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At some level, we all believe in the quantity theory of money: the average level of prices

is determined by the amount of money in circulation relative to people’s desire to hold it

for facilitating transactions. Going hand-in-hand with this are related propositions, such

as the common-sense notion that prices should be homogeneous of degree one in money: a

doubling of the quantity of money in circulation should double prices. Yet, as is perhaps not

unusual with things many of us believe about economics, it can sometimes be surprisingly

difficult to find the quantity theory in the data.

In this paper I argue that the quantity theory of money (QTM) emerges quite clearly

from the simplest of dynamic econometric frameworks, a single-equation autoregressive

distributed lag (ADL) model and its error correction mechanism (ECM) reparameterization.

This emergence occurs when the model is estimated over a suitably long sample period—

annual U.S data over the past century—and for a suitable monetary aggregate, which I

find to be M2. The equilibrium error of the ECM is the cointegrating relationship between

money, prices, income, and (possibly) interest rates that is predicted by the QTM. Because

the integration properties of interest rates may be in dispute, I argue that the bounds tests

of Pesaran, Shin, and Smith (2001) are the natural tool for studying the existence of an

equilibrium levels relationship.

I implement this modeling approach using three elementary money demand specifications

that have long been used in the empirical literature, and for which convenient formulas for

the welfare cost of inflation have been derived. For the specification that the data most

strongly support—an ADL/ECM based on money demand that is loglinear in the interest

rate, and permitting structural change determined by indicator saturation—I obtain welfare

costs in the range of 0.362 to 1.326 percent of income, for inflation rates of the order that

have been experienced over the past century. These are slightly lower than the estimates

obtained by Lucas (2000), but not as low as those of Ireland (2009).
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The only thing surprising about this simple analysis is that it runs counter to other recent

approaches to studying related issues. Benati, Lucas, Nicolini, and Webber (2017, 2021;

henceforth BLNW) use the aggregate NewM1 advocated by Lucas and Nicolini (2015) to

estimate long run money demand. They interpret the relevant cointegrating relationship to

be between velocity and the interest rate, which in turn presumes that these variables are

I(1) in their univariate behavior. A similar view is taken by Benati (2020). In contrast, I

argue that nothing in the QTM requires or implies that velocity or interest rates be inte-

grated individually, or that they be cointegrated. Because this may elicit some controversy,

it is useful to set the stage and establish notation by reminding ourselves of the essentials

of the QTM.

1 Background

The quantity theory is, of course, not so much a “theory of money” as an explanation of

the determination of the price level Pt and its growth rate, the rate of inflation, in terms

of the quantity of money in circulation Mt relative to real transactions Yt. The theory

is often interpreted in terms of the notion of the velocity of circulation of money Vt, the

ratio of nominal transactions PtYt to the money stock: Vt = PtYt/Mt. But, needless to say,

definitions tell us nothing about cause and effect.

1.1 Money Demand and the Quantity Theory

As a theory of price level determination, the quantity theory is formulated in terms of

behavior: people’s willingness to hold money—money demand—relative to the stock of

money in circulation available to be held—money supply. Were our interest in the short-

term high-frequency dynamics of the variables involved, quite complicated specifications for

each of these could be entertained. Money supply MS
t would be specified as interest-elastic,

because commercial banks reduce excess reserves in response to higher interest rates. And,

similarly, much could be said about the demand for money MD
t , on which there is of course

an enormous and longstanding literature. Indeed, in contemporary models of the short term

dynamics of interest rates and prices, as surveyed by McCallum and Nelson (2011, sec. 8.1),

the dominant factors are such that money may be viewed as not playing an important role

at all.

At its most essential, however, the QTM is a theory of price level determination in the
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long run, because it attributes inflation to money supply growth, and inflation is by its

nature a long run phenomenon. By definition inflation is an ongoing and sustained growth

in prices over an extended period of time, not merely a one-time or temporary jump in

prices. So too is the welfare cost of inflation an inherently long run phenomenon, because—

as the literature conventionally defines it—that welfare cost arises from people economizing

on their money holdings in response to expectations of inflation. And for expectations of

inflation to develop, an inflation must be sustained.

This emphasis on the long run is consistent with the evidence. Stock and Watson (1993,

p. 811) found that “The empirical analysis suggests that the precise estimation of long-run

M1 demand requires a long span of data: estimates over the full 90 years are considerably

more precise than over the first half of the century alone, and when used in isolation the

data since 1946 contain quite limited information about long-run M1 demand.”

In this conception of the QTM, the longer time frame to which it applies simplifies rather

than complicates its empirical implementation. With respect to money supply, the quantity

of money in circulation can be taken to be determined by the policies of the monetary

authority, and so is treated as exogenous: MS
t = Mt. With respect to money demand,

people desire to hold money, first and foremost, to facilitate their nominal transactions PtYt.

As a secondary consideration, they are influenced in this willingness by the opportunity cost

of holding wealth in the form of money, given by the nominal interest rate rt. The relevant

interest rate is a short term one, because liquid interest-bearing assets like treasury bills or

commercial paper are the most direct substitute for money.

This essential money demand function may be denoted

MD
t = f(PtYt, rt).

The equilibration of supply and demand determines the price level Pt, which adjusts to

bring people’s willingness to hold money into conformity with the quantity available to be

held, MS
t = MD

t . In this time frame, Pt is the sole endogenous variable of the equilibrium

condition

Mt = f(PtYt, rt). (1)

In addition to the money supply being exogenous, the inflationary expectations incorporated

into the nominal interest rate rt are historically given at any point in time, and the real

component of rt is determined by flows of real saving and investment in financial markets.
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The notion of a dichotomy between the real and nominal sectors is taken to be a reasonable

approximation to reality: transactions Yt are determined by real economic activity, and so

are exogenous with respect to the monetary sector.

That, from this long run perspective, the price level Pt may be viewed as the sole en-

dogenous variable of the single equation (1) has important implications for the empirical

implementation of the QTM. Vector error correction systems in which some of the I(1)

variables are exogenous have been studied rigorously by Pesaran, Shin, and Smith (2000,

2001; henceforth PSS). PSS (2001) focuses on the special case in which a single endogenous

variable is related to others that are exogenous, so that the equation describing their rela-

tionship can be decomposed from the rest of the system. They present bounds tests for the

existence of a levels relationship among the variables, tests that are robust to the univariate

integration properties of the variables individually. Let us now consider how this relates to

the traditional literature on the demand for money.

1.2 Empirical Implementation

Given the central role of money demand in the quantity theory, empirical implementations

of the QTM typically proceed using assumed specifications for the money demand function.

A common assumption is to specify money demand as homogeneous in prices and income,

in general not necessarily of the same degree:

Mt = k(rt)P
θp
t Y

θy
t . (2)

Here k(rt) is a behavioral specification for the reciprocal of velocity. Isolating the endoge-

nous variable Pt, this describes prices as being determined according to

Pt = k(rt)
−1/θpM

1/θp
t Y

−θy/θp
t .

Under this parameterization, the long run equilibrium relationship determining prices is

loglinear in money and income,

pt =
1

θp
mt −

θy
θp
yt −

1

θp
log k(rt),

where lower case pt, mt, and yt denote the logarithms of the respective variables. In a

stochastic setting this long run equilibrium relationship translates into a stationary equi-

librium error

pt + λmmt + λyyt + λk log k(rt), (3)
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where λm = −1/θp, λy = θy/θp, and λk = 1/θp. If all four of these variables, including

log k(rt), are I(1), then the vector λ = [1, λm, λy, λk] is the cointegrating vector. However

this framework is not limited to that circumstance. It could be that just two or three of the

variables are I(1), money and prices, say, or money, prices, and income, so that it is this

subset that is cointegrated. In this respect the only real requirement for the equilibrium

error (3) to be stationary is that if any of the variables is I(1), at least one other must be

as well.

Which of these possibilities actually holds in practice will depend on the historical time

period. For example, during the heyday of the gold standard between the end of the Civil

War and the beginning of World War I, the quantity of money in circulation was fairly

stable and so may have been best described as I(0). Yet the American economy grew

dramatically, and so income may have been I(1) with positive drift. The result was that the

price level declined, and so may have been I(1) with negative drift. Famously, the prices

of agricultural commodities fell while farmers were locked into fixed-rate mortgages. If,

being a function of interest rates, velocity was stationary, this would be a case where the

cointegrating relationship within the equilibrium error (3) was between income and prices,

with money and interest rates stationary.

Turning to more recent economic history, with the demise of the gold standard in the

last century prices pt have tended to increase with the money supply mt. So too have

aggregate transactions yt increased with economic growth. All three variables are therefore

plausibly I(1) with drift. The appropriate specification for nominal interest rates is less

clear. They increased during the 1970s, incorporating the rising inflation of that era, and

so during that period would most likely be best approximated as I(1) with drift. But in

the long run to which the quantity theory applies “. . . interest rates are almost certainly

stationary in levels. Interest rates were about 6% in ancient Babylon; they are about 6%

now. The chances of a process with a random walk component displaying this behavior are

infinitesimal.” (Cochrane 1991, p. 208). This suggests that, in the equilibrium error (3),

any cointegrating relationship is between pt, mt, and yt.

To prevent any misunderstanding that all four variables in the equilibrium error (3)

are necessarily assumed to be integrated, I call λ the equilibrium vector rather than the

cointegrating vector. Because, as these examples illustrate, the integration properties of

the variables individually during any particular historical time period may be in dispute,
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section 2.2 advocates the PSS (2001) bounds tests as the appropriate empirical tool.

Above and beyond the long run equilibrium relationship between the levels of the variables

captured by the equilibrium error (3), the quantity theory further hypothesizes that short

run price movements are driven in the direction needed to establish equilibrium. That is,

the equilibrium error is embedded within some broader dynamic model, which in our case

will be an ADL/ECM.

In addition to following a long empirical tradition, loglinearity of money demand—and,

in turn, the equilibrium error—has some theoretical appeal. Although income Yt is conven-

tionally measured by real GDP, and Pt is therefore the GDP deflator, this is just a proxy for

a much larger volume of actual transactions that includes intermediate goods and services,

not just final ones. But if GDP is proportional to actual transactions then, in a loglin-

ear specification, the difference is irrelevant because it will be absorbed into the intercept

(which, in the equilibrium error (3), enters via the specification of k(rt)). Interpreted in

terms of the money demand function (2), the income elasticity θy is invariant to multiplica-

tive data scalings. Interpreted in terms of the equilibrium error (3), the implication is that

this loglinear specification for the long run equilibrium relationship is not implausible.

Traditionally, the empirical study of these relationships has been cast in terms of esti-

mation of the money demand function. Often the classical proposition of a one-for-one

correspondence between money and prices, θp = 1 (or, in terms of the equilibrium vector,

λm = −1/θp = −1), is adopted as a maintained hypothesis. This is the basis for what

Ball (2001, equ. (1)) and McCallum and Nelson (2011, equ. (3)) call the “canonical” or

“standard” money demand specification

mt − pt = θ0 + θyyt + θrrt. (4)

This uses a semilogarithmic behavioral specification for the reciprocal of velocity: log k(rt) =

θ0 + θrrt. (A time trend is also sometimes included, typically motivated as capturing

technological or regulatory change in the banking sector.)

As one example of work along these lines, Ball (2001) found that, for U.S. post-World

War II annual data through 1996, the income elasticity θy is about 0.5 while the interest

semi-elasticity θr is about −0.05 (for interest rates expressed as percentages). Estimates like

these are often compared against the theoretical benchmark of the classic Baumol-Tobin

inventory-theoretic square root rule for money holding, which predicts an interest elasticity
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of money demand of −0.5. But, given aggregation issues, there is no particular reason

to believe that micro-theoretic results will translate to the aggregate. At historical values

for the interest rate, Ball’s interest semi-elasticity estimate of −0.05 is not particularly

consistent with the square root rule. With respect to the income elasticity, “Depending on

the way one interprets the Baumol theory, one may take it as also predicting that the income

elasticity of money demand is one-half. If this is right, the theory fails badly on U.S. time

series evidence.” (Lucas 2000, footnote 15.) That is, Ball’s income elasticity θy = 0.5—

which is consistent with the square-root rule—is actually atypical of empirical findings. It

is also contrary to plausible assumptions about the long run relationship between prices

and income, as we now consider.

1.3 The Homogeneity Restrictions

A special case often considered in textbooks, and adopted by BLNW (2021) as a maintained

hypothesis, is a demand for money that is proportional to nominal transactions PY :

MD
t = k(rt)PtYt. (5)

This is the special case of homogeneous money demand (2) that imposes a unitary degree

of homogeneity, not merely on prices alone as in the canonical money demand function (4),

but on both prices and income: θp = θy = 1. Equating this money demand specification to

exogenous money supply Mt, the equilibrium of the quantity theory is described by

Mt

PtYt
= k(rt). (6)

Given that Pt is the sole endogenous variable of the QTM, in logarithms it is determined

in relation to the other variables as

pt = mt − yt − log k(rt).

In terms of the equilibrium error (3), these are the restrictions λm = −1 and λy = 1. I will

call these the homogeneity restrictions.

The homogeneity restrictions are unlikely to hold in the short run, as is reflected in the

specification of the canonical money demand function (4), which does not impose θy =

1. But they may hold in the long run, because they correspond to the common-sense

propositions that, ceteris paribus, (a) a doubling of the money stock doubles the price level
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(λm = −1), and (b) a doubling of transactions halves the price level (λy = 1). For example,

for U.S. M1 1900–1989, Stock and Watson (1993, p. 811) found that “Overall, the evidence

is consistent with there being a single stable long-run demand for money, with an income

elasticity near one . . . ”

Although well-motivated by this common sense, whether the homogeneity restrictions

actually hold in practice will depend on the specifics of the empirical implementation, such

as the data span and the choice of monetary aggregate. If the homogeneity restrictions are

to be employed, they should be subject to test. Let us now consider why it might be of

special interest to work with a model where the homogeneity restrictions are compatible

with the data.

1.4 The Welfare Cost of Inflation

As was noted in section 1.1, inflation and its welfare cost are inherently long run phenom-

ena. And, as we have just argued, the homogeneity restrictions are sensible—perhaps even

compelling—as long run restrictions on the QTM. Combining these ideas, Lucas (2000)

showed that closed-form expressions for the welfare cost of inflation can be derived when

money demand is of the homogeneity-restricted form (5) and so monetary equilibrium is

described by (6). He derived welfare cost formulas for two specifications of k(rt) that are

commonly used in empirical work, a loglinear functional form

log k(rt) = α− η log rt = log(A)− η log rt (7)

and a semi-log one,

log k(rt) = β − ξrt = log(B)− ξrt. (8)

In the case of the latter, substituting it into the homogeneous money demand function (2)

with θp = 1 yields the canonical specification (4). Although this canonical semi-log function

has most often been used in empirical money demand studies, for annual data over the past

century BLNW (2021) favor the loglinear function. The exception is periods of very low

interest rates, where BLNW find that a third specification, the Selden-Latané functional

form, best fits the data.1 This specifies velocity as linear in the interest rate, Vt = C + δrt,

so that

log k(rt) = − log(C + δrt). (9)
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The corresponding welfare cost formula is given in BLNW (2017, equ. (10)). The notation

for these three specifications for log k(rt) follows Lucas (2000) and BLNW (2017), respec-

tively; the welfare costs require estimates of the intercept parameters A, B, and C, and the

slope coefficients η, ξ, and δ. With such estimates these welfare cost formulas can be evalu-

ated at various levels of the nominal interest rate and, by implication, the expected inflation

that those nominal rates reflect. Clearly, however, these calculations are only legitimate if

the homogeneity restrictions are satisfied so that monetary equilibrium is described by (6).

Lucas and Nicolini (2015) formulate a model that leads to homogeneity-restricted money

demand (5) as an appropriate specification. As a monetary aggregate that has a stable

relationship with the short term interest rate of the form (6), they propose M1 plus money

market deposit account (MMDA) balances—essentially the total of currency and coin in

circulation plus all checkable deposits, which they call NewM1. Although conventional

demand deposits and MMDA balances are not perfect substitutes to those who hold them,

the model predicts that a suitable aggregate can be obtained as a simple-sum aggregation.

Lucas and Nicolini show that, in annual time series, NewM1 yields a clean static bivariate

relationship between velocity and the short term interest rate over the period 1915–2012

that is well-approximated by the equilibrium condition (6). In turn, BLNW (2017, 2021)

employ NewM1 to estimate this equilibrium condition using the loglinear, semilogarithmic,

and Selden-Latané functional forms, and calculate (BLNW 2017, p. 26) “. . . welfare losses

at the average short rate that has prevailed over the sample period (expressed as percentage

points of GDP). . . . For the United States the three specifications tend to produce similar

results, with median estimates equal to 0.21 per cent for the Selden-Latané specification,

and 0.18 for the other two.” That is, at the moderate rates of inflation that have prevailed

over the past century, the welfare cost has averaged around one-fifth of one percent of GDP.

Given that Lucas and Nicolini (2015) derived NewM1 to satisfy a stable relationship

of the form (6), BLNW (2017,2021) adopt the homogeneity restrictions as a maintained

hypothesis. They interpret the equilibrium condition (6) as implying that the reciprocal of

velocity, Mt/PtYt, and the interest rate rt are cointegrated, which in turn requires that each

be univariate I(1). BLNW devote much of their empirical analysis to investigating these

hypotheses. Yet, although this pattern of integration and cointegration is conceivable, it is

not the only possibility nor, in the long run, even the most likely. Recall, from the examples

given to illustrate the interpretation of the equilibrium error (3), Cochrane’s (1991, p. 208)
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compelling argument that in the long run “. . . interest rates are almost certainly stationary

in levels.” It would follow that, for data from the past century, the cointegration in (3)

is between money, prices, and income. This would render Mt/PtYt (or, in terms of the

equilibrium error (3), its logarithm) stationary or trend stationary. In this conception,

both sides of the equilibrium condition (6) would be stationary or trend stationary, the

opposite of BLNW’s assumption.

1.5 Implications

These considerations point to the importance of using an empirical methodology that is

robust to alternative possibilities for the integration and cointegration properties of the data,

which brings us to the PSS tests of the next section. Also evident is that, if Lucas’s welfare

cost formulas are to be used, the homogeneity restrictions should be testable in order to

ensure that the formulas are being evaluated with parameter estimates from models that are

actually consistent with the data. These parameters are those of the loglinear (7), semilog

(8), and Selden-Latané (9) money demand specifications, whose interest rate coefficients

η, ξ, and δ have economic interpretations that can be compared with the literature; for

example, the benchmark Baumol-Tobin interest elasticity of −0.5.

Beyond this, the scope for testing and economic interpretation in this framework is limited

because the model consists of just a single equation, and the price level is its sole endogenous

variable. As has been emphasized, the other variables—money, income, and interest rates—

are treated as exogenous. Because they are not endogenous to the QTM, the QTM by itself

offers no testable hypotheses about their determination. Specifically, hypotheses that are

often thought to go hand-in-hand with the QTM—such as the neutrality or superneutrality

of money, or the natural rate hypothesis, however defined—cannot be addressed. To do so

requires a more sophisticated multi-equation model with endogenous real variables, as in,

for example, Fisher and Seater (1993).

The compensating payoff to this limitation is that a single equation representation for

the QTM makes the methodology of PSS available. The use of a single-equation approach

harkens back to the now-classic work of David Hendry and his collaborators, notably Hendry

and Ericsson (1991) and Baba, Hendry, and Starr (1992) for U.S. data. They emphasized

the importance of a systematic approach to the treatment of dynamics, with which they were

able to find that (Baba, Hendry, and Starr 1992, p. 56) “. . . contrary to the prevailing view,
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there is good evidence for the existence of a stable, cointegrating money demand function,

based on theory, with an error-correction specification.” For example, in considering the

famous 1970s “case of the missing money” Hendry and Ericsson (1991, p. 873) concluded

that in part “. . . the ‘missing money’ appears to be due to misspecified dynamics . . . ”

Like BLNW, Hendry’s work was phrased in terms of estimating a money demand function,

so that the quantity of money demanded was viewed as the endogenous variable of the model.

Although, when money supply is treated as exogenous, the difference may be more a matter

of taste than substance, casting these issues explicitly in terms of the quantity theory, where

the price level rather than the quantity of money demanded is viewed as the endogenous

variable, helps direct attention to the appropriate specifications for the univariate properties

of the variables and the legitimacy of the homogeneity restrictions.

2 Modeling Framework

The equilibrium error (3) relates the variables pt, mt, yt, and—via a specification for

log k(·)—the interest rate rt. This equilibrium error must be embedded within a dynamic

structure that describes the short run variation in these variables, variation that is driven

by the tendency to move toward satisfying long run equilibrium. In particular, this dy-

namic structure treats the lagged response of prices to changes in money—referred to by

McCallum and Nelson (2011) as the “phase shift” between these variables.

Applied econometrics provides essentially two such dynamic structures: a single-equation

autoregressive distributed lag/error correction model (ADL/ECM), and vector autoregres-

sion/error correction model (VAR/ECM). In a model with several endogenous variables, a

VAR system would be the natural choice. But the associated Johansen cointegration test-

ing methodology assumes that all the variables of the system are I(1). In fact, this is the

methodology used by BLNW in studying possible cointegration between velocity and the

interest rate. But, as I have argued, in testing the quantity theory one wants a methodology

that is robust to the integration properties of these variables, not contingent on particular

assumptions about them.

Beyond its simplicity, the appeal of the single-equation framework is that PSS tests for a

levels relationship become available. This testing methodology is presented most generally

in PSS (2001). Rather than attempting to reiterate the general framework, it is more useful

to indicate how it applies in the present context.

11



2.1 The ADL/ECM(2,2,0,1) Model

Given the variables to be studied, in this case [pt,mt, yt, rt], an ADL is specified by ap-

propriate lag lengths. These lag lengths are, of course, specific to the application and are

determined according to the usual testing and model selection criteria. In the empirical

work reported in section 4, the chosen lag lengths depend on the monetary aggregate, the

specification for log k(·) and, in one case (a loglinear model for M1), even whether the

equilibrium error includes a time trend.

Nevertheless, the essentials of the PSS methodology can be illustrated with the example of

an ADL/ECM(2,2,0,1), where the arguments are the lag lengths of the respective variables

[pt,mt, yt, rt]. This turns out not to correspond to any of the models I actually end up

reporting: some are special cases with shorter lag lengths, others generalizations with longer

lag lengths. But the ADL/ECM(2,2,0,1) most economically illustrates the issues that arise.

Because the price level pt is the sole endogenous variable of the quantity theory, it is the

dependent variable of the ADL(2,2,0,1):

pt = φ0 + φ1pt−1 + φ2pt−2 +ω0mt +ω1mt−1 +ω2mt−2 + γ0yt + δ0rt + δ1rt−1 + κt+ εt (10)

This states the model in its greatest generality by including a time trend, although I find a

time trend to be insignificant in my results. This example also specifies varying lag lengths

on the exogenous variables mt, yt, and rt. In particular, exogenous variables with a lag

length of zero—in this case yt, which appears only contemporaneously—turn out to require

special handling, as we are about to see.

It is well known that any ADL can be reparameterized in a number of forms, useful for

different purposes. The best known of these is the error correction form, which in this case

can be written as

∆pt = ψ[pt−1 + λmmt−1 + λyyt−1 + β − ξrt−1 + µ(t− 1)]

− φ2∆pt−1 + ω0∆mt − ω2∆mt−1 + ψλy∆yt + δ0∆rt + εt. (11)

12



This reparameterization is the following set of correspondences.

ψ = φ1 + φ2 − 1 (speed-of-adjustment coeffient)

λm = −ω0 + ω1 + ω2

1− φ1 − φ2
(elasticity of prices with respect to money)

λy = − γ0
1− φ1 − φ2

(elasticity of prices with respect to income)

β = − φ0 − κ
1− φ1 − φ2

(intercept)

−ξ = − δ0 + δ1
1− φ1 − φ2

(interest semielasticity of money demand)

µ = − κ

1− φ1 − φ2
(time trend coefficient)

As is standard in this single-equation context, these parameter correspondences are exactly

identifying and so are not testable restrictions. For this to be so—that is, for the ECM

to place the same structure on the data as the original ADL—exogenous variables that

appear in the ADL only contemporaneously, in this case yt, must appear with a restricted

coefficient on their first difference, in this case ψλy on ∆yt.

The ECM (11) makes explicit that underlying the ADL (10) is the notion that period-by-

period changes in the endogenous variable, ∆pt, are driven by two forces. First, the short

term dynamics captured by the first differences on the right hand side of the ECM. And

second, the need for pt to move in a direction driven by its long run equilibrium relationship

with the other variables, as described by the quantity theory. This long run equilibrium

relationship is the equilibrium error

pt−1 + λmmt−1 + λyyt−1 + β − ξrt−1 + µ(t− 1), (12)

which is the equilibrium error (3) in which λk log k(rt) = β − ξrt + µt. That is, this

equilibrium error uses the semi-log money demand specification (8) generalized to include a

time trend, the latter possibly to capture technical progress in the banking sector. (A time

trend in the equilibrium error can also arise from non-zero drifts in the I(1) variables. The

role of the time trend term is examined in detail in the appendix.) Within this ECM, the

usual questions about money demand can be studied. For example, the canonical money

demand specification (4) imposes the homogeneity restriction λm = −1.

In addition to the economic interpretations of the parameters in the equilibrium vector,

some of the other parameters introduced by the ADL have important interpretations with

respect to dynamics. To ensure convergence of the endogenous variable pt to a long run
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equilibrium, the autoregressive parameters—in this case φ1 and φ2—must satisfy the stan-

dard stability conditions. For a second order difference equation these are φ1 + φ2 < 1,

φ2 − φ1 < 1, and |φ2| < 1. In turn, the first of these implies that the speed-of-adjustment

parameter ψ = φ1 + φ2 − 1 must be negative: ψ < 0. The logic is that, if log pt−1 is above

its long run equilibrium value −[λmmt−1 + λyyt−1 + β − ξrt−1 + µ(t− 1)] as implied by the

quantity theory, so that the equilibrium error (12) is positive, then ∆pt should be negative

in order to move pt toward satisfying long run equilibrium.

This exposition has used semi-log money demand to illustrate the essentials of ADL/ECM

models. The alternative of loglinear money demand (7) is straightforward. If the interest

rate rt is to enter logarithmically, then log rt simply replaces rt in the initial specification of

the ADL (10). The associated ECM is the same as (11) with log rt replacing rt and, using

the notation of loglinear money demand (7), the equilibrium error is notated as

pt−1 + λmmt−1 + λyyt−1 + α− η log rt−1 + µ(t− 1). (13)

Whereas the semi-log and loglinear money demand functions are consistent with an equi-

librium error that is a linear combination of the variables [pt,mt, yt, rt] or [pt,mt, yt, log rt],

respectively, the Selden-Latané function (9) is not. It sets λk log k(rt) = − log(C+ δrt+µt)

in the equilibrium error (3), which therefore becomes

pt + λmmt + λyyt − log(C + δrt + µt).

Because this is nonlinear in the parameters C and δ, an ECM with this as the equilibrium

error cannot be derived from an associated ADL. Even so, this equilibrium error can be

embedded within an otherwise linear ECM like (11) and estimated nonlinearly. Such an

ECM is, in this respect, ad hoc; nevertheless parameter estimates and welfare costs can be

usefully compared with those from the loglinear and semi-log ADL/ECMs. Given that this

is a fairly minor variation on the fully linear framework, it seems reasonable to hope that

the PSS simulated testing bounds are still approximately correct; nevertheless it must be

borne in mind that they no longer strictly hold.

2.2 Testing for an Equilibrium Levels Relationship

Consider the ECM (11) and the question of whether the evolution of the variables is guided

by an equilibrium relationship in their levels, as opposed to being influenced by nothing
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more than short run interactions among their first differences. The ECM suggests two ways

of testing this. One is to test the restriction ψ = 0, which implies that short run changes

are not driven by long run convergence to equilibrium. The associated pseudo-t statistic

is the basis for the PSS t test. The other is to consider another reparameterization of the

model, also exactly identifying, which in this example is

∆pt = ψpt−1 + ωmt−1 + γyt−1 + κ0 + δrt−1 + κ(t− 1)

− φ2∆pt−1 + ω0∆mt − ω2∆mt−1 + γ∆yt + δ0∆rt + εt, (14)

where ω = ω0 + ω1 + ω2, γ = γ0, and δ = δ0 + δ1. (Notice once again that, for the

relationships to be exactly identifying, a variable appearing only in contemporaneous form

in the original ADL (10) appears here with a coefficient restriction: yt−1 and ∆yt share the

common coefficient γ.) The restrictions ψ = ω = γ = δ = κ = 0 are the hypothesis that

the variables in their levels do not influence price changes, which are therefore related to

the other variables only via their short term changes. This is the PSS F test; the statistic

is a transformation of a Wald statistic. (Incidentally, notice that the intercept κ0 is not

among these restrictions. It is a reparameterization of the intercept φ0 in the ADL or, in

the ECM’s, a reparameterization of the intercept in the equilibrium error. Even in the

absence of a long run equilibrium relationship, the short run relationship between the first-

differences could involve an intercept, and it would be inappropriate to include κ0 = 0 in

the null hypothesis.)

Although these t and F statistics are standard, their distributions are not. Consider

the special case of κ = 0, so that there is no time trend in the model, the implication

being, for example, that any nonzero drifts in the I(1) variables cancel and/or there is no

trend in velocity. This is PSS Case III, which will prove to be of special relevance because

it turns out to be supported in my results. PSS (2001) tabulate critical value bounds

on each of the t and F statistics for the polar extremes of all I(0) variables versus all I(1)

variables; the null hypothesis is of an absence of a levels relationship. They recommend that

the two statistics be interpreted sequentially: “. . . we suggest the following procedure for

ascertaining the existence of a level relationship . . . : test H0 . . . using the bounds procedure

based on the Wald or F -statistic . . . : (a) if H0 is not rejected, proceed no further; (b) if H0

is rejected, test . . . using the bounds procedure based on the t-statistic . . . ” (PSS 2001, p.

304). Intuitively, begin by testing whether the variables belong in the model in their levels;
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if they do, then test whether a long run equilibrium relationship among those levels drives

the short run fluctuations.

Although PSS Case III turns out to be of principal empirical relevance in my analysis,

consider the more general possibility that, if there is a long run equilibrium relationship be-

tween the variables, it includes a time trend, perhaps because nonzero drifts of I(1) variables

do not cancel, or velocity trends. In this case a time trend belongs in the equilibrium error:

κ 6= 0 in (14) or, equivalently, µ 6= 0 in (12) or (13). Now the hypothesis that variables

in their levels should not enter the PSS regression (14) adds the further restriction κ = 0

to the Case III restrictions ψ = ω = γ = δ = 0. This is PSS Case IV. Whereas, like Case

III, the F -statistic can be bounded under this null hypothesis (PSS 2001, Corollaries 3.1

and 3.2), this turns out not to be true of the t-statistic (PSS 2001, Corollaries 3.3 and 3.4).

Hence only the bounds F -test is available in this instance.2

3 Data and Preliminary Evidence

The natural data sources for this study are those of Lucas and Nicolini (2015) and BLNW.

Officer and Williamson (www.measuringworth.com) have constructed consistent historical

GDP data (nominal, real, and the associated deflator) that they continue to update. FRED

has consistent series for M1 and M2 back to 1915 that continue to be updated.3 MMDA

is obtained as described in Lucas and Nicolini, and NewM1 constructed as the simple sum

of M1 and MMDA. The three month treasury bill rate, obtained from the Lucas-Nicolini

documentation files and updated from the Economic Report of the President, is used for

the short-term interest rate.4

3.1 Descriptive Behavior

Figure 1a shows the evolution over time of the logarithms of real GDP yt = log Yt, the

deflator pt = logPt, and the three monetary aggregates. (M1 and NewM1 are coincident

until 1982, when non-zero MMDA balances begin.) These have grown over the past century

in the way familiar to all macroeconomists, and so are plainly nonstationary.

The growth in these aggregates is not unrelated, as is revealed by an inspection of the

corresponding velocities. Consider V1, NewV1, and V2 (constructed as V = PY/M with

M set alternatively to M1, NewM1, and M2) shown in Figure 1b along with the interest

rate. The stability of velocity is directly related to how broadly its monetary aggregate is
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defined: M2 velocity is the most stable, M1 velocity the least. The most obvious regularity

in V1 and NewV1 is the extent to which their historical variation is related to interest

rates. Indeed, the historical peak of NewV1 corresponds virtually exactly with the peak in

the T-bill rate around 1980. Just as the reasoning behind the interest elasticity of money

demand suggests, money circulates more rapidly in the economy the higher the opportunity

cost of holding it. This is especially evident in NewM1, the monetary aggregate advocated

by Lucas and Nicolini (2015).

Another obvious regularity in these velocities is that they share an important feature.

All three have returned to values that today are roughly what they were a century ago,

suggesting mean reversion. Perhaps surprisingly, technological advance in the banking and

financial sector has not systematically increased velocity (although one could easily have

been misled into believing the contrary had one focused solely on M1 prior to around 2005).

It follows that, especially for NewM1 and M2, these velocities are unlikely to be integrated

processes, which have infinite variance and must—even with zero drift—ultimately wander

arbitrarily far from their starting values.

However if, in studying the limited sample period of the past century, integration is to be

considered as a candidate behavior, the absence of any apparent long run trend suggests a

zero-drift specification. The implication is that, for purposes of testing, a researcher would

be inclined to believe a “constant, no trend” unit root test before a “constant plus trend”

version.

The other variable exhibiting mean reversion is the interest rate, which, from its high

around 1980, has returned to levels of the 1930s. This is, of course, consistent with

Cochranes’s (1991) view, cited in section 1.2, that in the long run “. . . interest rates are

almost certainly stationary . . . ”.

These remarks suggest that the natural default interpretation of the descriptive evidence

in Figure 1 is that, in the equilibrium error (3), the cointegrating relationship is between

prices pt, money mt, and transactions yt. The reciprocal-of-velocity term log k(rt) should

probably be treated as stationary, but nevertheless appears in the equilibrium error because

the interest rate plays a role in the equilibration of the price level. That role is testable via

λk or, equivalently, the coefficients that appear in any parameterization of the λk log k(rt)

term, such as η, ξ, or δ in the loglinear, semilog, or Selden-Latané specifications (7), (8),

and (9). These parameters should be statistically significant: empirically, money demand is
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well known to be interest elastic. At the descriptive level of Figure 1b, this elasticity is most

clearly revealed in the relationship that we have noted between the interest rate and the

velocity of NewM1. Hence, even if stationary, the log k(rt) term belongs in the equilibrium

error.

3.2 Univariate Tests

But is this default interpretation supported by more rigorous statistical analysis? To treat

pt, mt, and yt as cointegrated they must be unit root processes. Table 1 contrasts, for the

key time series, the best known of two types of unit root tests: augmented Dickey-Fuller

(ADF) tests, for which the null hypothesis is the presence of a unit root (i.e. difference

stationarity), and Kwiatkowsky-Phillips-Schmidt-Shin (KPSS) tests, for which the null is

the absence of a unit root (i.e. trend stationarity). Of course, there are many other unit root

tests that could be applied, but the key points can be illustrated with these most common

of tests.

The upper portion of Table 1 includes results for the variables shown in Figure 1a: pt, yt,

and the logs of M1, NewM1, and M2. Because all trend upward, a “constant plus trend”

test specification is the natural choice, although the test decisions are not sensitive to it.

These decisions are that the ADF tests do not reject the null of a unit root, while the KPSS

tests reject the null of trend stationary. Hence, as most empirical macroeconomists would

expect, the evidence is compelling that pt, yt, and mt should be modeled as drifting I(1),

and this behavior of mt does not depend on the aggregate used to measure it.

How about the interest rate rt? Here the substantive conclusions are insensitive to the

choice of a “constant” or “constant plus trend” specification and, reassuringly, whether the

interest rate is untransformed or studied in its logarithm. For researchers who accept that,

on the basis of the descriptive evidence of Figure 1b and Cochrane’s reasoning, the natural

null is of stationarity, the KPSS tests do not reject that null at conventional significance

levels (although they come close). But researchers who instead believe that the null should

be of difference stationarity will not find evidence in the ADF tests to reject that view.

Neither school of thought will be persuaded that its a priori belief is false. As much as

anything, the rate of interest illustrates the notorious weak power of unit root tests.

This is not quite so true of velocity, where the results vary somewhat with the monetary

aggregate in ways that make sense in relation to the patterns in Figure 1b. The strongest
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evidence for integrated behavior is M1 velocity, where the ADF tests fail to reject while the

KPSS tests do. Velocity based on NewM1 similarly yields ADF tests that do not reject, but

a KPSS test that does not under what I have argued to be the natural default of a “constant,

no trend” specification. The strongest evidence for non-integrated velocity comes from M2

where, for “constant, no trend” specifications, an ADF test rejects unit root behavior at

10% significance while a KPSS test does not reject stationarity.

The bottom portion of Table 1 shows that these general patterns in the velocity series are,

as one would expect, little altered when studied in their logarithms. As casual inspection of

Figure 1b suggests is likely, the evidence for integrated behavior weakens as the monetary

aggregate broadens.

That, when the researcher adopts the null of unit root behavior, the evidence in the

data is generally not strong enough to reject that null—especially for velocities based on

narrower monetary aggregates—is consistent with the findings of BLNW (2021). On the

basis of bootstrapped Elliot-Rothenberg-Stock tests (which, like ADF tests, have a unit

root null) they do not reject unit root behavior, and so conclude that “Evidence of a unit

root in M1 velocity and the short rate is typically strong . . . ” (BLNW Online Appendix,

Sec. C.1).

That this conclusion may be sensitive not only to the choice of null but also to the mon-

etary aggregate serves to direct attention to the legitimacy of the homogeneity restrictions.

The BLNW view is that, during the past century, the equilibrium error (3) is best treated

as a cointegrating relationship between pt−mt + yt and rt (as the latter enters via the em-

pirical specification for λkk(rt)), each of which is I(1). But this view has as its premise that

the homogeneity restrictions are satisfied, which BLNW take as a maintained hypothesis.

To anticipate the results of the next section, I find that the homogeneity restrictions are

best satisfied by M2, and in fact are quite strongly rejected for M1 and NewM1. Given

the ambivalence that we have seen in the univariate unit root tests on M2 velocity, this

motivates interest in an approach to cointegration testing that is robust to assumptions

about the integration properties of pt, mt, yt, and rt individually. This in turn brings us to

PSS testing.
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4 Estimation Results

Estimation results for ADL/ECM’s based on the three money demand specifications and

three monetary aggregates are presented in Tables 2–10. Lag lengths were determined using

a combination of hypothesis testing, model selection criteria, and diagnostic tests for residual

autocorrelation. With respect to model selection criteria, it is well known that Schwarz’s

Bayesian information criterion (BIC) is consistent, but in finite samples can sometimes lead

to overly parsimonious lag lengths. Akaike’s information criterion (AIC) is typically less

parsimonious. I therefore considered both criteria, eliminating statistically insignificant lags

from the specification yielded by the AIC while ensuring an absence of significant residual

autocorrelation, but not below the lag lengths recommended by the BIC.

The resulting lag lengths varied somewhat depending on the money demand specification

and the monetary aggregate. But given those, with the sole exception of the loglinear model

for M1 (Table 2), the preferred lag lengths were not sensitive to the inclusion of a time trend.

In any event, a time trend is insignificant for all models and aggregates. Therefore, although

results for the models with a time trend (Case IV in the PSS taxonomy) are included for

comparison, the following discussion focuses on the versions of the models that omit a time

trend (PSS Case III).

4.1 Parameters and Restrictions

Reassuringly, the estimation results show a fair degree of consistency in the economic be-

havior described.

First, for all models and aggregates, the estimated speed-of-adjustment coefficient ψ and

autoregressive parameters φj satisfy the conditions for dynamic stability and convergence

to long run equilibrium. Given the use of annual data, only short lag lengths are needed to

obtain models satisfying this fundamental requirement, as well as exhibiting an absence of

residual autocorrelation.

Second, narrower definitions of money tend to be more interest sensitive. For example,

in the case of the loglinear model the interest elasticities −η are −0.1438, −0.1282, and

−0.0643 for M1, NewM1, and M2, respectively (Tables 2, 3, and 4). For the semilog model

the corresponding semielasticities −ξ are −11.7857, −7.4449, and −4.9746 (Tables 5, 6,

and 7). Consistent with standard intuition, the more an aggregate omits interest-bearing

categories of deposits, the greater the tendency to avoid holding it when rates increase.
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(The pattern is less evident in the Selden-Latané model (Tables 8, 9, and 10), where the

nonlinear functional form results in this parameter being estimated imprecisely.)

These interest elasticity and semielasticity estimates are all statistically significant and

broadly consistent with conventional values in the literature. For example, Lucas (2000)

used a calibrated semielasticity of ξ = 7, which is in the middle of my range of estimates.

Ball (2001, Table 2) reports M1 interest semielasticities in the range −0.0277 to −0.1340

(depending on the sample period and choice of interest rate) when the T-bill rate is expressed

as a percent, which translates into −ξ estimates of −2.77 through −13.40. Similarly, Stock

and Watson (1993, p. 811) concluded that the interest semielasticity of M1 is “near −0.10”,

so −ξ ≈ −10.

The loglinear model has been used less often by researchers. For quarterly M1, 1980–

2006, Ireland (2009, Tables 2 and 3) reports interest elasticities −η of −0.0572 when the

homogeneity restrictions are not imposed, −0.0873 when they are. Like mine, these esti-

mates of η are well below the Baumol-Tobin square root rule of η = 0.5 used by Lucas

(2000), a common empirical finding.

Third, under all three money demand specifications, for only the broadest aggregate M2

is the income elasticity λy statistically significant. People’s willingness to hold the narrower

definitions of money, M1 and NewM1, is evidently not substantially determined by their

incomes, at least in the broader sweep of history represented in these data. For M2, the

estimates of λy are 0.6955, 1.5901, and 1.3696 for the loglinear, semi-log, and Selden-Latané

specifications, respectively (Tables 4, 7, and 10), and a two-standard-error confidence bound

easily includes the homogeneity restriction λy = 1 in all three cases.

Fourth, the strength of the relationship between money and prices tends to be directly

related to the broadness of the monetary aggregate, both in terms of coefficient magnitudes

and statistical significance. For example, in the case of the loglinear model the elasticities

−λm are 0.2704, 0.4793, and 0.8515 for M1, NewM1, and M2, respectively (Tables 2, 3,

and 4). For M2 in all three models (Tables 4, 7, and 10), a two-standard-error confidence

bound easily includes the homogeneity restriction −λm = 1. Hence it is the broadest of the

aggregates that most reliably has a one-for-one long run association with prices.

Finally, Tables 2–10 report Wald tests for the homogeneity restrictions. Across models,

λy = 1 and λm = −1 are generally rejected, individually or jointly, for M1 and NewM1,

but not for M2. If these restrictions are to be imposed on the quantity theory, one is most
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comfortable doing so for M2.

4.2 PSS Tests of the Quantity Theory

Having considered the individual parameters and restrictions of these models, let us turn

to a more general question. To what extent are these alternative aggregates and money

demand specifications consistent with the quantity theory—that is, a long run equilibrium

relationship between money, prices, income, and interest rates?

Recall from section 2.2 that PSS (2001) tabulate critical value bounds for the non-

standard distributions of their t and F statistics; the null hypothesis is of no levels re-

lationship. The bounds are for the extremes of an equilibrium error that includes all I(0)

versus all I(1) variables. For example, for an equilibrium error without a time trend (Case

III in the PSS taxonomy), the 10% critical bounds for the F statistic are 2.72 if all variables

are I(0) and 3.77 if all are I(1) (PSS Table CI(iii)). A researcher who believes that, along

with the other variables, interest rates are best treated as I(1) would insist on evidence as

strong as F > 3.77 to reject the null at a 10% significance level, finding in favour of the

existence of a long run equilibrium relationship. One who believes that interest rates are

I(0) would accept somewhat weaker evidence, but would still require something stronger

than F > 2.72 given that the other variables—money, prices, and income—are naturally

regarded as I(1).

Similar bounds hold for the PSS t statistic. Recall that PSS recommend a two-stage

testing procedure that begins by checking the F statistic and, if it rejects, then checks the

t. The strongest evidence for an equilibrium levels relationship is if both reject.

The PSS critical values are for linear models, and cannot necessarily be assumed to apply

for the Selden-Latané specification. Hence, although Tables 8–10 provide mechanically-

computed PSS statistics for comparison with the other money demand functions, it is best

to focus on the results for the loglinear and semilog models. The strongest evidence favoring

the quantity theory comes from the loglinear specification based on M1 and M2 (Tables 2

and 4); these aggregates yield F statistics of 6.5938 and 6.7614, strongly rejecting the null

of an absence of an equilibrium relationship, regardless of whether log rt is I(0) or I(1). The

other aggregate, NewM1, yields F = 3.3000 (Table 3), which is in the intermediate range.

At the second stage, the t statistics either reject (M2) or fall within the bounds (M1 and

NewM1).
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The evidence provided by the semilog model is weaker. The F statistic rejects unambigu-

ously for M1 (F = 3.8985; Table 5) but is in the intermediate range for NewM1 and M2

(Tables 6 and 7). The t statistic fails to reject for M1 and M2, and is in the intermediate

range for NewM1.

On balance, then, PSS tests provide substantial evidence supporting the quantity theory,

but the strength of that evidence varies with the monetary aggregate and money demand

specification. The strongest evidence comes from the loglinear model based on M2.

5 Application: The Welfare Cost of Inflation

There are several reasons why inflation is costly. It harms people on fixed incomes, and

unanticipated inflation has redistributive effects between lenders and borrowers. But, im-

portant as these distributional effects may be to those affected, they cancel in the aggregate.

For the aggregate economy the costs of inflation derive principally from two sources.

First, inflation interferes with the price system: market participants seeking to respond

to relative price movements find themselves having to disentangle observed price changes

into their relative and aggregate components, and can do so only imperfectly. Second,

inflation leads people to economize on their money holdings, causing them to expend effort

to economize on something that is costless to create.

This was all seen clearly by Bailey (1956, pp. 93–4):

. . . the reasons why open inflation is not an advisable method of govern-
ment finance have not been worked out with theoretical precision; the argu-
ments against it have concentrated on the redistributive and disruptive aspects
of inflation—the hardship involved for people whose income and wealth are fixed
in money terms and the misallocations of resources that may result from the
heightened uncertainties concerning future relative and absolute prices. Such
arguments have, by and large, overlooked another aspect of the effects of infla-
tionary finance, an aspect which in a certain sense is more fundamental because
it cannot be avoided by sliding-scale arrangements or by precise foreknowledge
of the courses of individual prices. This aspect is a welfare cost of open infla-
tion, which, in effect, is a tax on the holding of cash balances, a cost which is
fully analogous to the welfare cost (or “excess burden”) of an excise tax on a
commodity or productive service.

The theoretical analysis of the welfare cost of open inflation is, in fact, a
reasonably straightforward extension of the theory of the welfare cost of an
excise tax and, indeed, is in some respects much simpler. . . . this welfare cost is
measured by the area under an appropriately defined liquidity preference curve
. . .
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At high rates of inflation all these costs are large to an extent that probably defies

quantification, as evidenced by the abandonment of money in favor of barter in the final

stages of hyperinflation. But how about the more moderate rates of inflation that have

typically characterized most developed nations during the past century since the demise of

the classical gold standard? The literature quantifying this has focused on Bailey’s “more

fundamental” excess burden of the implicit tax on money holding. The relevant “. . . area

under an appropriately defined liquidity preference curve . . . ” depends on the form of that

curve. For the loglinear and semi-log money demand functions (7) and (8) Lucas (2000)

derived closed-form expressions for the excess burden as a function of the interest rate r:

w(r) = A
η

1− η
r1−η and w(r) =

B

ξ
[1− (1 + ξr)e−ξr],

Here “. . .w(r) has the interpretation . . . as the fraction of income people would require as

compensation in order to make them indifferent between living in a steady state with an

interest rate constant at r and an otherwise identical steady state with an interest rate

of (or near) zero.” (Lucas 2000, pp. 250–251.) The analogous formula for Selden-Latané

money demand is (BLNW 2017, equ. (10))

w(r) =
log(C + δr)− logC

δ
− r

C + δr
.

These formulas apply under two conditions. First, when the quantity theory holds as

a good approximation to the long run interaction of money, prices, income, and interest

rates (or, in the Lucas-Nicolini phrasing, when there is a stable long run money demand

function). Second, when this long run relationship satisfies the homogeneity restrictions

−λm = λy = 1. The estimation results of the preceding section suggest that these two

conditions are most likely to hold for the loglinear model based on M2.

Furthermore, in the Bailey-Lucas conception of its welfare cost, inflation has its effect

via the interest sensitivity of money demand. Higher expected inflation is incorporated into

interest rates (the Fisher effect), in response to which people incur the cost of economizing

on their money holdings. Evaluating the welfare cost of inflation therefore hinges on the

interest sensitivity of money demand, and here too the evidence indicates that loglinear

money demand based on M2 serves us well. As we have seen, although for both the semilog

and loglinear models the interest sensitivity declines as the monetary aggregate broadens,

it is still strongly statistically significant in the loglinear M2 model (Table 4). This is less

true in the semi-log M2 model (Table 7).

24



On balance, then, a researcher coming from the ADL/ECM framework and wishing to use

Lucas’s formulas to evaluate the welfare cost of inflation would be most inclined to believe

the results from the loglinear model based on M2 (Table 4). The homogeneity restrictions

−λm = λy = 1 are not rejected and the interest elasticity −η̂ = 0.0643 is strongly statis-

tically significant, something that continues to be true after the restrictions are imposed

(Table 13), where the interest elasticity changes only slightly to −η̂ = −0.0602. Interest-

ingly, a log-log model is also the preferred specification of Lucas (2000) and BLNW (2021),

except for very low interest rates where BLNW find that the Selden-Latané functional form

fits the data better.

A second choice would be the semi-log model based on M2 (Table 7): the homogeneity

restrictions are compatible with the data and the interest semi-elasticity −ξ̂ = −4.9746 is

marginally significant, as continues to be true after the restrictions are imposed and the

semielasticity becomes −ξ̂ = −6.4891 (Table 16). The Selden-Latané model based on M2

may also have something to offer: the homogeneity restrictions are not rejected and, when

imposed (Table 19), contribute enough additional structure that the precision with which

the interest parameter δ is estimated is substantially improved.

Despite this preference for the models based on M2, for completeness Tables 11–19 present

welfare calculations over the full range of aggregates and money demand specifications. For

purposes of comparison the results for the “canonical” semi-log functional form using M1 or

NewM1 may be of interest, given its widespread use in the empirical literature. So too may

be the results for the other money demand functions based on NewM1, given Lucas and

Nicolini’s advocacy of it as their preferred aggregate and its use by BLNW (2017, 2021). To

be sure, we have seen that our results are less supportive of these alternatives, at least for

the purpose of implementing Lucas’s formulas. In all three functional forms the use of either

M1 or NewM1 leads to rejection of the homogeneity restrictions −λm = λy = 1 (Tables 2,

3, 5, 6, 8, and 9) on which the applicability of Lucas’s formulas is predicated. Imposing

these restrictions on models where they are rejected can lead to implausible estimates of the

interest rate parameter, as occurs in, for example, the semilog model based on M1 (Table

14).

Notwithstanding these qualifications, Tables 11–19 re-estimate all the models of Tables

2–10 imposing the homogeneity restrictions −λm = λy = 1.5 The estimates of the money

demand parameters are then used in Lucas’s formulas to evaluate the welfare cost of inflation
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w(r) at some illustrative interest rates.

Based on the arguments just made, Table 13 for the loglinear model using M2 should

probably be viewed as the benchmark results. It indicates that, in periods of low interest

rates (say 3 percent) and, by implication, low expected inflation, the welfare cost of inflation

is estimated to be on the order of one-tenth of one percent of income: w(0.03) = 0.112. In

periods of higher inflation and interest rates (say 14 percent), such as prevailed in the late

1970s and early ’80s, the welfare cost is closer to one half of one percent: w(0.14) = 0.476.

These values are for the model without a time trend (Case III in the PSS taxonomy), given

the insignificance of a time trend term, but are little affected by the inclusion of a time

trend (PSS Case IV).

To be sure, these estimates are sensitive to plausible variations on the model and ag-

gregate. Consider the seemingly minor variation of the semi-log model, retaining M2 as

the aggregate (Table 16). At r = 0.03 the welfare cost is estimated to be 0.197 percent of

income, while r = 0.14 yields w(0.14) = 2.729 percent.

In fact, for r = 0.14 these values w(r) = 0.476 and w(r) = 2.729 yielded by the log-

linear and semi-log models, respectively, encompass the full range of cost estimates across

the models and aggregates, even implausible ones where the homogeneity restrictions are

rejected or the PSS tests are not particularly supportive of cointegration. Hence, even at

the highest interest rates that the U.S. has ever experienced, the most extreme estimate of

welfare cost is less than three percent of income. This is large—three percent of income is a

lot—but not entirely implausible. And the estimate yielded by the model that the data most

strongly support, loglinear money demand based on M2, is the much lower w(0.14) = 0.476.

At the other end of the spectrum of historical interest rates, r = 0.03, the full variation

of cost estimates w(0.03) is in the range 0.112–0.784, or less than one percent of income.

Having considered these variations in the welfare cost estimates, it is evident that the

estimates w(0.03) = 0.112 and w(0.14) = 0.476 yielded by the benchmark model, loglinear

money demand based on M2, are at the bottom end of the ranges for those interest rates.

Comparing Table 13 with the other tables, this turns out to be true for all of the illustrative

interest rates used.

That is, the model that the data most strongly support yields fairly conservative welfare

cost estimates at all levels of historical interest rates, relative to my other estimates. How-

ever these estimates are not necessarily conservative relative to the broader literature. Table
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20 collects my welfare cost estimates for the models based on M2 (from Tables 13, 16, and

19) and compares them with prominent contributions from the literature. My benchmark

estimates are lower than Lucas’s (2000) for his loglinear model, but not relative to Ireland’s

(2009) based on a semi-log model. Both used M1. More recently, BLNW (2017, p. 26) use

NewM1, 1915–2016, and find “. . . welfare losses at the average short rate that has prevailed

over the sample period . . . equal to 0.21 per cent for the Selden-Latané specification, and

0.18 for the other two.”

In conclusion, at interest rates (and the embedded expectations of inflation they reflect)

that the U.S. has experienced over the past century, my benchmark results based on loglinear

money demand predict welfare costs in the range of one-tenth to one-half of one percent

of income. This is remarkably similar to BLNW’s (2017, p. 26) median of 0.18 percent

from a loglinear model. In the context of the broader literature, my estimates are roughly

middle-of-the-road.

6 Structural Change

The century of data over which these models are estimated saw momentous events, most

obviously World War I followed by the Spanish flu epidemic, the Great Depression, World

War II, the 1951 Treasury-Fed accord, the inflation and high nominal interest rates of

the 1970s and ’80s, and—following a prematurely-named “great moderation”—the housing

bubble, financial crisis, and great recession of the new century. It might seem implausible

that models as simple as these can adequately describe the dynamics of money and prices

over the full course of this historical tumult.

There are several approaches to investigating possible structural change, including well-

known ones dating back many years. However arguably the most systematic and com-

prehensive is the indicator saturation (IS) methodology developed by David Hendry and

collaborators as an application of general-to-specific (GETS) specification testing. This per-

mits the testing of indicator variables (i.e. dummy shifts) at each observation of the sample

by using block estimation and general-to-specific algorithms. The distributional results for

impulse indicators were originally worked out by Hendry, Johansen, and Santos (2008) and

later extended to step and trend indicators by Castle, Doornik, Hendry, and Pretis (2015).6

Given that the IS methodology is just one of numerous approaches to studying struc-

tural change, and itself depends on various choices of implementation settings, how best
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to introduce structural change across the full range of my aggregates and money demand

specifications could be debated almost endlessly. Rather than attempt such a comprehen-

sive treatment, which is probably illusory in any event, it seems more useful to concentrate

on the sensitivity of the findings for my preferred model, the ADL(1,4,0,3) for loglinear M2.

Table 21 reports the results of applying the IS methodology to this model, and so should be

compared with the earlier Tables 4 and 13. Given the universal finding, across the models

and aggregates of Tables 2–10, of the absence of a time trend in the equilibrium error (i.e.

µ = 0), Table 21 focuses on impulse and step indicators (as opposed to trend indicators).

Under default settings the GETS algorithm yields dates of structural change that are

highly intuitive, as shown in the first column of Table 21. Following World War I there was,

ceteris paribus, an upward shift in prices in 1920 followed by an almost exactly offsetting

shift the next year. The Great Depression saw a negative shift in prices in 1931 that was

more than offset in 1933. And, in the post-World War II transition to a peacetime economy,

there was an upward shift in prices in 1946 that was offset in 1948. That these shifts tend

to appear in offsetting pairs is consistent with the notion that in the long run the price

level is determined, not by the specifics of discrete historical events, however momentous,

but by their long run equilibrium relationship with the money supply as governed by the

QTM. Furthermore the pattern is robust to the imposition of the homogeneity restrictions

(second column of Table 21).

Even allowing for these structural shifts, the results for the model without homogeneity

imposed (first column of Table 21) are qualitatively similar to the earlier Table 4: dynamics

are convergent, the homogeneity restrictions are compatible with the data, and the interest

elasticity of money demand is strongly statistically significant. The main difference is that

this interest sensitivity is greater than before (−η = −0.1295 instead of the earlier −0.0693

of Table 4), even more so when the homogeneity restrictions are imposed (−η = −0.1572

instead of the earlier −0.0602 of Table 13).

Given that the welfare cost of inflation works through the interest elasticity, the result is

larger welfare costs w(r). Whereas previously (in Tables 13 and 20) these range between

w(0.03) = 0.112 and w(0.14) = 0.476 percent of income, now (in the second column of

Table 21) the range is 0.362–1.326 percent, about three times as high. This puts the welfare

costs closer to those of the other models summarized in Table 20 and suggests that, once

structural change is taken into account, the BLNW (2017, p. 26) median value of 0.18
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percent may be an underestimate.

7 Summary and Conclusions

The analysis of this paper is simple. Being a theory of price level determination, the QTM

has just a single endogenous variable. It can therefore be studied with the simplest of

dynamic time series econometric tools, a single-equation ADL/ECM in which the quantity

theory specifies the equilibrium error. Because the QTM is a theory of price level determi-

nation in the long run, I have estimated the model with annual data over the past century.

The use of annual data means that dynamics are adequately treated with fairly short lag

lengths, so that the model can be modestly parameterized relative to the data. There is

therefore some hope of obtaining useful inferences about the parameters.

I have used standard money demand specifications and three monetary aggregates: M1,

NewM1, and M2. In principle the quantity theory is not inherently linked to cointegration;

the QTM is a theory of the price level even if all series vary in a manner that is stationary.

But in practice, in most countries and time periods, money and prices trend, as does

national income; this is certainly so for the U.S. since the demise of the international gold

standard following World War I. If this nonstationarity is integrated, as tests suggest, the

quantity theory translates into the prediction of cointegration between these variables. For

the purpose of studying this prediction, the single equation ADL/ECM framework makes

available the bounds testing methodology of PSS. The great advantage of PSS tests is that

they are robust to the integration properties of the variables, most importantly the interest

rate, the fourth variable that must enter into any specification of the QTM. Whereas the

treatment of money, prices, and income as integrated processes is compelling, interest rates

are a more open question. Over shorter sample periods their time series properties may

well be best approximated as integrated; but in the long run—which is what the QTM is

all about—casual observation indicates that they exhibit mean reversion.

PSS tests yield credible rejections of the null of the absence of an equilibrium relationship,

for various combinations of aggregates and money demand specifications. Hence there is

much in these results that is supportive of the QTM. The evidence is strongest for loglinear

money demand (that is, where the interest rate appears as log rt) based on M1 or M2.

Following Bailey (1956), a classic application of estimated money demand parameters is

to the welfare cost of inflation. Lucas (2000) derived simple formulas for this welfare cost for
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loglinear and semi-log money demand; BLNW (2017) provide an analogous formula for the

Selden-Latané functional form. These formulas require that the quantity theory satisfies the

homogeneity restrictions, which are merely the requirements that the price level be related

to both the money stock and income by unitary elasticities. There is no particular reason

to believe that these restrictions should hold in the short run, because the QTM is unlikely

to explain the short term dynamics of the variables. But it is entirely plausible that they

should hold in the long run, being nothing more than the classic propositions that, ceteris

paribus, a doubling of the quantity of money in circulation doubles the price level, or a

doubling of economic activity halves the price level.

Inevitably, the extent to which these classic propositions are actually manifested in the

data will depend on the definition of the monetary aggregate. The literature (e.g. Lucas

(2000), Ireland (2009)) has tended to adopt the homogeneity restrictions as a maintained

hypothesis and use M1, although BLNW (2017, 2021) use the aggregate NewM1 advocated

by Lucas and Nicolini (2015). Indeed, it is perhaps not too much of a caricature to say

that Lucas and Nicolini’s contribution was to design a monetary aggregate that has a sta-

ble contemporaneous long run relationship with velocity, hence satisfying the homogeneity

restrictions—although they did not test those restrictions inferentially.

In contrast I find that, regardless of the form of the money demand function, the ho-

mogeneity restrictions are always rejected jointly (although not always individually) for

M1 and NewM1 (Tables 2, 3, 5, 6, 8, 9). Yet they are never rejected (either individually

or jointly) for M2 (Tables 4, 7, 10). This suggests that M2 is the preferred aggregate for

implementing Lucas’s welfare cost formulas.

Loglinear money demand based on M2 exhibits the appealing combination of cointegra-

tion, non-rejection of the homogeneity restrictions, and a statistically significant interest

elasticity. With structural shifts treated by indicator saturation, this benchmark model

yields welfare costs in the range of 0.362–1.326 percent of income over the interest rates

that have prevailed in the past century.

The simplicity of this analysis belies other recent approaches to these issues. BLNW

(2017, 2021) adopt the homogeneity restrictions as a maintained hypothesis and interpret

the QTM as predicting cointegration between velocity and the interest rate. This in turn

requires that velocity and interest rates be, in their univariate behavior, integrated pro-

cesses. In contrast, I have argued that nothing in the quantity theory requires or implies
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that velocity or interest rates be individually integrated, or cointegrated in their joint be-

havior. Indeed, if (the log of) velocity is I(1) when interest rates are stationary, this would

imply non-cointegration of money, prices, and income, the opposite of the quantity theory.

Perhaps the defining feature of a simple analysis is that it can potentially be complicated

in myriad ways. In the present case, many possible elaborations and extensions are possible.

Some have already been noted, such as a more extensive investigation of structural change

across models and aggregates, or the possibility of embedding the quantity theory in a multi-

equation model with a larger set of endogenous variables that studies a more comprehensive

set of classical propositions, in the spirit of Fisher and Seater (1993). The point of the

present analysis is not that these extensions would be uninteresting—far from it—but that

the quantity theory emerges so clearly from a simple empirical model that largely abstracts

from them.
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Appendix

The Source of the Time Trend in the Equilibrium Error

A time trend in the equilibrium error can arise when components are either trend stationary

and/or integrated with drifts. The possibilities can be illustrated with two examples based

on the quantity theory.

An Example

Consider the four variables of the quantity theory, pt, mt, yt, and rt. Suppose that the first

three are I(1) and cointegrated. Univariate I(1) behavior means that each of pt, mt, and yt

evolves as

∆pt = µp + upt ⇔ pt = µpt+ vpt (15a)

∆mt = µm + umt ⇔ mt = µmt+ vmt (15b)

∆yt = µy + uyt ⇔ yt = µyt+ vyt. (15c)

The left hand side expressions state these processes in their conventional I(1) form, where

the µi are the drifts and the uit are stationary disturbances. Given that pt, mt, and yt are

defined to be in log form, the drifts µi are their steady state growth rates: E(∆pt) = µp is

the steady state inflation rate, E(∆mt) = µm the steady state money supply growth rate,

and E(∆yt) = µy the steady state growth rate of real GDP. The right hand side expressions

of (15) restate these I(1) specifications in their “accumulated” forms as I(1) disturbances

vit =
∑∞

j=0 ui,t−j superimposed on linear trends in which the drifts µi appear as slope

coefficients. (That is, any drifting I(1) variable can always be re-stated as a zero-mean I(1)

disturbance superimposed on a linear trend. By the Beveridge-Nelson decomposition, these

I(1) disturbances are each the total of a random walk stochastic trend and a transitory

component. The I(1) variable as a whole is therefore the total of a deterministic trend, a

stochastic trend, and stationary transitory variation.)

Cointegration between pt, mt, and yt means that a linear combination of the I(1) dis-

turbances vit is stationary, so that they share a common stochastic trend. Denoting the
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normalized cointegrating vector by [1, λm, λy], this linear combination is

vpt + λmvmt + λyvyt = pt − µpt+ λm(mt − µmt) + λy(yt − µyt)

= pt + λmmt + λyyt − (µp + λmµm + λyµy)t (16)

∼ stationary.

This linear combination is stationary because the time trend term cancels with the drifts

embedded within the observables pt, mt, and yt. Hence a cointegrating relationship can

include a time trend: in the long run variables can evolve together stochastically via their

common stochastic trend(s), yet move apart deterministically.

Turning to the fourth variable of the quantity theory, the interest rate rt, suppose that,

unlike the others, it is stationary and that the reciprocal-of-velocity k(rt) evolves according

to

log k(rt) = β + µkt− ξrt + ukt,

where ukt denotes a stationary disturbance so that log k(rt) is trend stationary. The time

trend term µkt might be due to, say, technical change in the banking system.

Consider introducing this as an additional term into the linear combination (16).

pt + λmmt + λyyt − (µp + λmµm + λyµy)t+ log k(rt)

= pt + λmmt + λyyt − (µp + λmµm + λyµy)t+ β + µkt− ξrt + ukt

In view of the assumed stationarity of rt, ukt, and (16), the following linear combination

must be trend stationary.

{pt + λmmt + λyyt − (µp + λmµm + λyµy)t}+ β + µkt− ξrt ∼ trend stationary (17)

This is the equilibrium error (12) in which µ = −(µp + λmµm + λyµy) + µk. Whereas the

expression in braces is a cointegrating relationship (between pt, mt, and yt), the expression

as a whole is not, because it is nonstationary. However this nonstationarity is of a partic-

ular form—trend stationarity. The expression (17) as a whole therefore constitutes, not a

cointegrating relationship, but nevertheless an equilibrium relationship between the levels

of the four variables.

In some special cases this equilibrium relationship may not include a time trend. Suppose

that velocity is stationary, so µk = 0, perhaps because there has been no technical change
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in the banking system. Then the time trend as a whole disappears from the equilibrium

relationship if

µp + λmµm + λyµy = 0. (18)

Recall that the µi are steady state growth rates of prices, money, and income. The restriction

(18) therefore holds if these growth rates are related by

E(∆pt) + λm E(∆mt) + λy E(∆yt) = 0. (19)

To illustrate with one circumstance in which this could be true, consider the situation in

which money demand (2) is homogenous of degree one in nominal transactions, so that the

homogeneity restrictions hold: −λm = λy = 1. Then (19) reduces to

E(∆pt)− E(∆mt) + E(∆yt) = 0,

so the drifts are related by

µp = µm − µy. (20)

This is the familiar textbook equality that, in the long run, the inflation rate equals the

growth rate of the money stock less the growth rate in real economic activity. In the further

special case of a stagnant economy, µy = 0, the inflation rate equals the money supply

growth rate.

This example is of the case in which the variables pt, mt, and yt are assumed to be I(1)

and cointegrated while rt is stationary and log k(rt) is trend stationary. It shows that a time

trend in the equilibrium error can arise from either or both of two sources: a cointegating

relationship in which the drifts do not cancel, or a trend stationary component.

A Second Example

While the presence of a trend stationary component in the equilibrium error—in the above

example, log k(rt)—is sufficient for a trend term to appear, it is not necessary. To emphasize

this, consider the possibility that BLNW are correct and that velocity and the interest rate

are best treated as I(1). Like the other variables in (15), log k(rt) has an I(1) specification:

∆ log k(rt) = µk + ukt ⇔ log k(rt) = µkt+ vkt.

As before, ukt is a stationary disturbance while its accumulation vkt is a zero-mean I(1)

disturbance.

34



Generalizing from the previous cointegrating relationship (16), the cointegrating relation-

ship among the four variables of the quantity theory is now of the form

vpt + λmvmt + λyvyt + λkvkt = pt − µpt+ λm(mt − µmt) + λy(yt − µyt) + λk(log k(rt)− µkt)

= pt + λmmt + λyyt + λk log k(rt)− (µp + λmµm + λyµy + λkµk)t

∼ stationary

where [1, λm, λy, λk] is the cointegrating vector. In the case of, say, a semi-log money

demand specification λk log k(rt) = β − ξrt, this is the equilibrium error (12) in which

µ = −(µp + µmλm + µyλy + µkλk):

pt + λmmt + λyyt + β − ξrt − (µp + λmµm + λyµy + λkµk)t. (21)

The cointegrating vector is reinterpreted as [1, λm, λy,−ξ]. Hence the trend term in this

equilibrium error arises, not from any trend stationary component within the quantity

theory, but entirely from the nonzero drifts of the variables.

Depending on these drifts, once again the trend term may disappear from the equilibrium

error, namely when µp + λmµm + λyµy + λkµk = 0 and, as a generalization of (19), the

steady state growth rates are related by

E(∆pt) + λm E(∆mt) + λy E(∆yt) + λk E(∆ log k(rt)) = 0. (22)

One circumstance in which this could be true is if the homogeneity restrictions −λm = λy =

1 hold, in which case the condition simplifies to

E(∆pt)− E(∆mt) + E(∆yt) + λk E(∆ log k(rt)) = 0,

so the drifts are related by

µp = µm − µy + λkµk. (23)

So, as a generalization of the simpler relationship (20), now the long run inflation rate

depends on money supply growth less the growth in real economic activity, plus a term

related to growth in velocity. If this holds joint with the homogeneity restrictions then the

time trend term disappears from the equilibrium error (21).

The velocity term depends on the specification of λk log k(rt). In the case of semi-log

money demand, λk log k(rt) = β − ξrt, we have λk∆ log k(rt) = −ξ∆rt and

E(∆pt) = E(∆mt)− E(∆yt)− ξ E(∆rt). (24)
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Steady state inflation depends on money growth, income growth, and the interest rate drift

modified by the interest semi-elasticity.

Consider the further special case in which rt, although I(1), has zero drift. Then E(∆rt) =

0 and the steady state relationship (24) reduces to the textbook special case (20) in which

the inflation rate is determined by the extent to which money growth exceeds growth in

real economic activity.

Like the first example, this one has been illustrated with a semi-log money demand

specification, but clearly the substance does not hinge on that choice. Under the alternative

of loglinear money demand, in the equilibrium error (17) −η log rt would replace −ξrt, while

in (24) −η∆ log rt would replace −ξ∆rt.

Conclusions

We have considered two examples of how a time trend can arise within the equilibrium error

of the ECM, and the special cases in which it will disappear.

My preferred conception of the world is rather like the first example, where velocity and

the interest rate are each stationary, and the cointegrating relationship is between pt, mt,

and yt. With respect to the time trend in the equilibrium error, both conditions for its

omission are plausibly satisfied in the long run. First, in line with Cochrane’s logic, the

interest rate does not trend, so µ = 0. And second, the homogeneity restrictions hold and

the steady state growth rates of money, prices, and income satisfy the textbook equality

(20).

BLNW’s conception of the world is more like the second example, where velocity and the

interest rate are each I(1) and the cointegrating relationship is between them, not between

pt, mt, and yt. If a time trend disappears from the cointegrating relationship, it is because

the relationship (22) holds, perhaps because the homogeneity restrictions are satisfied and

(23) obtains.

In either example, the conditions under which the time trend will disappear are unlikely

to hold in the short or even medium term. They may, however, plausibly hold in the long

run to which the QTM is intended to apply. In such applications, it would therefore not be

too surprising to find that a time trend in the equilibrium error is statistically insignificant,

as indeed is the case in my findings across all models and aggregates.
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Notes
1Another example of recent work that uses these three money demand specifications is

Benati (2020).
2If the model includes a time trend but the time trend is not part of the equilibrium

error, so that the hypothesis of an absence of the levels from the model does not include
the restriction κ = 0, then the t-statistic can be bounded. This is Case V (PSS 2001,
Corollaries 3.3 and 3.4). However this would not appear to be the relevant specification in
the quantity theory application where, if a time trend exists in the model, it arises from
within the equilibrium levels relationship. In the empirical application that they used to
illustrate their methodology, PSS similarly reasoned that “. . . the statistic FIV which sets
the trend coefficient to zero under the null hypothesis of no level relationship, Case IV . . . ,
is more appropriate than FV , Case V . . . , which ignores this constraint.” In my application
to the QTM the distinction between Cases IV and V not of great significance given that,
across all models and aggregates, µ = 0 is not rejected. This suggests that a time trend
does not belong in the model, whether within the equilibrium error or outside it. Hence my
emphasis on Case III as, in my application, the empirically relevant one.

3The Federal Reserve Economic Data acronyms are M1SL and M2SL, which are season-
ally adjusted monthly series. I follow BLNW in using the December 1 value as the annual
value.

4Alternatives for the short term interest rate are the three month commercial paper rate
(used, for example, by Ireland (2009)) or the “consistent series for the short-term interst
rate for ordinary funds” from www.measuringworth.com. However in my exploratory work I
found the substantive results to be insensitive to the interest rate choice.

5The only case in which the estimation of these restricted models turned out to be
problematic was for the loglinear model based on M1 (Table 11). For the version of this
model that omits a time trend (Case III in the PSS taxonomy), the restrictions −λm =
λy = 1 are so strongly rejected by the data (Table 2) that attempting to impose them yields
estimates of the remaining parameters that are imprecise to the point of being meaningless.
This finding was insensitive to exploratory variations on the lag lengths.

6The IS methodology is implemented and comprehensively documented in the R package
gets (for “general-to-specific” testing). It is also implemented in EViews version 12, from
which the results of Table 21 are obtained. Useful guides to the application of the method-
ology, with reference to the R implementation, are given by Pretis, Reade, and Sucarrat
(2018) and Sucarrat (2020).
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Figure 1: The Aggregates of the Quantity Theory
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Table 1: Univariate Unit Root Tests

ADF tests (p -values)a KPSS test statisticsb

Variable constant constant+trend constantc constant+trendd

log GDP deflator, pt 0.988 0.191 5.880∗∗∗ 0.284∗∗∗

log real GDP, yt 0.760 0.177 0.841∗∗∗ 0.133∗

interest rate, rt 0.411 0.753 0.132 0.101
log rt 0.509 0.824 0.110 0.109

Money stock, mt:
log M1 0.976 0.131 3.845∗∗∗ 0.314∗∗∗

log NewM1 0.995 0.394 1.050∗∗∗ 0.211∗∗

log M2 0.969 0.272 2.109∗∗∗ 0.224∗∗∗

Velocity, Vt = PtYt/Mt:
V1 0.637 0.691 0.418∗ 0.338∗∗∗

NewV1 0.643 0.945 0.265 0.398∗∗∗

V2 0.088 0.155 0.318 0.130∗

Log velocity e, log kt = − log Vt:
log K1 0.731 0.787 0.457∗ 0.363∗∗∗

log NewK1 0.771 0.981 0.436∗ 1.039∗∗∗

log K2 0.173 0.262 0.312 0.124∗

a ADF tests use two augmenting lags, which was typically the preferred lag length selected by
Schwarz’s Bayesian information criterion.

b KPSS tests use a Bartlett kernel with an Andrews-selected bandwidth.
c Critical values are 0.347 (10%), 0.463 (5%), 0.739 (1%).
d Critical values are 0.119 (10%), 0.146 (5%), 0.216 (1%).
e Tests are invariant to the negative sign relating log kt and log Vt.
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Table 2: ADL/ECM for M1 under Loglinear Money Demand

ADL/ECM(·, ·, ·, ·)

(2,4,2,1) (2,4,0,3)
Equilibrium error: Case III Case IV

pt + λmmt + λyyt + α− η log rt + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 + φ2 − 1 −0.0554 −0.0821

(0.0167) (0.0216)
interest elasticityb, −η −0.1438 −0.1749

(0.0506) (0.0399)
time trend, µ −0.0260

(0.0185)
transactions elasticity, λy −0.5693 0.4967

(0.6359) (0.5834)
−λm 0.2704 0.4554

(0.4036) (0.2431)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.071 0.025
(2) Unitary income elasticity: λy = 1 0.014 0.388
(3) y and −m share common coefficient: −λm = λy 0.000 0.937
(4) Given (3), common coefficient is 1 0.006 0.025
(5) Joint test of (2) and (3): −λm = λy = 1 0.000 0.081

Autoregressive coefficients of ADL parameterization:c

φ1 1.0821 1.0831
(0.0922) (0.0955)

φ2 −0.1375 −0.1651
(0.0876) (0.0904)

LM test for residual autocorrelationd (p -value) 0.597 0.815
PSS tests of null of no levels relationship:
F statistic 6.5938e 5.8853f

t statistic −3.3077g

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0.
b For comparison, the Baumol-Tobin square-root rule for money holding predicts an interest

elasticity of −0.5.
c The dynamic stability conditions φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1 are satisfied.
d Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of

absence of residual autocorrelation) are generally robust to variations on the lag length.
e 10% critical values for PSS Case III are: 2.72 if all variables are I(0), 3.77 if all variables

are I(1). (PSS Table CI(iii).)
f 10% critical values for PSS Case IV are: 2.97 if all variables are I(0), 3.74 if all variables

are I(1). (PSS Table CI(iv).)
g 10% critical values are PSS Case III: −2.57 if all variables are I(0), −3.46 if all variables

are I(1). (PSS Table CII(iii).)
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Table 3: ADL/ECM for NewM1 under Loglinear Money Demand

ADL/ECM(2,1,0,0)

Equilibrium error: Case III Case IV
pt + λmmt + λyyt + α− η log rt + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 + φ2 − 1 −0.0820 −0.0939

(0.0287) (0.0347)
interest elasticityb, −η −0.1282 −0.1369

(0.0365) (0.0348)
time trend, µ −0.0123

(0.0180)
transactions elasticity, λy −0.0078 0.3145

(0.3056) (0.5169)
−λm 0.4793 0.4613

(0.1662) (0.1507)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.002 0.000
(2) Unitary income elasticity: λy = 1 0.001 0.185
(3) y and −m share common coefficient: −λm = λy 0.001 0.769
(4) Given (3), common coefficient is 1 0.790 0.000
(5) Joint test of (2) and (3): −λm = λy = 1 0.003 0.002

Autoregressive coefficients of ADL parameterization:c

φ1 1.2703 1.2714
(0.0933) (0.0937)

φ2 −0.3523 −0.3652
(0.0850) (0.0878)

LM test for residual autocorrelationd (p -value) 0.786 0.725
PSS tests of null of no levels relationship:
F statistic 3.3000e 2.6971f

t statistic −2.8596g

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0.
b For comparison, the Baumol-Tobin square-root rule for money holding predicts an interest

elasticity of −0.5.
c The dynamic stability conditions φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1 are satisfied.
d Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of

absence of residual autocorrelation) are generally robust to variations on the lag length.
e 10% critical values for PSS Case III are: 2.72 if all variables are I(0), 3.77 if all variables

are I(1). (PSS Table CI(iii).)
f 10% critical values for PSS Case IV are: 2.97 if all variables are I(0), 3.74 if all variables

are I(1). (PSS Table CI(iv).)
g 10% critical values are PSS Case III: −2.57 if all variables are I(0), −3.46 if all variables

are I(1). (PSS Table CII(iii).)
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Table 4: ADL/ECM for M2 under Loglinear Money Demand

ADL/ECM(1,4,0,3)

Equilibrium error: Case III Case IV
pt + λmmt + λyyt + α− η log rt + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 − 1 −0.0899 −0.0881

(0.0250) (0.0252)
interest elasticityb, −η −0.0643 −0.0864

(0.0271) (0.0486)
time trend, µ −0.0147

(0.0251)
transactions elasticity, λy 0.6955 0.9027

(0.3700) (0.5010)
−λm 0.8515 0.7411

(0.1853) (0.2747)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.423 0.346
(2) Unitary income elasticity: λy = 1 0.410 0.846
(3) y and −m share common coefficient: −λm = λy 0.403 0.773
(4) Given (3), common coefficient is 1 0.853 0.353
(5) Joint test of (2) and (3): −λm = λy = 1 0.703 0.634

Autoregressive coefficient of ADL parameterization:
φ1 0.9101 0.9119

(0.0250) (0.0252)
LM test for residual autocorrelationc (p -value) 0.114 0.123
PSS tests of null of no levels relationship:
F statistic 6.7614d 5.4431e

t statistic −3.5976f

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0 or, equivalently, |φ1| < 1.
b For comparison, the Baumol-Tobin square-root rule for money holding predicts an interest

elasticity of −0.5.
c Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of

absence of residual autocorrelation) are generally robust to variations on the lag length.
d 10% critical values for PSS Case III are: 2.72 if all variables are I(0), 3.77 if all variables

are I(1). (PSS Table CI(iii).)
e 10% critical values for PSS Case IV are: 2.97 if all variables are I(0), 3.74 if all variables

are I(1). (PSS Table CI(iv).)
f 10% critical values are PSS Case III: −2.57 if all variables are I(0), −3.46 if all variables

are I(1). (PSS Table CII(iii).)
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Table 5: ADL/ECM for M1 under Semi-log Money Demand

ADL/ECM(1,1,2,2)

Equilibrium error: Case III Case IV
pt + λmmt + λyyt + β − ξrt + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 − 1 −0.0466 −0.0271

(0.0194) (0.0222)
interest semielasticityb, −ξ −11.7857 −12.7971

(4.3447) (7.9728)
time trend, µ 0.0920

(0.1115)
transactions elasticity, λy 0.1446 −2.1742

(0.6875) (3.1687)
−λm 0.6652 0.8824

(0.4457) (0.7729)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.452 0.879
(2) Unitary income elasticity: λy = 1 0.213 0.316
(3) y and −m share common coefficient: −λm = λy 0.037 0.333
(4) Given (3), common coefficient is 1 0.016 0.867
(5) Joint test of (2) and (3): −λm = λy = 1 0.000 0.605

Autoregressive coefficients of ADL parameterization:
φ1 0.9534 0.9729

(0.0194) (0.0222)
LM test for residual autocorrelationc (p -value) 0.167 0.262
PSS tests of null of no levels relationship:
F statistic 3.8985d 3.7966e

t statistic −2.4083f

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0 or, equivalently, |φ1| < 1.
b For comparison, Ball (2001) reports a U.S. interest semielasticity of approximately −0.05

when the T-bill rate is expressed as a percent, which translates into −ξ = −5.
c Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of

absence of residual autocorrelation) are robust to variations on the lag length.
d 10% critical values for PSS Case III are: 2.72 if all variables are I(0), 3.77 if all variables are

I(1). (PSS Table CI(iii).)
e 10% critical values for PSS Case IV are: 2.97 if all variables are I(0), 3.74 if all variables are

I(1). (PSS Table CI(iv).)
f 10% critical values are PSS Case III: −2.57 if all variables are I(0), −3.46 if all variables are

I(1). (PSS Table CII(iii).)
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Table 6: ADL/ECM for NewM1 under Semi-log Money Demand

ADL/ECM(2,1,0,1)

Equilibrium error: Case III Case IV
pt + λmmt + λyyt + β − ξrt + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 + φ2 − 1 −0.0952 −0.0935

(0.0331) (0.0340)
interest semielasticityb, −ξ −7.4449 −7.4194

(1.5486) (1.5852)
time trend, µ −0.0035

(0.0149)
transactions elasticity, λy 0.1936 0.1210

(0.2288) (0.3911)
−λm 0.5767 0.5925

(0.1233) (0.1410)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.001 0.004
(2) Unitary income elasticity: λy = 1 0.000 0.025
(3) y and −m share common coefficient: −λm = λy 0.000 0.230
(4) Given (3), common coefficient is 1 0.680 0.001
(5) Joint test of (2) and (3): −λm = λy = 1 0.002 0.003

Autoregressive coefficients of ADL parameterization:c

φ1 1.2081 1.2040
(0.0920) (0.0940)

φ2 −0.3033 −0.2976
(0.0802) (0.0840)

LM test for residual autocorrelationd (p -value) 0.607 0.593
PSS tests of null of no levels relationship:
F statistic 2.7953e 2.2251f

t statistic −2.8715g

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0.
b For comparison, Ball (2001) reports a U.S. interest semielasticity of approximately −0.05

when the T-bill rate is expressed as a percent, which translates into −ξ = −5.
c Dynamic stability requires φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1. These restrictions are

satisfied in all cases.
d Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of

absence of residual autocorrelation) are generally robust to variations on the lag length.
e 10% critical values for PSS Case III are: 2.72 if all variables are I(0), 3.77 if all variables

are I(1). (PSS Table CI(iii).)
f 10% critical values for PSS Case IV are: 2.97 if all variables are I(0), 3.74 if all variables

are I(1). (PSS Table CI(iv).)
g 10% critical values are PSS Case III: −2.57 if all variables are I(0), −3.46 if all variables

are I(1). (PSS Table CII(iii).)
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Table 7: ADL/ECM for M2 under Semi-log Money Demand

ADL/ECM(1,1,0,1)

Equilibrium error: Case III Case IV
pt + λmmt + λyyt + β − ξrt + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 − 1 −0.0686 −0.0707

(0.0289) (0.0294)
interest semielasticityb, −ξ −4.9746 −4.1873

(2.6320) (2.9044)
time trend, µ 0.0100

(0.0221)
transactions elasticity, λy 1.5901 1.4639

(0.5387) (0.5797)
−λm 1.2753 1.3584

(0.2791) (0.3386)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.324 0.290
(2) Unitary income elasticity: λy = 1 0.273 0.424
(3) y and −m share common coefficient: −λm = λy 0.230 0.838
(4) Given (3), common coefficient is 1 0.406 0.267
(5) Joint test of (2) and (3): −λm = λy = 1 0.285 0.538

Autoregressive coefficient of ADL parameterization:
φ1 0.9314 0.9293

(0.0289) (0.0294)
LM test for residual autocorrelationc (p -value) 0.114 0.114
PSS tests of null of no levels relationship:
F statistic 3.7110d 2.9831e

t statistic −2.3709f

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0 or, equivalently, |φ1| < 1.
b For comparison, Ball (2001) reports a U.S. interest semielasticity of approximately −0.05

when the T-bill rate is expressed as a percent, which translates into −ξ = −5.
c Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of

absence of residual autocorrelation) are robust to variations on the lag length.
d 10% critical values for PSS Case III are: 2.72 if all variables are I(0), 3.77 if all variables

are I(1). (PSS Table CI(iii).)
e 10% critical values for PSS Case IV are: 2.97 if all variables are I(0), 3.74 if all variables

are I(1). (PSS Table CI(iv).)
f 10% critical values are PSS Case III: −2.57 if all variables are I(0), −3.46 if all variables

are I(1). (PSS Table CII(iii).)
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Table 8: ADL/ECM for M1 under Selden-Latané Money Demand

ADL/ECM(1,1,2,2)

Equilibrium error: Case III Case IV
pt + λmmt + λyyt − log(C + δrt + µt) µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 − 1 −0.0482 −0.0283

(0.0188) (0.0143)
interest parameter, δ 1.9130 8.5669

(6.2936) (53.7848)
time trend, µ −0.0034

(0.0202)
transactions elasticity, λy 0.4602 0.9445

(0.6659) (1.2810)
−λm 0.8689 1.4113

(0.4328) (0.8760)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.762 0.639
(2) Unitary income elasticity: λy = 1 0.418 0.965
(3) y and −m share common coefficient: −λm = λy 0.089 0.303
(4) Given (3), common coefficient is 1 0.006 0.010
(5) Joint test of (2) and (3): −λm = λy = 1 0.000 0.029

Autoregressive coefficients of ADL parameterization:
φ1 0.9518 0.9717

(0.0188) (0.0143)
LM test for residual autocorrelationb (p -value) 0.223 0.270
PSS tests of null of no levels relationship:c

F statistic 21.3241 16.8004
t statistic −2.5687

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0 or, equivalently, |φ1| < 1.
b Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of

absence of residual autocorrelation) are generally robust to variations on the lag length.
c Reported for comparison with the other money demand specifications. Because the Selden-

Latané ECM is estimated nonlinearly, these test statistics may not have the distributions
tabulated by PSS.
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Table 9: ADL/ECM for NewM1 under Selden-Latané Money Demand

ADL/ECM(2,1,2,2)

Equilibrium error: Case III Case IV
pt + λmmt + λyyt − log(C + δrt + µt) µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 + φ2 − 1 −0.1056 −0.1013

(0.0390) (0.0426)
interest parameter, δ 0.5563 0.4112

(0.7227) (0.7182)
time trend, µ −0.0001

(0.0003)
transactions elasticity, λy 0.2392 0.2170

(0.2289) (0.2544)
−λm 0.5992 0.6196

(0.1247) (0.1484)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.001 0.010
(2) Unitary income elasticity: λy = 1 0.001 0.002
(3) y and −m share common coefficient: −λm = λy 0.001 0.031
(4) Given (3), common coefficient is 1 0.707 0.016
(5) Joint test of (2) and (3): −λm = λy = 1 0.003 0.007

Autoregressive coefficients of ADL parameterization:b

φ1 1.1758 1.1794
(0.0956) (0.0972)

φ2 −0.2814 −0.2807
(0.0834) (0.0837)

LM test for residual autocorrelationc (p -value) 0.410 0.346
PSS tests of null of no levels relationship:d

F statistic 14.5217 11.8452
t statistic −2.7107

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0.
b The dynamic stability conditions φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1 are satisfied.
c Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of

absence of residual autocorrelation) are generally robust to variations on the lag length.
d Reported for comparison with the other money demand specifications. Because the Selden-

Latané ECM is estimated nonlinearly, these test statistics may not have the distributions
tabulated by PSS.
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Table 10: ADL/ECM for M2 under Selden-Latané Money Demand

ADL/ECM(2,1,1,1)

Equilibrium error: Case III Case IV
pt + λmmt + λyyt − log(C + δrt + µt) µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficienta, ψ = φ1 + φ2 − 1 −0.0677 −0.0644

(0.0292) (0.0309)
interest parameter, δ 45.0618 35.1352

(118.6980) (100.1050)
time trend, µ −0.0453

(0.2126)
transactions elasticity, λy 1.3696 1.1491

(0.5189) (0.6689)
−λm 1.1669 1.2620

(0.2681) (0.5263)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.534 0.619
(2) Unitary income elasticity: λy = 1 0.476 0.531
(3) y and −m share common coefficient: −λm = λy 0.424 0.567
(4) Given (3), common coefficient is 1 0.480 0.792
(5) Joint test of (2) and (3): −λm = λy = 1 0.516 0.804

Autoregressive coefficients of ADL parameterization:b

φ1 1.1436 1.1418
(0.0882) (0.0887)

φ2 −0.2113 −0.2062
(0.0852) (0.0854)

LM test for residual autocorrelationc (p -value) 0.381 0.301
PSS tests of null of no levels relationship:d

F statistic 4.5096 4.1520
t statistic −2.3204

Notes: Standard errors are in parentheses.
a Convergence to equilibrium requires −1 < ψ < 0.
b The dynamic stability conditions φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1 are satisfied.
c Reported tests are based on 3 lags, but the test decisions (of no rejection of the null of absence

of residual autocorrelation) are generally robust to variations on the lag length.
d Reported for comparison with the other money demand specifications. Because the Selden-

Latané ECM is estimated nonlinearly, these test statistics may not have the distributions
tabulated by PSS.
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Table 11: The Welfare Cost of Inflation: M1 under Loglinear Money Demand

ADL/ECM(2,4,0,3)

Restricted equilibrium error imposes −λm = λy = 1: Case IV
pt −mt + yt + logA− η log rt + µt µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 + φ2 − 1 −0.0710

(0.0193)
interest elasticitya, −η −0.1990

(0.0417)
intercept parameterb, A 0.2076

(0.0349)
time trend, µ −0.0149

(0.0017)
Welfare cost w(r) (percent of income)

at r = 0.03 0.311
at r = 0.05 0.468
at r = 0.06 0.542
at r = 0.13 1.006
at r = 0.14 1.068

Notes: Standard errors are in parentheses. No results are reported for the no trend (µ =
0) Case III because the imposition of −λm = λy = 1 yields estimates of the remaining
parameters that are imprecise to the point of being meaningless. This finding is insensitive
to alternative lag length specifications.

a For comparison, the Baumol-Tobin square-root rule for money holding predicts an inter-
est elasticity of −0.5. Lucas (2000, Fig. 2) found that this value provided a good fit to
U.S. M1, 1900–1994, for this money demand specification.

b Obtained by nonlinear least squares estimation of the ECM. For comparison, Lucas
(2000) used the calibrated value A = 0.0488 and (in his Sections 4 and 5) a theoretical
benchmark of A = 0.05.
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Table 12: The Welfare Cost of Inflation: NewM1 under Loglinear Money
Demand

ADL/ECM(2,1,0,0)

Restricted equilibrium error imposes −λm = λy = 1: Case III Case IV
pt −mt + yt + logA− η log rt + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 + φ2 − 1 −0.0286 −0.0326

(0.0229) (0.0247)
interest elasticitya, −η −0.2883 −0.2698

(0.1412) (0.1208)
intercept parameterb, A 0.0791 0.0943

(0.0512) (0.0562)
time trend, µ −0.0019

(0.0041)
Welfare cost w(r) (percent of income)c

at r = 0.03 0.264 0.269
at r = 0.05 0.380 0.391
at r = 0.06 0.433 0.447
at r = 0.13 0.750 0.786
at r = 0.14 0.791 0.829

Notes: Standard errors are in parentheses.
a For comparison, the Baumol-Tobin square-root rule for money holding predicts an inter-

est elasticity of −0.5. Lucas (2000, Fig. 2) found that this value provided a good fit to
U.S. M1, 1900–1994, for this money demand specification.

b Obtained by nonlinear least squares estimation of the ECM. For comparison, Lucas
(2000) used the calibrated value A = 0.0488 and (in his Sections 4 and 5) a theoretical
benchmark of A = 0.05.

c For comparison BLNW (2017, p. 26) find, for US welfare costs based on NewM1 and
loglinear money demand, a median estimate of 0.18 percent.
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Table 13: The Welfare Cost of Inflation: M2 under Loglinear Money Demand

ADL/ECM(1,4,0,3)

Restricted equilibrium error imposes −λm = λy = 1: Case III Case IV
pt −mt + yt + logA− η log rt + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 − 1 −0.0969 −0.0926

(0.0216) (0.0247)
interest elasticitya, −η −0.0602 −0.0615

(0.0241) (0.0257)
intercept parameterb, A 0.4712 0.4815

(0.0455) (0.0571)
time trend, µ −0.0004

(0.0013)
Welfare cost w(r) (percent of income)

at r = 0.03 0.112 0.117
at r = 0.05 0.181 0.190
at r = 0.06 0.215 0.225
at r = 0.13 0.444 0.465
at r = 0.14 0.476 0.498

Notes: Standard errors are in parentheses.
a For comparison, the Baumol-Tobin square-root rule for money holding predicts an inter-

est elasticity of −0.5. Lucas (2000, Fig. 2) found that this value provided a good fit to
U.S. M1, 1900–1994, for this money demand specification.

b Obtained by nonlinear least squares estimation of the ECM. For comparison, Lucas
(2000) used the calibrated value A = 0.0488 and (in his Sections 4 and 5) a theoretical
benchmark of A = 0.05.
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Table 14: The Welfare Cost of Inflation: M1 under Semi-log Money Demand

ADL/ECM(1,1,2,2)

Restricted equilibrium error imposes −λm = λy = 1: Case III Case IV
pt −mt + yt + logB − ξr + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 − 1 −0.0087 −0.0409

(0.0096) (0.0208)
interest semielasticitya, −ξ −51.9204 −14.6257

(50.8506) (5.7523)
intercept parameterb, B 0.5490 0.5293

(0.5928) (0.1179)
time trend, µ −0.0114

(0.0030)
Welfare cost w(r) (percent of income)

at r = 0.03 0.488 0.261
at r = 0.05 0.774 0.603
at r = 0.06 0.864 0.794
at r = 0.13 1.048 2.051
at r = 0.14 1.051 2.196

Notes: Standard errors are in parentheses.
a For comparison, Lucas (2000, Fig. 3) found that the value ξ = 7 provided a good fit to

U.S. money demand data, 1900–1994.
b Obtained by nonlinear least squares estimation of the ECM. For comparison, Lucas (2000)

calibrates B to a value of 0.3548.
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Table 15: The Welfare Cost of Inflation: NewM1 under Semi-log Money De-
mand

ADL/ECM(2,1,0,1)

Restricted equilibrium error imposes −λm = λy = 1: Case III Case IV
pt −mt + yt + logB − ξr + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 + φ2 − 1 −0.0328 −0.0334

(0.0249) (0.0255)
interest semielasticitya, −ξ −13.5577 −13.3747

(5.3480) (5.3870)
intercept parameterb, B 0.3965 0.4034

(0.0813) (0.1007)
time trend, µ −0.0005

(0.0037)
Welfare cost w(r)c(percent of income)

at r = 0.03 0.185 0.187
at r = 0.05 0.433 0.437
at r = 0.06 0.573 0.579
at r = 0.13 1.538 1.565
at r = 0.14 1.654 1.684

Notes: Standard errors are in parentheses.
a In comparison, Lucas (2000, Fig. 3) found that the value ξ = 7 provided a good fit to U.S.

money demand data, 1900–1994.
b Obtained by nonlinear least squares estimation of the ECM. For comparison, Lucas (2000)

calibrates B to a value of 0.3548.
c In comparison BLNW (2017, p. 26) find, for US welfare costs based on NewM1 and semi-log

money demand, a median estimate of 0.18 percent.
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Table 16: The Welfare Cost of Inflation: M2 under Semi-log Money Demand

ADL/ECM(1,1,0,1)

Restricted equilibrium error imposes −λm = λy = 1: Case III Case IV
pt −mt + yt + logB − ξr + µt µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 − 1 −0.0515 −0.0660

(0.0248) (0.0290)
interest semielasticitya, −ξ −6.4891 −5.4388

(3.9083) (2.8746)
intercept parameterb, B 0.7679 0.6513

(0.1627) (0.1183)
time trend, µ 0.0020

(0.0018)
Welfare cost w(r) (percent of income)

at r = 0.03 0.197 0.143
at r = 0.05 0.503 0.370
at r = 0.06 0.695 0.514
at r = 0.13 2.449 1.895
at r = 0.14 2.729 2.125

Notes: Standard errors are in parentheses.
a For comparison, Lucas (2000, Fig. 3) found that the value ξ = 7 provided a good fit to

U.S. money demand data, 1900–1994.
b Obtained by nonlinear least squares estimation of the ECM. For comparison, Lucas

(2000) calibrates B to a value of 0.3548.
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Table 17: The Welfare Cost of Inflation: M1 under Selden-Latané Money Demand

ADL/ECM(1,1,2,2)

Restricted equilibrium error imposes −λm = λy = 1: Case III Case IV
pt −mt + yt − log(C + δrt + µt) µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 − 1 −0.0115 −0.0112

(0.0064) (0.0066)
interest parameter, δ 345.5170 355.8270

(241.8990) (268.3860)
intercept parametera, C 0.2677 0.3650

(0.8875) (1.2539)
time trend, µ −0.0018

(0.0122)
Welfare cost w(r) (percent of income)

at r = 0.03 0.784 0.686
at r = 0.05 0.926 0.823
at r = 0.06 0.977 0.872
at r = 0.13 1.197 1.084
at r = 0.14 1.218 1.105

Notes: Standard errors are in parentheses.
a Obtained by nonlinear least squares estimation of the ECM.
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Table 18: The Welfare Cost of Inflation: NewM1 under Selden-Latané Money
Demand

ADL/ECM(2,1,2,2)

Restricted equilibrium error imposes −λm = λy = 1: Case III Case IV
pt −mt + yt − log(C + δrt + µt) µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 + φ2 − 1 −0.0342 −0.0293

(0.0295) (0.0293)
interest parameter, δ 58.6959 63.9576

(26.9121) (35.4307)
intercept parametera, C 2.2659 2.4874

(0.5893) (0.9836)
time trend, µ −0.0058

(0.0153)
Welfare cost w(r)b (percent of income)

at r = 0.03 0.235 0.213
at r = 0.05 0.454 0.413
at r = 0.06 0.561 0.511
at r = 0.13 1.198 1.093
at r = 0.14 1.274 1.162

Notes: Standard errors are in parentheses.
a Obtained by nonlinear least squares estimation of the ECM.
b In comparison BLNW (2017, p. 26) find, for US welfare costs based on NewM1, “. . . median

estimates equal to 0.21 per cent for the Selden-Latané specification . . . ”
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Table 19: The Welfare Cost of Inflation: M2 under Selden-Latané Money
Demand

ADL/ECM(2,1,1,1)

Restricted equilibrium error imposes −λm = λy = 1: Case III Case IV
pt −mt + yt − log(C + δrt + µt) µ = 0 µ 6= 0

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 + φ2 − 1 −0.0537 −0.0641

(0.0245) (0.0284)
interest parameter, δ 7.1668 6.6609

(4.9685) (4.1593)
intercept parametera, C 1.4195 1.6001

(0.2524) (0.2797)
time trend, µ −0.0026

(0.0029)
Welfare cost w(r) (percent of income)

at r = 0.03 0.132 0.100
at r = 0.05 0.328 0.252
at r = 0.06 0.448 0.347
at r = 0.13 1.512 1.222
at r = 0.14 1.682 1.366

Notes: Standard errors are in parentheses.
a Obtained by nonlinear least squares estimation of the ECM.
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Table 21: Structural Change: M2 under Loglinear Money Demand

Homogeneity restrictions
−λm = λy = 1

Equilibrium error:
pt + λmmt + λyyt + logA− η log rt under test imposed

Parameters of the error correction term:
speed-of-adjustment coefficient, ψ = φ1 − 1 −0.0702 −0.0541

(0.0261) (0.0226)
interest elasticity, −η −0.1295 −0.1572

(0.0467) (0.0650)
intercept parameter, A 0.3728

(0.0577)
transactions elasticity, λy 0.6957 1

(0.3753)
−λm 0.8822 −1

(0.1837)
Wald tests of homogeneity restrictions (p -values):

(1) Unitary money elasticity: λm = −1 0.5212
(2) Unitary income elasticity: λy = 1 0.4175
(3) y and −m share common coefficient: −λm = λy 0.3380
(4) Given (3), common coefficient is 1 0.3066
(5) Joint test of (2) and (3): −λm = λy = 1 0.3259

Structural change coefficients:a

Impulse indicators
1920 0.1086 0.1032
1921 −0.1075 −0.1141

Step indicators
1931 −0.0696 −0.0666
1933 0.0993 0.1011
1946 0.0638 0.0676
1948 −0.0894 −0.0824

Welfare cost w(r) (percent of income)
at r = 0.03 0.3620
at r = 0.05 0.5568
at r = 0.06 0.6250
at r = 0.13 1.2446
at r = 0.14 1.3260

Notes: Standard errors are in parentheses.
a Impulse and step indicators found to be statistically significant using the default EViews settings

for the indicator saturation algorithm: optimally-determined chronological blocking and the
Schwarz information criterion.
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