
Asympt.Heterosk.SE 0.012 14.891 14.891 0.040 0.039
t-statistic -0.004 0.053 0.053 0.124 0.139
Median bias 0.000 0.003 0.003 0.005 0.005
Median Absolute Deviation 0.008 0.052 0.052 0.026 0.026
Median of SE 0.011 0.080 0.080 0.037 0.037
Rej. rate for Heterosk. SE 0.046 0.006 0.006 0.049 0.039

PANEL B: break is fully known - use (Z1, Z2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel B.1: sample size T = 200
Bias -0.001 0.018 0.018 0.009 0.009
SE 0.035 0.389 0.389 0.130 0.130
Asympt.Heterosk.SE 0.030 0.654 0.720 0.097 0.130
t-statistic 0.000 0.125 0.127 0.130 0.137
Median bias -0.001 0.015 0.015 0.009 0.009
Median Absolute Deviation 0.019 0.076 0.076 0.051 0.051
Median of SE 0.027 0.136 0.132 0.074 0.075
Rej. rate for Heterosk. SE 0.043 0.002 0.004 0.055 0.018
Panel B.2: sample size T = 2, 000
Bias 0.000 0.005 0.005 0.001 0.001
SE 0.009 0.150 0.150 0.050 0.050
Asympt.Heterosk.SE 0.009 0.152 0.151 0.045 0.046
t-statistic -0.009 0.084 0.084 0.046 0.064
Median bias 0.000 0.005 0.005 0.002 0.002
Median Absolute Deviation 0.006 0.047 0.047 0.028 0.028
Median of SE 0.009 0.073 0.072 0.041 0.041
Rej. rate for Heterosk. SE 0.047 0.009 0.009 0.051 0.031

Table 5: Experiment #1: Small number of observed exogenous instruments with first-
stage instability under heteroskedasticity of type HET2 when the true break fraction
is 0.2. In panel A, the break is either ignored (first 3 columns) or estimated (remaining
2 columns) with a sample size of T = 200 (panel A.1) or T = 2, 000 (panel A.2); in
panel B, the break is fully known with a sample of T = 200 (panel B.1) or T = 2, 000
(panel B.2).
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PANEL A: break either ignored or estimated

Break is ignored: Z1 only Break location is estimated: (Z1, Ẑ2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel A.1: sample size T = 200
Bias 0.000 -0.192 -0.192 0.013 0.013
SE 0.028 14.302 14.302 0.063 0.063
Asympt.Heterosk.SE 0.025 1156.288 1156.288 0.054 0.050
t-statistic 0.014 0.054 0.054 0.250 0.277
Median bias -0.001 0.006 0.006 0.011 0.011
Median Absolute Deviation 0.016 0.092 0.092 0.033 0.033
Median of SE 0.022 0.169 0.169 0.046 0.044
Rej. rate for Heterosk. SE 0.046 0.001 0.001 0.070 0.084
Panel A.2: sample size T = 2, 000
Bias 0.000 -0.002 -0.002 0.006 0.006
SE 0.008 0.175 0.175 0.041 0.041
Asympt.Heterosk.SE 0.008 0.160 0.160 0.039 0.038
t-statistic -0.002 0.045 0.045 0.149 0.166
Median bias 0.000 0.001 0.001 0.005 0.005
Median Absolute Deviation 0.005 0.034 0.034 0.025 0.025
Median of SE 0.007 0.051 0.051 0.036 0.036
Rej. rate for Heterosk. SE 0.050 0.013 0.013 0.049 0.038

PANEL B: break is fully known - use (Z1, Z2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel B.1: sample size T = 200
Bias 0.000 0.012 0.012 0.008 0.008
SE 0.027 0.288 0.288 0.131 0.131
Asympt.Heterosk.SE 0.024 0.441 0.420 0.089 0.100
t-statistic 0.012 0.103 0.111 0.124 0.147
Median bias -0.001 0.009 0.009 0.007 0.007
Median Absolute Deviation 0.015 0.064 0.064 0.048 0.048
Median of SE 0.021 0.109 0.102 0.067 0.061
Rej. rate for Heterosk. SE 0.049 0.005 0.014 0.078 0.081
Panel B.2: sample size T = 2, 000
Bias 0.000 0.002 0.002 0.002 0.002
SE 0.008 0.061 0.061 0.049 0.049
Asympt.Heterosk.SE 0.008 0.060 0.058 0.045 0.045
t-statistic -0.003 0.069 0.070 0.059 0.079
Median bias 0.000 0.002 0.002 0.003 0.003
Median Absolute Deviation 0.005 0.033 0.033 0.028 0.028
Median of SE 0.007 0.049 0.048 0.041 0.040
Rej. rate for Heterosk. SE 0.049 0.015 0.018 0.046 0.030

Table 6: Experiment #1: Small number of observed exogenous instruments with first-
stage instability under heteroskedasticity of type HET2 when the true break fraction is
0.05. In panel A, the break is either ignored (first 3 columns) or estimated (remaining
2 columns) with a sample size of T = 200 (panel A.1) or T = 2, 000 (panel A.2); in
panel B, the break is fully known with a sample of T = 200 (panel B.1) or T = 2, 000
(panel B.2).

49



PANEL A: break either ignored or estimated

Break is ignored: Z1 only Break location is estimated: (Z1, Ẑ2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel A.1: sample size T = 200
Bias -0.001 0.005 0.005 0.015 0.015
SE 0.028 0.303 0.303 0.067 0.067
Asympt.Heterosk.SE 0.028 0.623 0.623 0.063 0.064
t-statistic -0.005 0.064 0.064 0.261 0.276
Median bias -0.001 0.009 0.009 0.015 0.015
Median Absolute Deviation 0.019 0.105 0.105 0.043 0.043
Median of SE 0.028 0.185 0.185 0.060 0.061
Rej. rate for Heterosk. SE 0.051 0.001 0.001 0.079 0.060

PANEL B: break is fully known - use (Z1, Z2)
Estimator F-SMD 2SLS GMM B2SLS BGMM
Panel B.1: sample size T = 200
Bias -0.001 0.014 0.014 0.012 0.012
SE 0.027 0.206 0.206 0.130 0.130
Asympt.Heterosk.SE 0.027 0.267 0.270 0.104 0.126
t-statistic -0.004 0.114 0.115 0.151 0.165
Median bias -0.001 0.014 0.014 0.014 0.014
Median Absolute Deviation 0.018 0.083 0.083 0.064 0.064
Median of SE 0.027 0.133 0.131 0.087 0.088
Rej. rate for Heterosk. SE 0.050 0.005 0.006 0.079 0.049

Table 7: Experiment #1: this table corresponds to Table 2 after eliminating the repli-
cations that generate extreme behavior for 2SLS and GMM; see section B.4.
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1 estim. factor 2 estim. factors 3 estim. factors
Estimator F-SMD GMM F-SMD GMM F-SMD GMM
PANEL A: b 6= 0, α = 0, and υ = 0
Bias 0.013 -3.925 0.012 -0.067 0.012 -0.024
SE 0.057 212.728 0.058 1.923 0.061 1.047
Asympt.Heterosk.SE 0.057 56699.114 0.056 2.592 0.058 0.856
t-statistic 0.240 -0.222 0.226 -0.076 0.215 -0.035
Median bias 0.013 -0.181 0.013 -0.057 0.013 -0.028
Median Absolute Deviation 0.038 0.397 0.039 0.475 0.041 0.461
Median of SE 0.057 0.697 0.056 0.534 0.057 0.434
Rej. rate for Heterosk. SE 0.061 0.002 0.068 0.022 0.073 0.061
PANEL B: b 6= 0 and α = 0.125, and υ = 0
Bias 0.017 0.118 0.016 -0.097 0.016 -0.074
SE 0.062 42.687 0.063 2.127 0.067 1.146
Asympt.Heterosk.SE 0.061 1733.132 0.061 3.226 0.063 0.936
t-statistic 0.289 -0.328 0.278 -0.168 0.266 -0.134
Median bias 0.018 -0.273 0.016 -0.127 0.016 -0.089
Median Absolute Deviation 0.042 0.416 0.043 0.524 0.046 0.479
Median of SE 0.061 0.738 0.060 0.557 0.063 0.441
Rej. rate for Heterosk. SE 0.066 0.003 0.069 0.031 0.073 0.069
PANEL C: b 6= 0 and α = 0.25, and υ = 0
Bias 0.018 0.029 0.018 -0.218 0.018 -0.165
SE 0.073 17.296 0.077 2.259 0.082 1.277
Asympt.Heterosk.SE 0.071 330.265 0.073 3.581 0.076 1.211
t-statistic 0.261 -0.469 0.250 -0.358 0.240 -0.306
Median bias 0.019 -0.426 0.017 -0.259 0.017 -0.201
Median Absolute Deviation 0.049 0.482 0.053 0.509 0.056 0.477
Median of SE 0.071 0.834 0.073 0.565 0.076 0.454
Rej. rate for Heterosk. SE 0.061 0.007 0.065 0.039 0.071 0.077

Table 10: Experiment #2b: Large number of observed instruments that are possibly
weak and invalid. The two estimators (F-SMD and GMM) are either implemented
using 1 estimated factor (first 2 columns), 2 estimated factors (middle 2 columns), or
3 estimated factors (last 2 columns). All factors are estimated by PCA with a sample
size T = 200. In all cases, the instruments are invalid with b 6= 0 and υ = 0: its first
10 elements are set to 1 and the remaining 40 to 0. The identification strength varies
with α = 0, 0.125, or 0.25.
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1 estim. factor 2 estim. factors 3 estim. factors
Estimator F-SMD GMM F-SMD GMM F-SMD GMM
PANEL A: b 6= 0, α = 0, and υ = 0.25
Bias 0.003 -2.011 0.003 -0.006 0.003 0.008
SE 0.022 77.300 0.023 0.591 0.024 0.309
Asympt.Heterosk.SE 0.022 20408.664 0.022 0.806 0.023 0.278
t-statistic 0.168 -0.119 0.160 0.010 0.153 0.060
Median bias 0.004 -0.042 0.003 -0.004 0.003 0.005
Median Absolute Deviation 0.015 0.153 0.015 0.148 0.016 0.140
Median of SE 0.022 0.268 0.022 0.191 0.023 0.158
Rej. rate for Heterosk. SE 0.056 0.001 0.059 0.012 0.062 0.035
PANEL B: b 6= 0 and α = 0.125, and υ = 0.25
Bias 0.004 -0.057 0.004 -0.017 0.004 -0.005
SE 0.024 16.724 0.025 0.626 0.026 0.336
Asympt.Heterosk.SE 0.024 757.199 0.024 0.969 0.025 0.301
t-statistic 0.202 -0.194 0.199 -0.058 0.192 -0.011
Median bias 0.005 -0.067 0.004 -0.019 0.005 -0.010
Median Absolute Deviation 0.016 0.157 0.017 0.161 0.017 0.143
Median of SE 0.024 0.278 0.024 0.200 0.025 0.159
Rej. rate for Heterosk. SE 0.058 0.000 0.059 0.015 0.065 0.034
PANEL C: b 6= 0 and α = 0.25, and υ = 0.25
Bias 0.005 0.086 0.005 -0.041 0.005 -0.027
SE 0.028 5.797 0.030 0.694 0.031 0.431
Asympt.Heterosk.SE 0.028 99.034 0.029 1.070 0.030 0.432
t-statistic 0.181 -0.303 0.176 -0.199 0.172 -0.137
Median bias 0.005 -0.105 0.004 -0.056 0.004 -0.038
Median Absolute Deviation 0.019 0.167 0.020 0.162 0.021 0.149
Median of SE 0.028 0.301 0.029 0.203 0.030 0.163
Rej. rate for Heterosk. SE 0.054 0.002 0.056 0.016 0.066 0.033

Table 11: Experiment #2b: Large number of observed instruments that are possibly
weak and invalid. The two estimators (F-SMD and GMM) are either implemented
using 1 estimated factor (first 2 columns), 2 estimated factors (middle 2 columns), or
3 estimated factors (last 2 columns). All factors are estimated by PCA with a sample
size T = 200. In all cases, the instruments are (weakly) exogenous with b 6= 0 and
υ = 0.25: its first 10 elements are set to 1 and the remaining 40 to 0. The identification
strength varies with α = 0, 0.125, or 0.25.
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1 estim. factor 2 estim. factors 3 estim. factors
Estimator F-SMD GMM F-SMD GMM F-SMD GMM
PANEL A: b 6= 0, α = 0, and υ = 0.5
Bias 0.001 -1.503 0.001 0.010 0.001 0.017
SE 0.018 46.906 0.018 0.313 0.018 0.161
Asympt.Heterosk.SE 0.018 11837.323 0.018 0.447 0.018 0.173
t-statistic 0.065 0.002 0.066 0.093 0.064 0.145
Median bias 0.001 -0.005 0.001 0.009 0.001 0.014
Median Absolute Deviation 0.012 0.117 0.012 0.088 0.012 0.077
Median of SE 0.017 0.203 0.018 0.138 0.018 0.113
Rej. rate for Heterosk. SE 0.053 0.001 0.059 0.006 0.060 0.012
PANEL B: b 6= 0 and α = 0.125, and υ = 0.5
Bias 0.001 -0.103 0.001 0.004 0.001 0.013
SE 0.019 12.540 0.019 0.313 0.020 0.170
Asympt.Heterosk.SE 0.019 502.648 0.019 0.478 0.020 0.183
t-statistic 0.076 -0.024 0.083 0.067 0.081 0.119
Median bias 0.001 -0.011 0.001 0.004 0.002 0.011
Median Absolute Deviation 0.013 0.118 0.013 0.089 0.013 0.076
Median of SE 0.019 0.206 0.019 0.141 0.020 0.115
Rej. rate for Heterosk. SE 0.054 0.001 0.055 0.005 0.058 0.009
PANEL C: b 6= 0 and α = 0.25, and υ = 0.5
Bias 0.001 0.101 0.001 0.006 0.001 0.009
SE 0.022 4.116 0.023 0.355 0.025 0.261
Asympt.Heterosk.SE 0.022 75.479 0.023 0.536 0.024 0.274
t-statistic 0.068 -0.064 0.069 0.013 0.072 0.073
Median bias 0.001 -0.019 0.001 0.003 0.002 0.006
Median Absolute Deviation 0.015 0.121 0.015 0.090 0.016 0.078
Median of SE 0.022 0.213 0.023 0.144 0.024 0.115
Rej. rate for Heterosk. SE 0.051 0.002 0.052 0.004 0.056 0.008

Table 12: Experiment #2b: Large number of observed instruments that are possibly
weak and invalid. The two estimators (F-SMD and GMM) are either implemented
using 1 estimated factor (first 2 columns), 2 estimated factors (middle 2 columns), or
3 estimated factors (last 2 columns). All factors are estimated by PCA with a sample
size T = 200. In all cases, the instruments are (weakly) exogenous with b 6= 0 and
υ = 0.5: its first 10 elements are set to 1 and the remaining 40 to 0. The identification
strength varies with α = 0, 0.125, or 0.25.
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1 estim. factor 2 estim. factors 3 estim. factors
Estimator F-SMD GMM F-SMD GMM F-SMD GMM
PANEL A: Baseline model (b = 0 and α = 0)
Bias 0.000 -1.318 0.000 0.016 0.000 0.020
SE 0.017 39.039 0.017 0.271 0.018 0.145
Asympt.Heterosk.SE 0.017 9125.085 0.017 0.396 0.018 0.163
t-statistic 0.012 0.061 0.018 0.125 0.018 0.175
Median bias 0.000 0.008 0.000 0.014 0.000 0.017
Median Absolute Deviation 0.012 0.113 0.012 0.082 0.012 0.069
Median of SE 0.017 0.199 0.017 0.133 0.018 0.109
Rej. rate for Heterosk. SE 0.054 0.001 0.056 0.006 0.056 0.010
PANEL B: Baseline model (b = 0 and α = 0.125)
Bias 0.000 -0.120 0.000 0.012 0.000 0.020
SE 0.019 11.947 0.019 0.273 0.020 0.151
Asympt.Heterosk.SE 0.018 480.472 0.019 0.431 0.019 0.170
t-statistic 0.012 0.061 0.022 0.126 0.023 0.175
Median bias 0.000 0.008 0.000 0.014 0.000 0.017
Median Absolute Deviation 0.013 0.113 0.013 0.082 0.013 0.069
Median of SE 0.018 0.198 0.019 0.135 0.019 0.109
Rej. rate for Heterosk. SE 0.054 0.001 0.055 0.005 0.056 0.007
PANEL C: Baseline model (b = 0 and α = 0.25)
Bias 0.000 0.107 0.000 0.023 0.000 0.023
SE 0.022 4.062 0.023 0.295 0.024 0.231
Asympt.Heterosk.SE 0.022 83.147 0.022 0.511 0.024 0.247
t-statistic 0.008 0.062 0.013 0.126 0.019 0.179
Median bias 0.000 0.009 0.000 0.014 0.000 0.019
Median Absolute Deviation 0.015 0.115 0.015 0.083 0.016 0.070
Median of SE 0.021 0.202 0.022 0.137 0.023 0.110
Rej. rate for Heterosk. SE 0.053 0.002 0.056 0.003 0.056 0.007

Table 13: Experiment #2b: Large number of observed instruments that are possibly
weak and invalid. The two estimators (F-SMD and GMM) are either implemented
using 1 estimated factor (first 2 columns), 2 estimated factors (middle 2 columns), or
3 estimated factors (last 2 columns). All factors are estimated by PCA with a sample
size T = 200. In all cases, the instruments are valid with b = 0. The identification
strength varies with α = 0, 0.125, or 0.25.
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1 estim. factor 2 estim. factors 3 estim. factors
Estimator F-SMD GMM F-SMD GMM F-SMD GMM
PANEL A: sample size T = 200
Bias -0.002 -0.092 -0.002 0.013 -0.003 0.027
SE 0.046 9.691 0.047 0.380 0.050 0.225
Asympt.Heterosk.SE 0.040 1445.113 0.041 0.611 0.043 0.238
t-statistic -0.004 0.052 -0.008 0.132 -0.007 0.201
Median bias -0.001 0.006 -0.001 0.016 -0.002 0.021
Median Absolute Deviation 0.026 0.122 0.027 0.098 0.028 0.086
Median of SE 0.036 0.240 0.036 0.164 0.038 0.135
Rej. rate for Heterosk. SE 0.051 0.003 0.051 0.009 0.052 0.019
Rej. rate for the null of weakness 0.430 0.383 0.357
Proportion of finite CI with AR 0.430 0.377 0.351
Length of finite CI with AR 1.907 3.580 1.917
Length of CI with FSMD 0.158 0.161 0.167

PANEL B: sample size T = 2, 000
Bias 0.000 0.203 0.000 0.021 0.000 0.025
SE 0.014 7.661 0.015 0.573 0.015 0.222
Asympt.Heterosk.SE 0.013 678.100 0.014 2.683 0.014 0.298
t-statistic -0.007 0.054 -0.007 0.118 -0.005 0.161
Median bias 0.000 0.009 0.000 0.019 0.000 0.022
Median Absolute Deviation 0.009 0.133 0.009 0.105 0.010 0.092
Median of SE 0.013 0.286 0.013 0.191 0.013 0.158
Rej. rate for Heterosk. SE 0.053 0.000 0.055 0.004 0.052 0.006
Rej. rate for the null of weakness 0.402 0.350 0.324
Proportion of finite CI with AR 0.402 0.345 0.318
Length of finite CI with AR 1.895 1.871 1.806
Length of CI with F-SMD 0.053 0.053 0.055

Table 14: Experiment #2c: Large number of observed instruments with artificially
weak first-stage. The two estimators (F-SMD and GMM) are implemented using either
1 estimated factor (first 2 columns), 2 estimated factors (middle 2 columns), or 3
estimated factors (last 2 columns). All factors are estimated by PCA with a sample size
T = 200 (Panel A), or T = 2, 000 (Panel B). Additionally, we report: (i) the rejection
frequencies associated with the (diagnostic) test of the null of weak identification based
on the F-test, (ii) the proportion of identification-robust confidence intervals obtained
with the Anderson-Rubin method that are infinitely large, (iii) the average length of
the (finite) confidence intervals obtained by Anderson-Rubin and F-SMD.
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B.6 Experiment #3: Empirically-motivated design

Parameter γf = 0.55 λ = 0.05
Estimator F-SMD GMM F-SMD GMM
Number of estim. factors 1 2 2 1 2 2
PANEL A: 50 Instruments and ρ = 0
Bias -0.008 -0.008 -0.001 0.000 0.000 0.000
SE 0.050 0.044 0.053 0.005 0.005 0.005
Asympt.Heterosk.SE 0.049 0.043 0.055 0.005 0.005 0.005
t-statistic 11.174 12.937 10.436 10.640 9.542 9.818
Median bias -0.008 -0.007 0.001 0.000 0.000 0.000
Median Absolute Deviation 0.034 0.030 0.036 0.003 0.004 0.003
Median of SE 0.049 0.042 0.053 0.005 0.005 0.005
Rej. rate for Heterosk. SE 0.048 0.056 0.018 0.048 0.059 0.043
PANEL B: 50 Instruments and ρ = 0.5
Bias -0.010 -0.009 -0.001 0.000 0.000 0.000
SE 0.057 0.054 0.076 0.006 0.007 0.007
Asympt.Heterosk.SE 0.056 0.051 0.075 0.006 0.006 0.007
t-statistic 9.884 10.816 7.630 8.845 7.905 7.310
Median bias -0.010 -0.009 0.002 0.000 0.000 0.000
Median Absolute Deviation 0.038 0.036 0.052 0.004 0.005 0.005
Median of SE 0.055 0.051 0.073 0.006 0.006 0.007
Rej. rate for Heterosk. SE 0.052 0.061 0.023 0.055 0.066 0.054
PANEL C: 6 Instruments and ρ = 0
Bias -0.017 -0.012 -0.002 -0.001 0.000 0.000
SE 0.057 0.042 0.057 0.005 0.005 0.005
Asympt.Heterosk.SE 0.055 0.042 0.057 0.005 0.005 0.005
t-statistic 10.190 13.152 10.057 9.527 10.652 9.485
Median bias -0.014 -0.012 0.001 0.000 0.000 0.000
Median Absolute Deviation 0.037 0.028 0.038 0.003 0.003 0.004
Median of SE 0.053 0.041 0.055 0.005 0.005 0.005
Rej. rate for Heterosk. SE 0.050 0.056 0.021 0.049 0.051 0.040
PANEL D: 6 Instruments and ρ = 0.5
Bias -0.022 -0.016 -0.002 -0.001 0.000 0.000
SE 0.065 0.052 0.080 0.006 0.006 0.008
Asympt.Heterosk.SE 0.062 0.051 0.077 0.006 0.006 0.007
t-statistic 8.943 10.849 7.432 7.998 8.850 7.131
Median bias -0.018 -0.016 0.001 -0.001 0.000 0.000
Median Absolute Deviation 0.042 0.035 0.054 0.004 0.004 0.005
Median of SE 0.060 0.050 0.075 0.006 0.006 0.007
Rej. rate for Heterosk. SE 0.059 0.060 0.025 0.054 0.058 0.051

Table 15: Experiment #3: Empirically-motivated design. The two estimators (F-SMD
and GMM) are implemented using either 1 or 2 estimated factors which are estimated
by PCA. In the first 3 columns, we report estimation results of the first slope parameter
γf (set at 0.55) and in the last 3 those of the second slope parameter λ (set at 0.05).
We consider either 50 instruments or 6 instruments, with ρ either 0 or 0.5, and the
sample size is T = 238.
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mc og C-Inf spread W-Inf Macro-Factor PCA1 one-step PCA1

γf 0.511 0.491 0.266 0.495 0.510 0.494 0.570 0.492
se 0.038 0.140 0.169 0.117 0.160 0.054 0.101 0.053
CIl 0.437 0.217 -0.065 0.266 0.196 0.388 0.372 0.388
CIu 0.585 0.765 0.597 0.724 0.824 0.600 0.768 0.596
λ 0.014 -0.053 -0.056 0.083 -0.008 -0.013 -0.099 -0.012
se 0.018 0.054 0.052 0.112 0.085 0.028 0.129 0.028

Table 18: Estimation of the NKPC over the whole sample with 247 observations using
F-SMD with one IV only, taken as one lag of either marginal cost (mc), output gap (og),
commodity inflation (C-Inf), spread (spread), wage inflation (W-Inf), macro-Factor,
the first PCA obtained from these 6 IV (PCA1), or the first PCA obtained from the
set of these 5 macro instruments and all the macro-finance variables (one-step PCA1).
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Supplementary Appendix to:

Factor IV Estimation in Conditional Moment

Models with an application to Inflation Dynamics

by

Bertille Antoine and Xiaolin Sun

In this Supplementary appendix, we consider alternative choices for the implemen-

tation of F-SMD, as well as additional empirical results associated with the estimation

of the hybrid NKPC model highlighted in Section 6 of the main paper.

A Implementation of F-SMD

We first present additional Monte-Carlo results associated with different choices for the

implementation of F-SMD: specifically, we focus throughout on Experiment #1 with

HET2 highlighted in Section 5 in the main text.

In Table A.1, we consider different versions of the F-SMD estimator defined in (15)

with c = 0, 1, 2, or 3. Results do not change much with c with the larger sample size,

but there is some variation when T = 200. Specifically, we notice an increase in the

standard error when c increases; this is to be expected since a larger c means fewer

observations. That being said, it is a small sample issue as there is little to no change

in the results when T = 2, 000.

Next, we consider an alternate definition of the F-SMD objective function (14)

which eliminates pairs of observations (say s and t) that are not only equal to each

other, but also too close to each other. This is motivated by the proof of the asymptotic

theory of the associated estimator, which suggests that these pairs do not contribute

asymptotically. Accordingly, we consider the alternate objective function M̃T (β, F̂ , c̃)

and associated F-SMD estimator β̂T (c̃):

M̃T (β, F̂ , c̃) =
1

T (T − 1)

T
∑

t=1

T
∑

|s−t|>c̃,s=1

us(β)ut(β)K

(

Ft − Fs

h

)

,

and β̂(c̃) = argmin M̃T ((β, F̂ , c̃) . (30)
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In Table A.2, we report results obtained with the alternate F-SMD estimator defined

in (30) with values of c̃ ranging from 0 to 3. The results do not seem to depend much

on c̃ even for the smaller sample size T = 200.

B Additional Monte-Carlo results

B.1 Experiment A.1: First-stage heterogeneity

We start by presenting results associated with a new experiment labelled Experiment

A.1 where we consider a homoskedastic i.i.d setting with a heterogenous first-stage

equation18. More specifically, there are two groups of individuals who respond differ-

ently to the instrument Z1 in the sense that their underlying first-stage equation is

different. The instrument Z1 is always observed and available to the econometrician,

whereas the group membership (or instrument Z2) may or may not be known. In prac-

tice, estimation procedures will either rely on using only one instrument Z1, or both

instruments (Z1, Z2). Our DGP is as follows19:

yi = Yiβ0 + ui

Yi = 10× (2Z2,i − 1)(Z1,i − 2Z3
1,i/5) + vi

where Z1 is uniformly distributed over [−2, 2], and Z2 follows a Bernoulli distribution

with Pr(Z2 = 1) = pz2 set to either 0.2 or 0.05. The error terms (ui, vi) are indepen-

dently generated according to a bivariate normal distribution with mean 0, variance 1

and correlation 0.6.

We compare the performance of our F-SMD estimator20 to that of the 2SLS es-

timator - both implemented using either one or two instruments, respectively Z1 or

(Z1, Z2). The results are reported in Table A.3: in Panel A when pz2 = 0.2 and in

Panel B when pz2 = 0.05.

Overall, the performance of the F-SMD estimators - when considering either only

one instrument or both instruments - clearly dominates that of the corresponding 2SLS

18As suggested by a referee, this experiment does not fit well with the rest of our paper where we
focus on a time series setup. We believe the results are interesting and we have chosen to present
them in this Supplementary Appendix.

19Our DGP builds on the DGP used by Antoine and Lavergne (2023) though these authors always
assume that the group membership is known. However, they do consider cases where the instrument
Z1 may be weak, whereas we always maintain that Z1 is sufficiently strong.

20When the factors correspond to the observed (exogenous) instruments, the F-SMD estimator
correspondonds to the SMD estimator introduced by Antoine and Lavergne (2014).
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estimator. It is most noticeable when the group membership is unknown since 2SLS

displays much larger biases and variances than F-SMD - even when one of the two

groups is much larger than the other (e.g. 95% vs 5% of the sample); recall that 2SLS

is implemented under the maintained linearity assumption of the first-stage. The per-

formance of F-SMD remains excellent throughout even when the group membership is

unknown. Our experiment emphasizes the robustness and advantages of our estimator

which is not only easy to compute, but also convenient to implement without having

to fully specify, characterize, or estimate the underlying first-stage equation.

B.2 Experiment #2: Large number of observed instruments

In this section, we revisit the DGP of Experiment #2 in the main text which features

a large number of observed instruments that may be invalid and/or weak.

B.2.1 Fully linear design.

First, we present complementary results that are obtained in a model similar to that

considered in Experiment #2a in the main text with strong and valid instruments,

except that it is fully linear. More specifically, the DGP corresponds to that of section

5.2 and equations (18)-(22) after updating equation (19) as follows, to render it linear:

Yt = 10× F1,t + vt

and setting b = 0 to ensure strong and valid instruments. The results are presented in

Table A.4.

B.2.2 Weak and invalid instruments.

Second, we provide complementary results that are obtained in the model considered

in Experiment #2b in the main text, that is the observed instruments may be invalid

and/or weak. Specifically, we consider here a more severe case of invalid instruments

where the first 25 elements of the parameter b are set to 1, and the remaining ones to

0. In addition, we set α to 0, 0.125, or 0.25 and υ to 0, 0.25, or 0.5. The results are

presented in Tables A.5 to A.7.
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C Additional results for the Hybrid NKPC

Next, we present additional empirical results associated with the estimation of the

hybrid NKPC model highlighted in Section 6 of the main paper. These new results are

obtained when considering alternative sets of instruments and specifications.

In Table A.8, we re-estimate the main model using the exogenous variable (cur-

rent marginal cost) and one to six additional instruments, chosen as one lag of either,

marginal cost, output gap, commodity inflation, spread, wage-inflation, or the macro-

factor, after using a preliminary one-to-one transformation to ensure that each condi-

tioning variable is bounded21. As suggested in Bierens (1990), we rely on the following

transformation: x → tan−1(x). The results presented below are very much in line with

those presented in the main paper in Table 16.

In Table A.9, we re-estimate the main model over an alternate first subsample end-

ing just before the official start of the pandemic - that is from 1960Q2 to 2019Q4 using

the exogenous variable (current marginal cost) and one to six additional instruments,

chosen as one lag of either, marginal cost, output gap, commodity inflation, spread,

wage-inflation, or the macro-factor. The results presented below are very much in line

with those presented in the main paper in Table 17.

Finally, in Table A.10, we re-estimate the main model using the exogenous variable

(current marginal cost) and one additional instrument, chosen as one lag of either,

marginal cost, output gap, commodity inflation, spread, wage-inflation, or the macro-

factor, after using the above-mentioned one-to-one tan−1 transformation. The results

presented below are very much in line with those presented in the main paper in Table

18.

21Note that since we rely on the complex exponential to rewrite the conditional moments as a
continuum of unconditional ones, we do not need to maintain such an assumption.
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D Tables of results

c 0 1 2 3
Panel 1: sample size T = 200
Bias -0.002 -0.004 -0.006 -0.002
SE 0.050 0.068 0.100 0.413
Asympt.Heterosk.SE 0.043 0.050 0.088 1.418
t-statistic 0.003 0.000 0.015 0.040
Median bias -0.001 -0.002 -0.001 0.000
Median Absolute Deviation 0.026 0.029 0.033 0.039
Median of SE 0.038 0.043 0.049 0.057
Rej. rate for Heterosk. SE 0.030 0.024 0.019 0.017
Panel 2: sample size T = 2, 000
Bias 0.000 0.000 0.000 0.000
SE 0.012 0.013 0.013 0.014
Asympt.Heterosk.SE 0.012 0.012 0.013 0.013
t-statistic -0.004 0.000 0.000 0.003
Median bias 0.000 0.000 0.000 0.000
Median Absolute Deviation 0.008 0.008 0.009 0.009
Median of SE 0.011 0.012 0.012 0.012
Rej. rate for Heterosk. SE 0.046 0.044 0.046 0.044

Table A.1: Experiment #1 under HET2 when the true break fraction is 0.2. We report
results obtained with the F-SMD estimator that ignores the break and considers c = 0,
1, 2 or 3 with a sample size of T = 200 (panel 1) or T = 2, 000 (panel 2).
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c̃ 0 1 2 3
Panel 1: sample size T = 200
Bias -0.002 -0.002 -0.002 -0.002
SE 0.050 0.050 0.052 0.052
Asympt.Heterosk.SE 0.043 0.044 0.044 0.044
t-statistic 0.003 0.004 0.006 0.004
Median bias -0.001 -0.001 -0.001 -0.001
Median Absolute Deviation 0.026 0.027 0.027 0.027
Median of SE 0.038 0.039 0.039 0.039
Rej. rate for Heterosk. SE 0.030 0.027 0.029 0.028
Panel 2: sample size T = 2, 000
Bias 0.000 0.000 0.000 0.000
SE 0.012 0.012 0.012 0.012
Asympt.Heterosk.SE 0.012 0.012 0.012 0.012
t-statistic -0.004 -0.004 -0.004 -0.004
Median bias 0.000 0.000 0.000 0.000
Median Absolute Deviation 0.008 0.008 0.008 0.008
Median of SE 0.011 0.011 0.011 0.011
Rej. rate for Heterosk. SE 0.046 0.046 0.047 0.046

Table A.2: Experiment #1 under HET2 when the true break fraction is 0.2. We report
results obtained with the alternate F-SMD estimator β̂(c̃) defined in (30) that ignores
the break. We consider c̃ = 0, 1, 2 or 3 and a sample size of T = 200 (panel 1), or
T = 2, 000 (panel 2).
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PANEL A: Pr(Z2 = 1) = 0.2
Estimator F-SMD 2SLS
Instrument set Z1 (Z1, Z2) Z1 (Z1, Z2)
Panel A.1: sample size T = 200

Bias -0.003 -0.002 0.003 0.011
SE 0.051 0.035 16.615 0.289
Asympt.Heterosk.SE 0.050 0.034 1555.469 0.519
t-statistic -0.019 -0.019 0.042 0.100
Median bias -0.002 -0.001 0.008 0.013
Median Absolute Deviation 0.032 0.023 0.138 0.095
Median of SE 0.047 0.034 0.263 0.161
Rej. rate for Heterosk. SE 0.034 0.049 0.001 0.002
Panel A.2: sample size T = 2, 000
Bias 0.000 0.000 -0.017 0.003
SE 0.013 0.010 1.029 0.118
Asympt.Heterosk.SE 0.013 0.010 6.765 0.128
t-statistic -0.005 -0.001 0.045 0.080
Median bias 0.000 0.000 0.002 0.005
Median Absolute Deviation 0.009 0.007 0.056 0.052
Median of SE 0.013 0.010 0.087 0.080
Rej. rate for Heterosk. SE 0.051 0.051 0.006 0.007

PANEL B: Pr(Z2 = 1) = 0.05
Estimator F-SMD 2SLS
Instrument set Z1 (Z1, Z2) Z1 (Z1, Z2)
Panel B.1: sample size T = 200
Bias -0.002 -0.001 -0.558 0.003
SE 0.029 0.028 46.528 0.272
Asympt.Heterosk.SE 0.028 0.027 12471.831 0.425
t-statistic -0.030 -0.027 0.026 0.074
Median bias -0.001 -0.001 0.001 0.007
Median Absolute Deviation 0.019 0.018 0.110 0.082
Median of SE 0.028 0.027 0.197 0.134
Rej. rate for Heterosk. SE 0.053 0.055 0.001 0.007
Panel B.2: sample size T = 2, 000
Bias 0.000 0.000 -0.003 0.000
SE 0.008 0.008 0.129 0.068
Asympt.Heterosk.SE 0.008 0.008 0.120 0.066
t-statistic -0.004 -0.003 0.033 0.060
Median bias 0.000 0.000 0.001 0.003
Median Absolute Deviation 0.006 0.005 0.037 0.035
Median of SE 0.008 0.008 0.056 0.054
Rej. rate for Heterosk. SE 0.053 0.052 0.016 0.018

Table A.3: Experiment A.1: Small number of observed exogenous instruments with
first-stage heterogeneity when the sample size is either T = 200 or T = 2, 000. We
consider a setup with 2 groups with group membership Z2 which follows a Bernoulli
distribution with Pr(Z2 = 1) either equal to 0.2 (Panel A), or 0.05 (Panel B).
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1 estim. factor 2 estim. factors 3 estim. factors
Estimator F-SMD GMM F-SMD GMM F-SMD GMM
PANEL A: b 6= 0, α = 0, and υ = 0
Bias 0.030 -5.465 0.027 -0.211 0.027 -0.137
SE 0.089 231.976 0.090 2.766 0.094 1.350
Asympt.Heterosk.SE 0.087 40257.247 0.086 3.711 0.089 1.167
t-statistic 0.345 -0.309 0.326 -0.164 0.310 -0.142
Median bias 0.030 -0.389 0.026 -0.185 0.027 -0.130
Median Absolute Deviation 0.059 0.636 0.060 0.694 0.061 0.622
Median of SE 0.087 1.113 0.086 0.804 0.089 0.634
Rej. rate for Heterosk. SE 0.072 0.001 0.081 0.021 0.074 0.041
PANEL B: b 6= 0 and α = 0.125, and υ = 0
Bias 0.040 -0.764 0.038 -0.311 0.037 -0.250
SE 0.096 60.869 0.098 3.460 0.103 1.694
Asympt.Heterosk.SE 0.094 2760.718 0.094 5.135 0.097 1.409
t-statistic 0.437 -0.473 0.416 -0.308 0.396 -0.282
Median bias 0.042 -0.664 0.038 -0.374 0.037 -0.272
Median Absolute Deviation 0.064 0.715 0.066 0.800 0.069 0.692
Median of SE 0.094 1.256 0.093 0.876 0.097 0.667
Rej. rate for Heterosk. SE 0.085 0.009 0.092 0.036 0.086 0.063
PANEL C: b 6= 0 and α = 0.25, and υ = 0
Bias 0.044 -0.358 0.043 -0.628 0.043 -0.482
SE 0.114 33.745 0.120 3.312 0.128 1.962
Asympt.Heterosk.SE 0.110 695.812 0.113 5.014 0.118 1.837
t-statistic 0.411 -0.669 0.390 -0.573 0.367 -0.534
Median bias 0.046 -1.117 0.046 -0.702 0.043 -0.523
Median Absolute Deviation 0.076 0.863 0.082 0.811 0.087 0.722
Median of SE 0.109 1.643 0.112 0.929 0.117 0.708
Rej. rate for Heterosk. SE 0.084 0.030 0.087 0.058 0.088 0.092

Table A.5: Experiment #2b: Large number of observed possibly weak and invalid
instruments driven by two unobserved (true) factors. b 6= 0 means that its first 25
elements are equal to 1 and the remaining 25 are set to 0. The two estimators (F-
SMD and GMM) are either implemented using 1 estimated factor (first 2 columns),
2 estimated factors (middle 2 columns), or 3 estimated factors (last 2 columns). All
factors are estimated by PCA with a sample size T = 200

9



1 estim. factor 2 estim. factors 3 estim. factors
Estimator F-SMD GMM F-SMD GMM F-SMD GMM
PANEL A: b 6= 0, α = 0, and υ = 0.25
Bias 0.008 -2.421 0.007 -0.044 0.007 -0.022
SE 0.029 80.350 0.029 0.814 0.030 0.385
Asympt.Heterosk.SE 0.028 16033.421 0.028 1.088 0.029 0.350
t-statistic 0.285 -0.231 0.272 -0.094 0.259 -0.053
Median bias 0.008 -0.102 0.007 -0.038 0.007 -0.023
Median Absolute Deviation 0.019 0.198 0.019 0.198 0.020 0.176
Median of SE 0.028 0.354 0.028 0.250 0.029 0.199
Rej. rate for Heterosk. SE 0.065 0.002 0.072 0.015 0.071 0.030
PANEL B: b 6= 0 and α = 0.125, and υ = 0.25
Bias 0.011 -0.291 0.010 -0.074 0.010 -0.052
SE 0.031 23.331 0.032 0.973 0.033 0.476
Asympt.Heterosk.SE 0.031 1021.869 0.031 1.454 0.032 0.416
t-statistic 0.361 -0.375 0.348 -0.219 0.333 -0.175
Median bias 0.011 -0.171 0.010 -0.086 0.010 -0.056
Median Absolute Deviation 0.021 0.214 0.021 0.227 0.022 0.192
Median of SE 0.031 0.382 0.031 0.267 0.032 0.209
Rej. rate for Heterosk. SE 0.075 0.002 0.079 0.022 0.080 0.041
PANEL C: b 6= 0 and α = 0.25, and υ = 0.25
Bias 0.011 -0.017 0.011 -0.150 0.011 -0.112
SE 0.036 9.983 0.038 0.935 0.041 0.523
Asympt.Heterosk.SE 0.036 182.266 0.037 1.398 0.039 0.472
t-statistic 0.340 -0.559 0.324 -0.453 0.308 -0.396
Median bias 0.012 -0.286 0.012 -0.168 0.012 -0.126
Median Absolute Deviation 0.024 0.254 0.026 0.231 0.027 0.204
Median of SE 0.036 0.474 0.037 0.282 0.038 0.218
Rej. rate for Heterosk. SE 0.068 0.013 0.071 0.031 0.076 0.055

Table A.6: Experiment #2b: Large number of observed possibly weak and invalid
instruments driven by two unobserved (true) factors. b 6= 0 means that its first 25
elements are equal to 1 and the remaining 25 are set to 0. The two estimators (F-
SMD and GMM) are either implemented using 1 estimated factor (first 2 columns),
2 estimated factors (middle 2 columns), or 3 estimated factors (last 2 columns). All
factors are estimated by PCA with a sample size T = 200
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1 estim. factor 2 estim. factors 3 estim. factors
Estimator F-SMD GMM F-SMD GMM F-SMD GMM
PANEL A: b 6= 0, α = 0, and υ = 0.5
Bias 0.002 -1.611 0.002 0.000 0.002 0.009
SE 0.018 46.916 0.018 0.359 0.019 0.173
Asympt.Heterosk.SE 0.018 10674.087 0.018 0.501 0.019 0.183
t-statistic 0.126 -0.057 0.124 0.040 0.119 0.093
Median bias 0.002 -0.020 0.002 0.001 0.002 0.007
Median Absolute Deviation 0.012 0.121 0.012 0.095 0.013 0.081
Median of SE 0.018 0.213 0.018 0.144 0.019 0.118
Rej. rate for Heterosk. SE 0.056 0.002 0.060 0.008 0.057 0.014
PANEL B: b 6= 0 and α = 0.125, and υ = 0.5
Bias 0.003 -0.166 0.003 -0.011 0.003 0.000
SE 0.020 14.524 0.020 0.380 0.021 0.194
Asympt.Heterosk.SE 0.020 571.643 0.020 0.571 0.021 0.200
t-statistic 0.158 -0.124 0.159 -0.020 0.152 0.033
Median bias 0.003 -0.035 0.003 -0.011 0.003 -0.002
Median Absolute Deviation 0.013 0.126 0.013 0.100 0.014 0.084
Median of SE 0.019 0.219 0.020 0.150 0.020 0.120
Rej. rate for Heterosk. SE 0.056 0.001 0.057 0.007 0.057 0.011
PANEL C: b 6= 0 and α = 0.25, and υ = 0.5
Bias 0.003 0.074 0.003 -0.023 0.003 -0.013
SE 0.023 4.837 0.024 0.384 0.025 0.237
Asympt.Heterosk.SE 0.023 77.398 0.024 0.582 0.025 0.264
t-statistic 0.147 -0.224 0.143 -0.136 0.140 -0.073
Median bias 0.003 -0.064 0.003 -0.030 0.004 -0.017
Median Absolute Deviation 0.015 0.132 0.016 0.102 0.017 0.087
Median of SE 0.023 0.232 0.024 0.152 0.025 0.122
Rej. rate for Heterosk. SE 0.053 0.002 0.056 0.004 0.058 0.009

Table A.7: Experiment #2b: Large number of observed possibly weak and invalid
instruments driven by two unobserved (true) factors. b 6= 0 means that its first 25
elements are equal to 1 and the remaining 25 are set to 0. The two estimators (F-
SMD and GMM) are either implemented using 1 estimated factor (first 2 columns),
2 estimated factors (middle 2 columns), or 3 estimated factors (last 2 columns). All
factors are estimated by PCA with a sample size T = 200
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mc og C-Inf spread W-Inf Macro-Factor PCA1

γf 0.503 0.470 0.362 0.510 0.470 0.494 0.485
se 0.036 0.093 0.101 0.116 0.109 0.054 0.076
CIl 0.432 0.288 0.164 0.283 0.256 0.388 0.336
CIu 0.574 0.652 0.560 0.737 0.684 0.600 0.634
λ 0.017 -0.034 -0.049 0.075 0.011 -0.013 0.032
se 0.018 0.043 0.054 0.094 0.100 0.028 0.110

Table A.10: Estimation of the NKPC over the whole sample with 247 observations:
F-SMD with one IV only taken as either one lag of, marginal cost (mc), output gap
(og), commodity inflation (C-Inf), spread (spread), wage inflation (W-Inf), first PCA
of large macro-finance dataset (Macro-Factor). All instrumental variables are first
transformed using tan−1(.).
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