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Abstract

We study cluster-robust inference for binary response models. Inference based on
the most commonly-used cluster-robust variance matrix estimator (CRVE) can be very
unreliable. We study several alternatives. The simplest of these involves jackknifing at
the cluster level, which does not appear to have been studied previously in this context.
We also study a linearized version of the cluster-jackknife variance matrix estimator as
well as linearized versions of the wild cluster bootstrap. The linearizations are based
on empirical scores and are computationally efficient. Throughout we use the logit
model as a leading example. Simulation results strongly favor the new methods, and
an empirical example suggests that it can be important to use them in practice.
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1 Introduction

Cluster-robust inference has been studied extensively over the past decade. A recent guide to
this literature is MacKinnon, Nielsen, and Webb (2023a). Other surveys include Cameron
and Miller (2015), MacKinnon (2019), Esarey and Menger (2019), and MacKinnon and
Webb (2020). Conley, Gongalves, and Hansen (2018) surveys a broader class of methods for
various types of dependent data. Although the literature has grown enormously, a very large
fraction of it concerns linear regression models estimated by ordinary least squares. With the
important exception of Hansen and Lee (2019), it has largely ignored nonlinear models. For
linear regression models, several different cluster-robust variance matrix estimators (CRVEs)
are available, along with a number of bootstrap methods. The finite-sample properties of
these methods can vary greatly, and quite a lot is known about most of them. However,
there exist almost no comparable results for nonlinear models.

In order to study the finite-sample properties of methods for cluster-robust inference,
it is essential to focus on a particular class of nonlinear model. It is natural to start with
binary response models, such as the logit and probit models, because they are widely used
with the sort of cross-section and panel datasets where cluster-robust inference is needed.
For ease of exposition, we focus on the logit (or logistic regression) model, because it involves
particularly simple expressions for the scores and the information matrix.

As we show in Section 8, the only existing CRVE for logit models that is widely used
can have poor finite-sample properties. We therefore propose several alternative procedures
based on the cluster jackknife or the wild cluster bootstrap. The first cluster-jackknife proce-
dures that we introduce are similar to the ones for linear models discussed in Hansen (2023)
and MacKinnon, Nielsen, and Webb (2023¢,b), but they are more challenging computation-
ally because nonlinear estimation is needed. We therefore introduce computationally simpler
procedures based on score vectors at the cluster level. These procedures, which appear to
be new, involve linearizing the first-order conditions so as to compute approximations to
the delete-one-cluster estimates needed for the jackknife. The linearized cluster jackknife
estimators appear to be feasible for large samples with either few large clusters or many
small ones.

The same linearization methods make it possible to apply what is essentially the wild clus-
ter bootstrap (Cameron, Gelbach, and Miller, 2008; Djogbenou, MacKinnon, and Nielsen,
2019) to binary response models. We propose several new wild bootstrap methods which
can be computed using almost the same code as similar wild cluster bootstrap methods for
OLS regression. The methods that seem to work best in many cases are very similar to the
WCR-S and WCU-S bootstraps proposed in MacKinnon et al. (2023b); see Section 5.



In Section 2, we introduce the class of binary response models to which our procedures
apply, focusing on the logit model. Then, in Section 3, we discuss sandwich CRVEs for
models with G clusters, which are special cases of the ones discussed in Hansen and Lee
(2019). In Section 4, we discuss two CRVEs based on the cluster jackknife, in which each
cluster in turn is deleted from the sample so as to obtain G vectors of parameter estimates.
Although the cluster jackknife is not new, it does not seem to have been studied in this
context. Then, in Section 5, we discuss a linearization of the logit model based on Davidson
and MacKinnon (1984) and show how it can be used as the key part of computationally
efficient jackknife and wild bootstrap procedures, which appear to be new.

In Section 6, we discuss how to deal with cluster fixed effects. These are very commonly
encountered in models with clustered data, and all the jackknife methods need to be modified
to handle them. The paper mainly focuses on hypothesis tests, but Section 7 discusses
confidence intervals, where computational issues are important. Section 8 presents the results
of a large number of simulation experiments. Section 9 discusses two empirical examples

which illustrate the application of our proposed methods. Finally, Section 10 concludes.

2 Binary Response Models
We are concerned with binary response models of the form
PgZ:Pr(ng:HXgl):F(Xgl,@), gzl,...,G, izl,...,Ng. (1)

Here y,; is the response for observation ¢ in cluster g, which equals either 0 or 1. There are
N observations, with the g cluster containing N, of them. The continuous, monotonically
increasing function F(-) maps from the real line to the 0-1 interval. The best-known examples
are the logistic function and the cumulative normal distribution function. In the former case,
(1) leads to the logit model, and in the latter case to the probit model. The first derivative
of F(-) is denoted f(-). The row vector X, contains the values of k explanatory variables,
and the k-vector B is to be estimated. In many cases, one element of B is of particular
interest, and we wish to test a hypothesis about it or form a confidence interval. Without
loss of generality, we assume that this is the k" element. Then B can be divided into a
(k — 1)-vector B; and a scalar f3y.

As specified in (1), the binary response model may or may not involve any intra-cluster
correlation. That will depend on just how the y,; are obtained from the probabilities given
by F(X,B); see Section 8. For the rest of this section, we merely allow for the possibility

that intra-cluster correlation exists.



We focus on the logit model because it seems to be more widely used and is computa-

tionally simpler than the probit model. The logistic function is

1 er
A = = 2
(z) l1+e® 1+e%’ 2)
and its first derivative is .
e

For the logit model, the functions A(-) and A(-) play the role of F(-) and f(-) in (1).

For the logit and probit models, and many others, F'(—z) = 1— F(z) for any argument z.
In what follows, we assume that this is the case. Some of our results would need to be
modified if it were not. If y is an N-vector with typical element y,, the log-likelihood

function for (1) can be written as
¢ N,
= Z (ygilog F(XgiB) + (1 = ygi) log F(— X 4i3)). (4)
g: :

The first-order conditions for B are then

G Ny (ygz — F(Xgl/é)>f(ngB)ngj
3 o) :0’ .:17"'7]{;7 5
;; F(X,B)F(—X,:8) J (5)

where X,;; is the 7™ element of X ;. The score vector for the g™ cluster is

(v — F(X8)) [(XyiB)X
F(XiB)F(~X ;)

Thus the k equations in (5) can be rewritten as a single equation for the entire parameter

ﬁ>:§8m<ﬁ>, where  8:(8) = (6)

vector B, namely, § = Zngl 8, = Zngl 89(3) = 0. Of course, if the scores were assumed
to be independent within clusters, it would be more natural to write this as the summation
of the N empirical score vectors sgi(,é). But we are merely assuming independence across
clusters, with potentially arbitrary patterns of intra-cluster dependence.

Most treatments of binary response models assume that the observations are independent
or, equivalently, that each cluster contains just one observation. In that case, the asymptotic

variance matrix is readily obtained from the result that

NY2(B — o) £ (plim N~ H(8,)) ' N'/2 > si(Bo). (7)

(

where “£” denotes asymptotic equality, H (/) is the Hessian, By is the true value of 8, and



5:(Bo) is s4(Bo) for the special case in which clusters and observations coincide. This leads

to the variance matrix estimators

A, A A

Vu(B)=-H(B)™' and Viz(B)=Z(B)", (8)

where I(B) denotes the information matrix evaluated at B Asymptotically, the plim of
N~Z(B) equals minus the plim of N"'H () by the information matrix equality. For the
logit model, as we shall see in the next section, VH(B) actually equals VI(,@), but this is not
true in general.

When there is no clustering, it is not hard to show that
I(B) = XY (B)X, (9)

where Y(f8) is an N x N diagonal matrix with typical diagonal element

fXB)
(XiB)F(-XB)’

see, among many others, Davidson and MacKinnon (2004, Section 11.3).

Tz(ﬂ) = F

3 Sandwich CRVEs

The asymptotic equality (7) does not hold when there is clustering, because the rate at
which B tends to By is, in general, not N~/2; see Djogbenou et al. (2019). Nevertheless, it
is possible to make inferences based on the CRVEs

H(B)'S(B)H(B)™" and Z(B)'S(B)Z(B), (11)

where ﬁ](B) is an estimator of the expectation of the sum of the outer products of the s,(83)

with themselves; see Hansen and Lee (2019, Theorem 10). Conventional CRVEs have this

familiar sandwich form, with a matrix based on the outer product of the scores sandwiched

between two instances of something that estimates the inverse of the information matrix.
The most natural CRVE based on (11) is probably

A —_ A G A
Vi Vin(B) = 5o HB) (Z §g§gT)H(B)1- (12)
g=1

The filling in the sandwich here is the obvious estimator of E(sg(ﬁ)sg(ﬁ)T>. The degrees-
of-freedom factor is optional, but it seems reasonable to include it by analogy with the usual

CV; estimator for linear regression models. The estimator in (12) is almost the same as the

5



one used by Stata, which omits the factor of (N — 1)/(N — k). We refer to it as CVig
because it is analogous to the CV; estimator and employs the estimated Hessian.
For the model (1), the contribution to the Hessian made by the gi'® observation depends

on the value of y . Specifically,

_ f/(_XgiB)F(_Xgiﬁ) - fQ(_XgiIB)

Hy,(B) = FX.f) X Xy ify, =0, (13)
(XiB)F(Xi8) — f2( X, ,
ey = LB PPy i1

The k x k matrices with typical elements given by (13) or (14) are summed over all the
observations for which y,; equals 0 and 1, respectively, to obtain H (B)

The estimated Hessian H (B) can be replaced by its expectation. In order to take the
expectations of (13) and (14), we use the fact that E(y,) = F(X,8). Thus we multiply
(13) by F(—XyB) and (14) by F(X,8), and then add them. The first terms in each of
the two numerators cancel out, since f'(—X,,8) + f'(X,8) = 0 by the symmetry of the

function f(-). This leaves just the second terms, of which the weighted sum is

fQ(_XgiIB) fQ(XgiIB)> T
- + X, X,
(F(_ngﬁ) F(ng@) g I
When we cross-multiply and make use of the facts that F'(X,;8) + F(—X,8) = 1 and that
f(X4B) = f(—=X,iB), (15) simplifies to

_fQ(XgiIB)
F(XgiB)F(—X8)

(15)

X;Xgi, (16)

which is just —Tgi(B)X;Xgi, where Y ,;(8) was defined in (10). This leads to the CRVE

A G N-1 A AU C
CViz: Viz = C_1IN—k (X'rXx)™" (2393;) (X'rXx), (17)
g=1

where T = Y(B). The matrix that is inverted twice here is the empirical counterpart of (9).

We refer to this estimator as CViz because it uses the information matrix Z(/3) instead of
the Hessian H(8).

For most binary response models, the variance matrix estimators in (12) and (17) are
different. In the case of the logit model, however, they are numerically identical. From (10),
it is easy to see that a typical diagonal element of Y is simply Tgi = A(XgiB)A(—XgiB).
But this is also what the absolute value of each of the factors that multiply X;X gi in (13)

and (14) simplify to when they are evaluated at B . Because the Hessian appears twice in



the sandwich estimator (12), it is only the absolute value that matters. Thus, for the logit

model, CV;7 and CViy coincide. For this model, the score vectors defined in (6) simplify to

5

SQ(IB) (ygz_ ( gzﬂ)) gis :1,---7G, (18)

1

.
I

because A\(x) = A(z)A(—x). Thus the logit model is easier and somewhat cheaper to estimate
than the probit model.

4 Cluster Jackknife CRVEs

Hansen (2023) and MacKinnon et al. (2023c,b) discuss cluster-jackknife variance matrix
estimators for the linear regression model. Each cluster is deleted in turn, yielding the
vector of delete-one estimates B(g) when the ¢'" cluster is deleted. The jackknife CRVE is

_1G

CVs;: V3J - Z ,3(9) ,3) (19)

where A is the arithmetic mean of the 8. An alternative jackknife CRVE is

_1G R

CV;: Z -B)(BY BT, (20)

which differs from (19) only because it computes the variance around B instead of 3.

The notation in (19) and (20) is descended from the use of HC3 in MacKinnon and
White (1985) to denote a heteroskedasticity-consistent variance matrix estimator based on
the jackknife. Bell and McCaffrey (2002) discusses both (19) and (20), but they are computed
in a completely different way so that they have the usual sandwich form. That method
would be computationally attractive if all the /N, were very small, but it can be extremely
expensive, or even infeasible, when any of them is large (MacKinnon et al., 2023b, Section 4).
Simulation evidence in Bell and McCaffrey (2002) and MacKinnon et al. (2023b) suggests
that, for linear regression models, CV3; and CV3 tend to be extremely similar. The former
is always at least slightly smaller than the latter, however, because the variation of the B (9)
around their mean of B8 cannot exceed their variation around any other vector, including B .

It is inevitably costlier to compute CVs3; or CV3 for a binary response model than for
a linear regression model with similar numbers of parameters, clusters, and observations,
because in the former case we need to perform G + 1 nonlinear optimizations. Much of the
time, however, B should provide a good starting point for obtaining each of the B(Q). Thus

the cost of computing G + 1 sets of estimates should be less than G + 1 times as great as
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the cost of computing ,é by itself. Moreover, unless G is extremely large, computing G + 1
sets of estimates will be much cheaper than any bootstrap method that requires nonlinear
estimation for every bootstrap sample.

Another advantage of jackknife methods is that they can readily be adapted to make
inferences about smooth functions of 8. For example, if we care about § = (5/f3, we simply
need to calculate & for the entire sample and 5 for each vector of delete-one estimates and
then use the analog of (19) or (20) to calculate its jackknife variance. Bootstrap methods
also have this useful feature.

The jackknife methods we propose do, however, suffer from a potentially important com-
putational problem. Suppose there exists some linear combination of the X, say X8°,

with the property that

Ygi =0 whenever X 8° <0, and (21)
Ygi =1 whenever X,B° > 0. (22)

Then it is possible to make the value of the log-likelihood function (4), which is always
negative, arbitrarily close to 0 by setting 8 = y8°® and letting v — oo. This is precisely
what a numerical optimization routine will attempt to do, although it will normally stop
with an error message long before any element of B becomes infinitely large. In this case, the
vector X 3°, which of course is not unique, is said to be a perfect classifier, since it allows
us to predict y,; perfectly for every observation in the sample.

When there is a perfect classifier, we cannot obtain well-defined estimates of all the
parameters by maximizing (4). If this happens for the entire sample, then we either need to
drop one or more regressors, obtain additional data, or use some form of regularization. The
problem for the jackknife estimators is that, even if there are no perfect classifiers for the
entire sample, there might be a perfect classifier for one or more of the subsamples. When
this happens, the values of CV3; and CV3 may become extremely large and completely
unreliable. Thus any program to compute CVs; and CV3 needs to check whether there is a
perfect classifier when any one of the G clusters is dropped. When that happens, it should
either report that the variance matrix could not be computed or omit the offending vector(s)
of delete-one estimates and report that it has done so. In the latter case, especially if the
deleted cluster is large, CVs; is likely to be more reliable than CVs, because B for the reduced
sample may differ noticeably from B for the full sample.

It is straightforward to base inference on CVj3 or CVj;. Suppose there are r > 1 linear

restrictions. These can be written as RB = r, with R an r X k matrix and r an r-vector.



Tests of these restrictions are commonly based on the Wald statistic
W(B)=(RB—r)(RVR")"(RB — ), (23)

where V could be any of the cluster-robust variance matrix estimators defined in (12), (17),
(19), or (20). Asymptotically, as G — oo, W(B) is distributed as y2(r) under the null
hypothesis.

When there is just one restriction, the signed square root of W(3) has the form of a

t-statistic. When a' is a single row of R and r = 0, such a t-statistic can be written as

b= a' (B - By)

¢ (aTVa)l/?’ (24)

It is customary to compare this with the ¢(G — 1) distribution (Bester, Conley, and Hansen,
2011). In the very common case in which there is a single zero restriction, say that 8, = 0,

(24) reduces to B /8k, where 8, is the square root of the k™ diagonal element of V.

5 Methods Based on Linearization

Computing either CV3y or CV; requires G+1 nonlinear optimizations. However, if the 8¢ in
(19) and (20) are replaced by estimates from a linear approximation, we can obtain cluster-
jackknife CRVEs that are much cheaper to compute. The linear approximation is based on
the artificial regression for binary response models proposed in Davidson and MacKinnon
(1984), but it can be performed without explicitly using that regression. We just need the
contributions to the scores and to the information matrix made by each of the clusters. For

the logit model, the former are given in (18), and the latter are

TB) = 3 A (B)A (—B)X] X (25)

The estimates from linearizing the model around 3 are then

_1G

Z_:lsg(ﬁ) =J(B)"'s(B). (26)

b(e) ~ i 5,6))

where J(8) = Y5, = Jy,(B8). When the s,(8) and Jy(8) are evaluated at the true value
Bo, the estimate b(8y) provides a linear approximation to B — Bo. This gives us almost
everything we need to compute linearized jackknife and bootstrap tests.

To compute linear approximations to the delete-one-cluster estimates, we first estimate



the logit model by maximizing (4). Then we form the cluster-level vectors and matrices
8, = 5,(B) and J, = J,(B) using (6) and (25). The linear approximations to 8¢ — 8 when

each cluster is omitted in turn are then
b9 =(J-J,)5-5,), g=1,...,G. (27)

We can use these approximations to compute cluster-jackknife variance matrices. The one
comparable to (20) is

CVar:  Var(B) = —— > b9b (28)

Nothing is subtracted from the b here, because the OLS estimate b = b(8) from (26) is
identically zero by the first-order conditions for B. If instead we subtracted b, the arithmetic
mean of the b, we would obtain a linearized cluster-jackknife CRVE comparable to (19).
The computations in (27) and (28) used to compute CVsy, are usually far less expensive than
the ones needed to compute CV3; see Section 9.2.

The linearization given by (26) can also be used to a compute a CVyp, variance matrix
similar to the CVy matrix proposed in Bell and McCaffrey (2002) and referred to there as
“bias-reduced linearization.” These matrices are comparable to the HC, matrix of Mac-
Kinnon and White (1985). There is more than one way to compute them, only one of
which (Niccodemi et al., 2020) is feasible for large samples; see Appendix A. Because the
simulations in MacKinnon et al. (2023b) suggest that CVy very rarely performs better than
CVj (although it always performs better than CV;), we do not study CVyy, further.

It seems plausible that, except perhaps in cases where one or a few clusters are highly
influential (MacKinnon et al., 2023c), all four of the cluster-jackknife variance matrices will
yield similar inferences. We will investigate this conjecture in Section 8.

The linear approximation (26) can also be used to compute new versions of the wild
cluster bootstrap, which we refer to as “wild cluster linearized,” or WCL, bootstraps. Like
the score bootstraps proposed in Kline and Santos (2012), the WCL bootstraps are based
on restricted or unrestricted empirical scores. However, they differ in one important respect
from the Kline and Santos (2012) methods. Both procedures generate bootstrap samples
from empirical bootstrap scores, but then our WCL methods multiply those bootstrap scores
by the inverse of some version of the J matrix, in order to mimic the estimation step that
yields empirical scores for the actual model.

We now describe the bootstrap data-generating processes. To avoid having to give two
separate results for the restricted and unrestricted bootstraps, we let “%” denote either “Z” or

“2” for any x. In the first step, we multiply the score vector 8, for cluster g by random variates
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U;‘b for b=1,..., B bootstrap samples. The v;‘b must have mean 0 and variance 1. In most
cases, it seems best for them to be independent draws from the Rademacher distribution,
for which U;‘b equals +1 and —1 with equal probabilities; see Djogbenou et al. (2019). Thus

the bootstrap score vectors are

g =vs, g=1,...,G. (29)

The next step is to estimate the coefficient vector b by least squares:

_lG

b = <g§:: jg> gZ:l . (30)

The vector b* is then used to compute the empirical bootstrap score vectors

w;bzg;b—ng*b, g=1,....G. (31)

These are what the bootstrap score vectors become after the model has been “estimated”
using the linearization (26).
The CV; bootstrap variance matrix can then be written as

. GIN-1) ., Gw*b i) !
W ()i -

and the bootstrap t-statistic that corresponds to (24) is

aT b*b

Z'f'*b S —
“ T @ Ve

(33)
In principle, we could instead compute a CVj bootstrap variance matrix, but using (32)
makes the bootstrap computations much faster. Transforming the bootstrap score vectors
in the way proposed in MacKinnon et al. (2023b) (see below) achieves much the same effect
as using CV3, but at far less computational cost.

As usual, several different bootstrap P values can be computed. For cross-sectional
models estimated by least squares, where bias is generally not a problem, the symmetric

bootstrap P value is usually appropriate. It is computed as

P (t) = 5 S 1(18 > I, (34)

b=1

where I(-) denotes the indicator function. We reject the null hypothesis for a test at level «

11



whenever ﬁs*(ta) < a. An alternative is the equal-tail bootstrap P value

P (t,) = émin <§:H(t;§b >t.), Y (H(tff’ < ta)> : (35)

b=1 b=1

Because the estimated slope coefficients for binary response models tend to be biased away
from zero (MacKinnon and Smith, 1998), it might be preferable to use (35) instead of (34) for
these models. However, we did not find any real difference between them in the experiments
of Section 8.

The WCL bootstrap methods that we have just described are the analogs for binary
response models of the classic wild cluster bootstrap methods for OLS regression, which are
called WCR-C and WCU-C in MacKinnon et al. (2023b) to distinguish them from newer
variants introduced in that paper. We therefore refer to the new methods as the WCLR-C
and WCLU-C bootstraps. As usual, the “R” and “U” here indicate whether the bootstrap
DGP uses restricted or unrestricted estimates. The “-C” indicates that the score vectors are
not transformed before generating the bootstrap samples.

Many of the computations for WCR/WCU-C and WCLR/WCLU-C are identical. For
the former, everything depends on the score vector contributions, X gT U4, and the Hessian
matrix contributions, X gT X,. For the latter, everything depends in exactly the same way
on the 8, and the J,.

This insight shows that the WCLR and WCLU bootstraps can easily be modified to make
them analogous to the WCR-S and WCU-S bootstraps proposed in MacKinnon et al. (2023b).
The modification involves replacing the empirical scores § in (29) by transformed empirical
scores based on the cluster jackknife. The “-S” in the names stands for “transformed score.”

The key equations, adapted to the present case, are

§,=8,—J,b9 g=1,...G, (36)
for the unrestricted scores, and, assuming that the only restriction is gy = 0,

$,=38,— b, g=1,...G, (37)

for the restricted scores. Equations (36) and (37) are, respectively, analogous to (38) and
(37) in MacKinnon et al. (2023b). In (37), the matrix Jy, contains the first & — 1 columns
of jg, and the vector ng) contains the first k — 1 elements of b9 . When there are r < k
linear restrictions, (37) can be replaced by a more complicated equation analogous to (34)
in MacKinnon et al. (2023b).

Using the transformed empirical scores from (36) or (37) yields what we will call the

12



WCLU-S and WCLR-S bootstraps, respectively. The purpose of the transformations is to
undo the distortions of the empirical scores caused by estimating 3, at least to the extent
that it is feasible to do so. This should allow the bootstrap DGP to mimic the unknown true
DGP more accurately. Simulation evidence in MacKinnon et al. (2023b) suggests that the
WCR-S and WCU-S bootstraps can perform substantially better than the classic WCR-C
and WCU-C bootstraps in many cases. This also seems to be true for WCLR-S and WCLU-S
relative to WCLR-C and WCLU-C; see Section 8. In particular, confidence intervals based
on WCLU-S perform very much better than ones based on WCLU-C.

5.1 The Linear Probability Model

It is not difficult to estimate a binary response model and then linearize it using (26), so as to
obtain linear approximations to the delete-one-cluster estimates. However, an even simpler
approach is to estimate a linear probability model and use existing methods for inference in
clustered least-squares regression models. The first step is to run the regression

Ygi = Xgid +ugi, g=1,...,G, i=1,...,N (38)

<.y 4Vg,

where ug; is a disturbance term to be discussed below. There is nothing to ensure that
0 < X6 < 1in (38). Nevertheless, when all the P, are well away from both 0 and 1,
and all of the regressors are dummy variables, least squares typically does yield estimated
probabilities that lie in the [0,1] interval most of the time and are quite similar to the
ones from a binary response model. Thus it is common, and often not very harmful, for
investigators to estimate the LPM (38) instead of the binary response model (1).

When an LPM is appropriate, the number of clusters and (for treatment models) the
number of treated clusters are both reasonably large, there is not too much inter-cluster
variation, and so on, we might expect inferences based on CV3, or even CVy, from (38) to be
fairly reliable (MacKinnon et al., 2023a). When any of these conditions is not satisfied, it
may be safer to use some variant of the restricted wild cluster, or WCR, bootstrap. When
the Rademacher distribution is used, the bootstrap dependent variable can take on only
two values, each with probability 1/2. If Xgl-S denotes the ¢i'" fitted value from the LPM,

evaluated at the restricted estimates, these are
Yyi = X0 + (ygi — X4i0) =y, and Yyi = X0 — (Ygi — Xgi0) = 2Xi6 — ygi.  (39)

The first value here is just the actual value of y,;, which is 0 or 1. But the second is either
2Xgi5 or 2Xgi5 — 1. Unless Xgig = 1/2, one of these numbers must always lie outside the

[0,1] interval. Thus, the y,; must look very different from the y,. However, they do have
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the correct expectation under the bootstrap DGP since

* [ % 1 * 1 S * 1 N N
B () = 5B () + 5 (2X0i8 — () = 5 (2Xi6) = X6
because E*(y,;) = X0, where E*() denotes expectation under the bootstrap probability
measure, i.e. conditional on the sample.
Although the bootstrap regressand (39) for the LPM may seem rather strange, it leads

to the WCR bootstrap score vector

N, N, N .
< < 221 (Ygi — Xgi0) X gi with prob. 1/2,
D (Y — Xyi0) X = 0T (40)
i=1 i (X460 — y4i) Xy with prob. 1/2.
For the logit model, from (18), the WCLR bootstrap score vector is simply
N - SN (g — Ngi) X s with prob. 1/2
* i=1Ygi ) i W1 prob. )
Z(ygi — Ngi) Xgi = N, ! e . (41)
i=1 > (Agi — ygi) Xy with prob. 1/2.

The WCR bootstrap score vector (40) and the WCLR bootstrap score vector (41) look very
similar. The only difference is that the former uses Xgl-s as the fitted value for observa-
tion gz, and the latter uses /~\gi = A(XgiB). This suggests that, when the LPM provides
a reasonably good approximation to a logit model, inferences based on an LPM and the
WCR-C/S bootstraps are likely to be quite similar to inferences based on a logit model and
the WCLR-C/S bootstraps.

We would also expect inferences based on both variants of the WCU bootstrap to be
similar to inferences based on the corresponding variants of the WCLU bootstrap, and
inferences based on CV3 for the LPM to be similar to inferences based on both CV3; and

CV3y, for the logit model. We will investigate these conjectures in Section 8.

6 Cluster Fixed Effects

It is very common for models where cluster-robust inference is employed to include cluster
fixed effects. This creates some important computational issues, which we discuss in this

section. For a logit model, the log of the odds is now

P, ¢
log g =X B+ > 0D, (42)
1- Pgi h=1
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where the D;‘i are cluster fixed-effect dummies, with Dgi = 1 whenever g = h and D;’i =0
otherwise. The coefficient vector of interest here is B, which has k£ elements that do not
include a constant term. Thus the total number of parameters to estimate is k + GG, but the
investigator only cares about the k£ elements of 3.

Under standard regularity conditions, it should be possible to estimate (42) by maximum
likelihood using the entire sample. But when cluster h is omitted, it will be impossible to
identify 95, because Dgi = 0 for all g # h. For linear regression models, MacKinnon et al.
(2023b) discusses how to compute cluster-jackknife variance matrices when there are cluster
fixed effects. The cheapest and easiest method is often to partial out the fixed effects before
running either the full-sample regression or any of the delete-one-cluster regressions. But
this partialing-out method is simply not feasible for (42), or indeed for any model that is
nonlinear in the fixed effects.

A second method, also discussed in MacKinnon et al. (2023b), is to use a generalized
inverse when computing the delete-one-cluster estimates. For a linear regression model, this
sets the coefficient §, to 0 for the regression that omits cluster h, but B(h) is the same as
it would be for the partialing-out method. Whether or not this method could be used in
the case of CV3 or CVsy is unclear. It would mean using a logit estimation routine that
employs a generalized inverse and relying on that routine to do the right thing whenever
one coefficient is completely unidentified. This seems risky and heavily dependent on the
software employed. However, it is possible to use the generalized-inverse method for the
linearized variance matrix estimators, CVs;, and CVjsy,j, since computing each of the delete-
one-cluster estimates just involves a linear regression. This is also the case for the WCLR-S
and WCLU-S bootstraps, where a generalized inverse can be used in (27) or the analogous
equation for the restricted case.

A third method, which is the only one we are aware of that will work for CVj3 and
CV3y, is to estimate G + 1 different logit models. The model for the full sample will have
k + G coefficients, but the model for each of the delete-one-cluster samples will have only
k+G —1 coefficients, because the fixed-effect dummy for the deleted cluster must be omitted.
Although this is conceptually straightforward, it may be challenging to program efficiently,
because the set of fixed effects will be different for each of the G + 1 models. As with the

other two methods, the B 9) are computed for all clusters, but the 5,(19)

are not, because they
cannot be computed when g = h. This means that the cluster-jackknife variance matrices
can be computed only for B . Because this method is tricky and time-consuming, employing

any of the bootstrap methods is easier (and often much faster) than obtaining CVj.
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7 Confidence Intervals

There are many ways to construct confidence intervals for the logit model. Some of these are
computationally convenient, but others are inconvenient because the logit model is nonlinear.
In this section, we briefly discuss several methods. The intervals that are easy to compute
will be studied in Section 8.

The simplest approach to constructing a 100(1 — «)% confidence interval, where « often

equals either 0.05 or 0.01, is to employ a symmetric interval of the form

[Bj — Cl_a/g SG(Bj), Bj + Cl_a/QSe(Bj)}, (43)

where Bj is the maximum likelihood estimate of the coefficient of interest, and c¢;_, /2 is the 1—
a/2 quantile of some distribution. There are, in principle, many different confidence intervals
based on (43). The critical value ¢;_,/» might come from either the N(0, 1) distribution or the
t(G—1) distribution, and the standard error might come from several different cluster-robust
variance estimators or numerous different bootstrap distributions.

The standard normal distribution is the default for logit models in Stata, but quantiles
of the t(G — 1) distribution are usually employed when constructing intervals like (43) for
linear regression models using CV; or CVj standard errors. The results in Section 8 suggest
that this is always a better choice for logit models too.

Instead of using CV; or CV;3 standard errors, we can use a bootstrap standard error based

on B bootstrap estimates, Bj*b This is simply

1/2
Sehoot(;) = <Bl_1 I; (B]*b _ 5;.‘)2> ’ (44)
where ﬁ_j* is the arithmetic mean of the Bj*b Any bootstrap DGP that does not impose the null
hypothesis can be used to generate the bootstrap samples. However, using the best-known
such DGP, namely, the pairs cluster bootstrap, would be extremely expensive, because it
would involve estimating a logit model for each of B bootstrap samples. In contrast, the wild
cluster linearized bootstrap methods proposed in Section 5 are very inexpensive when the
computational tricks of Roodman et al. (2019) are employed. In principle, either WCLU-C
or WCLU-S could be used, but the latter seem to work much better; see Section 8.

Instead of using a WCLU bootstrap to estimate a bootstrap standard error from (44),

we could construct a studentized bootstrap interval of the form

[B) = ci_appser(B)), B — cipser(B3)]. (45)
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Here sel(ﬁj) is the CV; standard error of j3;, and Co2 and cj_, o are the a/2 and 1 — a/2
quantiles of the distribution of the bootstrap t-statistics. For example, if B = 999 and
a = 0.05, these would be numbers 25 and 975 in the list of bootstrap t-statistics sorted
from smallest to largest. It may seem odd to use the CV; standard error in (45), because
we have argued in MacKinnon et al. (2023b) that the CV; standard error is more reliable.
But it is essential to use the same standard error in (45) as in the WCLU bootstrap itself.
The advantages of using cluster-jackknife standard errors apply to the WCLU-S bootstrap
through the transformation of the scores. This suggests that intervals based on WCLU-S
should outperform ones based on WCLU-C.

In theory, the studentized bootstrap interval (45) may perform better than the interval
(43) using bootstrap standard errors, for the same bootstrap DGP, because the former is
based on a test statistic that is asymptotically pivotal and allows the t-statistic to have an
asymmetric distribution. In contrast, the latter is not based on an asymptotically pivotal
quantity and imposes symmetry of the distribution. We shall investigate this conjecture,
and others, in Section 8.

For an unrestricted bootstrap DGP, the same set of bootstrap samples can used to form
confidence intervals for, and test hypotheses about, any coefficient or set of coefficients. In
contrast, a different restricted bootstrap DGP needs to be used every we time we calculate a
bootstrap P value. This means that, to obtain a WCLR confidence interval, the logit model
has to be estimated many times subject to the restriction that 3; equals each candidate value
for the limits of the interval; see MacKinnon (2023, Section 3.4). When we attempted to
implement this method, we sometimes encountered numerical problems in the logit routine.
This made it infeasible to perform simulations with a large number of replications. We
therefore decided not to include WCLR-based intervals in our simulations, and, at present,

we cannot recommend them in most cases.

8 Simulation Evidence

We have performed a large number of simulation experiments for quite a few different tests.
How well the tests perform inevitably depends on many features of the model and DGP.
Nevertheless, several interesting regularities emerge from our experiments. In particular, the
classic CV;-based t-test is prone to over-reject, often severely, and it almost always does so
to a greater extent than the jackknife and bootstrap tests proposed in Sections 4 and 5.
In many circumstances, but not all, we find that CV3 t-tests and WCLR-S bootstrap tests
are particularly reliable. In Section 9, we provide some advice about how to proceed when

alternative tests yield differing inferences.
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In order to investigate the finite-sample properties of cluster-robust t-tests, we need to
generate samples with intra-cluster correlation. In principle, this could be done in many
different ways. The one that we use is particularly easy to implement, since it just requires
a uniform random number generator. First, we specify a parameter ¢ between 0 and 1.
Then we generate G independent random variates v, ~ U(0,1), N independent random
variates ey ~ U(0, 1), and up to N more independent random variates v, ~ U(0,1). For all

g=1,...,Gandi=1,...,N,, we then compute

Ug; = Vg if eg; < ¢, and ug; = vg; if 4, > ¢. (46)
Ygi = 0 if F(X i) < ug, and yg, = 1if FI(Xy) > ug. (47)

Thus, with probability ¢, the random variate u,; is equal to vy, and, with probability 1 — ¢,
it is equal to vg;. At one extreme, when ¢ = 0, all of the u, are independent. At the other
extreme, when ¢ = 1, they all take the same value u,. The value of the binary variate y,; is
then equal to 0 with probability 1 — F/(X,;8) and to 1 with probability F'(X,;/3), as usual,
but these events are not independent across observations within each cluster unless ¢ = 0.

Most of our experiments deal with tests of a restriction on one parameter in a logit model.
The function F'(Xy8) is given by

k—1
A(51 + 22 Bi Xgij + ﬁkTgv), (48)
=
where the X,;; are binary random variables. For each j and for each g, a probability w,
between 0.25 and 0.75 is chosen at random for each replication. Then, with probability
wg, we set Xg; = 1 forall i = 1,..., Ny, and otherwise we set X ;; = 0. This design is
intended to mimic the situation, often encountered in treatment regressions, where all of the
regressors are dummies. It allows these variables to vary moderately across clusters. In most
experiments, 5; = 1 for 1 < j < k. The model would fit better (worse) if these coefficients
were larger (smaller). The treatment regressor Ty; equals 1 for G; randomly chosen clusters
and 0 for the remaining Gy = G — G clusters, with g = 0 in most experiments. The
unconditional expectation of y,; is 7, which depends on the 8; and the distribution of the X;;.
When we vary it, we do so by changing (;, the constant term.

The N observations are divided among the G clusters using the formula

N = exp(v9/G)
! Siexp(v/G) ]’

~1,....G-1, (49)

where [z] means the integer part of x. The value of N is then set to N — Z?;ll N,. This
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Figure 1: Rejection frequencies for tests at the 0.05 level as functions of G
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Notes: These experiments use 100,000 replications, with G = 12,24, 36,...,72, and N = 500G. The value
of Gy is G/6 in Panel (a) and G/2 in Panel (b). There are 7 regressors, one of which is a treatment dummy
that is assigned at random. The value of ¢ is 0.1. The extent to which cluster sizes vary is determined by
the parameter v in (49), which equals 2. The unconditional expectation of yg; is 0.316. CV; and CV3 denote
cluster-robust ¢-statistics based on (12) and (20), respectively.

procedure has been used in MacKinnon and Webb (2017), Djogbenou et al. (2019), and
several other papers. The key parameter here is vy, which determines how uneven the cluster
sizes are. When v = 0 and N/G is an integer, (49) implies that N, = N/G for all ¢g. For
v > 0, cluster sizes vary more and more as 7 increases. The largest value that we use is 4. In
that case, when G = 24 and N = 12000, the largest cluster (1889 observations) is about 47
times as large as the smallest (40 observations). In contrast, when v = 2, the largest cluster
(1120 observations) is just under seven times as large as the smallest (163 observations).

In the first set of experiments, we let N vary from 6,000 to 36,000 by increments of
6,0000, with G = N/500 and v = 2. We focus on tests of §; = 0 in the logit model with
E(yyi) given by (48). These are based on either CV; or CVj standard errors and either the
N(0, 1) or the ¢(G — 1) distribution. Cluster sizes vary moderately, with v = 2. The amount
of intra-cluster correlation is also modest (¢ = 0.1). We believe that, in practice, especially
for models with cluster fixed effects, the amount of intra-cluster correlation is usually not
much more than what ¢ = 0.1 would imply.

Figure 1 shows rejection frequencies as functions of G for these four tests. The vertical
axis has been subjected to a square root transformation in order to handle the wide range of
rejection frequencies that are observed in Panel (a). The results in this figure are striking.
When only one-sixth of the clusters are treated, all the tests over-reject substantially, even
with 72 clusters. However, when half of the clusters are treated, the most reliable test over-

rejects only very slightly, even with just 12 clusters. This test uses CVj3 standard errors and
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Figure 2: Rejection frequencies for tests at the 0.05 level as functions of G1/G
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Notes: These experiments use 100,000 replications, with N = 12,000, G = 24, and G; varying from 2 to 12.
There are 7 regressors, one of which is a treatment dummy that is assigned at random. The value of ¢ is 0.1.
The extent to which cluster sizes vary is determined by the parameter 7 in (49), and 7 is the unconditional
expectation of yg;,. CV; and CV3 denote cluster-robust ¢-tests based on the ¢(23) distribution. WCLR-S and
WCLU-S denote tests based on symmetric bootstrap P values for the transformed score versions of the wild

cluster linearized bootstrap using B = 399 bootstrap samples.

t(G — 1) critical values. It is the most reliable test in all cases, whereas the test that uses
CV; standard errors and N(0, 1) critical values is the least reliable.

We include results for N(0,1) critical values because, as of Version 18, Stata reports
P values and confidence intervals based on the N(0,1) distribution for logit models, even
though it reports ones based on the ¢(G — 1) distribution for linear regression models. Using
standard normal critical values necessarily yields higher rejection frequencies than using
t(G — 1) critical values, and the over-rejection caused by inappropriately using the latter is
not at all negligible, especially for smaller values of GG. In all the remaining experiments, we
use t(G — 1) critical values for the asymptotic tests.

It is evident from Figure 1 that the number of treated clusters matters greatly. The
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second set of experiments focuses on this issue. In all cases, G = 24, N = 12,000, and
k = 8. The number of treated clusters varies between 2 and 12. The smallest value of GG} is 2
because methods based on the cluster jackknife (including the WCLR/WCLU-S bootstraps)
cannot handle the case where GG; = 1, since the coefficient [} is not identified when the single
treated cluster is omitted. The largest value is G/2 = 12 because, with clusters treated at
random, the results for G; = G| and G; = G — G, with G} < G//2, must be identical.

Figure 2 shows rejection frequencies at the 0.05 level for four of the most interesting tests
as functions of G1/G for 2 < G; < 12. In Panels (a) and (b), v = 0, so that all clusters are
the same size. In Panels (c¢) and (d), v = 4, so that clusters vary greatly in size. As usual,
all tests perform poorly when G1/G is small. Most of the tests over-reject in that case, but
WCLR-S under-rejects. WCR bootstrap tests for linear regression models are well known to
behave in the same way; see MacKinnon and Webb (2017, 2018) for an explanation. In all
cases, tests based on CV; standard errors and the #(23) distribution over-reject more than
the other tests. Tests based on CVj standard errors always perform much better.

The bootstrap tests generally perform very well for larger values of G1/G. In most cases,
the WCLU-S bootstrap tests reject more often than the WCLR-S bootstrap tests. This is
always true for small values of G1 /G, but it is not true in Panels (b) and (d) for large values.
The WCLU-S bootstrap tests perform very similarly to the CVjy t-tests.

Figure 3 shows rejection frequencies for some additional tests. Panels (a) and (c) are
for the same case as Panel (b) in Figure 2, and Panels (b) and (d) are for the same case
as Panel (c¢) in Figure 2. The top two panels compare WCLR/WCLU-C bootstrap tests
with the WCLR/WCLU-S ones already shown in Figure 2. For the WCLR bootstraps, there
are almost no differences between the two versions in Panel (a) and only small differences
in Panel (b). For the WCLU bootstraps, however, the differences are quite substantial,
especially in Panel (b). In that case, WCLR-S and WCLR-C are the clear winners for larger
values of G /G, but WCLU-S also performs quite well when G /G is sufficiently large.

Panels (c¢) and (d) of Figure 3 compare the CVj t-test and the WCLR-S bootstrap with
three other procedures. The first of these is the ¢-test based on CVjy,, which employs the
linearized cluster jackknife variance matrix in (28). It performs almost identically to the
t-test based on CVj3 in both panels. We include this test in later figures as well, because it is
computationally attractive. It often performs very much like the CVj ¢-test, but not always.

The other two tests are for the linear probability model, or LPM. In Panel (d), where
m = 0.5, the LPM CVj t-test yields results that are visually indistinguishable from those for
the two t-tests of the logit model. This is not surprising, since the LPM tends to perform
much like the logit model when the average value of the dependent variable is close to one-

half, at least for models like (48) where all the regressors are dummy variables. The WCR-S
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Figure 3: Rejection frequencies for tests at the 0.05 level as functions of G;/G
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Notes: See notes to Figure 2. Panels (a) and (c) are for the same case as Panel (b) in that figure, and Panels
(b) and (d) are for the same case as Panel (¢). WCLR-S and WCLU-S denote tests based on symmetric
P values with B = 399 bootstrap samples that use transformed empirical scores based on (37) and (36),
respectively. WCLR-C and WCLU-C are similar, but they employ the classic versions of the wild cluster
bootstrap that do not transform the empirical scores. CV3[, denotes a t-test based on the linearized cluster
jackknife variance matrix in (28). Two tests are based on the linear probability model. “LPM CV3” is a
t-test using the CV3 variance matrix and the £(23) distribution, and “LPM WCR-S” is the restricted wild

cluster bootstrap test that uses transformed empirical scores.

test is almost indistinguishable from the WCLR-S test. This is also not surprising in view of
equations (40) and (41). To our knowledge, however, there is not at present any asymptotic
theory to justify using the wild cluster bootstrap for linear probability models.

In Panel (c), where 7 = 0.17, the LPM CVj; t-test always rejects less often than the other
t-tests. For values of G1/G greater than about 0.35, it actually under-rejects slightly. The
WCR-S bootstrap test for the LPM rejects less often than the WCLR-S bootstrap test for
the logit model, albeit to a minor extent for larger values of G1/G. The strong performance

of this test may, in part, be a consequence of the fact that all the regressors are binary.
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Figure 4: Rejection frequencies for tests at the 0.05 level as functions of 7
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Notes: See notes to Figures 2 and 3, where the notation used in Panels (a) and (b) is explained. In all
panels, N = 12,000, G = 24, G; = 7, and v = 2. “LPM CV;” and “LPM CV3” denote t-tests for the
linear probability model using the ¢(23) distribution. “LPM WCR-S” and “LPM WCU-S” denote symmetric
bootstrap tests for the linear probability model based on the transformed-score versions of the wild cluster

restricted and unrestricted bootstraps, respectively.

The finite-sample properties of estimators and test statistics in binary response mod-
els often depend on how close the average value of the dependent variable is to one-half.
Therefore, in Figure 4, G is fixed at 7, and the horizontal axis shows the value of 7, the
unconditional expectation of y,,;, which is varied by changing the value of 5y in (48).

In the two left-hand panels, ¢ = 0.1, as before. In the two right-hand panels, ¢ = 0.5,
which implies a great deal of intra-cluster correlation. The top two panels report rejection
frequencies for tests of the logit model, and the bottom two panels report rejection frequencies
for tests of the linear probability model. The horizontal axis stops at 0.5 because, in this

model, the results for 7 must be the same as those for 1 — 7. There is no room in the figures
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to show results for other values of GG;. The t-tests tend to reject less often as GG; increases,
but the pattern is more complicated for the bootstrap tests.

In Panel (a), the WCLR-S bootstrap test over-rejects less often than the other tests for
m > 0.15, but for very small values of 7 it over-rejects more often than all but the CV; ¢-test.
This pattern is much more pronounced in Panel (b), where the WCLR-S bootstrap test
over-rejects severely when 7 is small. It is actually the worst test for 7 < 0.05. Evidently,
the combination of high intra-cluster correlation and a dependent variable that is mostly Os
can lead to poor performance for all the tests, especially the bootstrap tests.

In Panel (a), the CVjy, t-test is indistinguishable from the CVj t-test when 7 is large,
but it rejects a little more often when 7 is small. The differences between the two tests have
the same pattern in Panel (b), but they are much greater. These results suggest that the
linearization (26) may not work well when 7 is close to 0 or 1 and there is more than a small
amount of intra-cluster correlation.

Panels (c) and (d) of Figure 4 focus on tests for the linear probability model. The CV;
t-test for the LPM in Panel (c¢) performs much better than the same test for the logit model
in Panel (a), and the CVj t-test performs somewhat better for some but not all values of 7.
Both tests perform better for the LPM in Panel (d) than for the logit model in Panel (b),
although both of them, especially CV3, now under-reject for small values of .

In Panel (c), the WCR-S bootstrap test performs remarkably well for all values of 7. It
also performs quite well in Panel (d), over-rejecting less than any of the other tests for larger
values of w. Thus, the WCR-S bootstrap test seems to be the best one overall in this set
of experiments, even though the data were not generated by the linear probability model.
Figure 4 does not show results for the WCR-C bootstrap, but they are very similar to the
ones for WCR-S.

Up to this point, all our experiments have involved 24 clusters with an average of 500
observations per cluster. In previous work (MacKinnon et al., 2023b), we have found that
varying the average number of observations per cluster has almost no impact once that
number is moderately large. It is more interesting to vary the number of clusters. In
Figure 5, we plot rejection frequencies for six tests as functions of G;/G for G = 12, 16,
20, and 24, still with N/G = 500. For the CV3 and CVjy, t-tests in Panels (a) and (b), and
the WCLU-S bootstrap tests in Panel (e), the relationships between rejection frequencies
and the fraction of treated clusters are almost identical for all four sample sizes. They are
also quite similar for the WCU-S bootstrap tests in Panel (f). However, they are noticeably
different for the WCLR-S and WCR-S tests in Panels (c¢) and (d). As G declines, G;/G has
to be larger for the under-rejection associated with low values of G /G to go away. That is

because it is primarily the number of treated clusters that matters for restricted wild cluster
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Figure 5: Rejection frequencies for tests at the 0.05 level for different sample sizes
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Notes: See notes to Figures 2 and 3. All panels are based on the same experiments, with v = 2, ¢ = 0.1,
and m = 0.17. There are G = 12, 16, 20, or 24 clusters, with N = 500G observations. Values of G range
from 2 to G/2, because the cluster jackknife cannot be computed for G; = 1.

bootstrap tests, not the fraction of treated clusters; see MacKinnon and Webb (2017, 2018).

It is hard to choose the best test in these experiments. The WCLR-S and WCR-S tests
work well for a broader range of values of G;/G than the other tests, although they under-
reject when G;/G is small. On the other hand, the two t-tests and the two unrestricted
bootstrap tests all over-reject severely for small values of G1/G, but they perform well, or
at least acceptably, for large values.

The results in Figure 5 suggest that, except for small values of G1/G, the results for
G =16 and G = 24 tend to be very similar. Since the computations for the former case are
substantially less costly than for the latter, we use G = 16 in the next two experiments.

Figure 6 deals with the effects of cluster size variability, with v varying between 0 (all
cluster sizes equal 500) and 4 (cluster sizes vary greatly) on the horizontal axis. In Panels (a)

and (c), the expectation of the dependent variable is 7 = 0.50, and in Panels (b) and (d) it
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Figure 6: Rejection frequencies for tests at the 0.05 level as functions of
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Notes: For notation, see the notes to Figures 2 and 3. There are 8,000 observations and 16 clusters, with
¢ = 0.1. All experiments use 100,000 replications, and bootstrap tests use B = 399.

is 7 = 0.081. In the top two panels, G; = 5, so that just under one-third of the clusters are
treated. In the bottom two panels, G; = 8, so that exactly half the clusters are treated.

In all cases, the CV; t-test rejects substantially more often than any of the other tests,
and it does so to a greater extent as 7y increases. In Panels (a) and (c), the CV3 and CVjy,
t-tests and the WCLU-S bootstrap test perform all but identically. In Panels (b) and (d),
however, the WCLU-S bootstrap test rejects a bit more often than the CVjy, t-test which in
turn rejects a bit more often than the CVj t-test.

The WCR-S and WCLR-S bootstrap tests perform very similarly in Panels (a) and (c),
with the former rejecting a little bit less frequently than the latter. They are usually the
best tests here. In Panels (b) and (d), however, the WCR-S test rejects noticeably less often
than the WCLR-S test, and the latter does not perform particularly well.

Figure 7 deals with the effects of intra-cluster correlation, with ¢ varying between 0.00
and 0.50 on the horizontal axes. The top two panels set v = 0 (every cluster has 500
observations), and the bottom two panels set v = 4 (cluster sizes vary greatly). For the two

panels on the left, the expected value of the dependent variable is 0.5, and for the two panels
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Figure 7: Rejection frequencies for tests at the 0.05 level as functions of ¢
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Notes: For notation, see the notes to Figures 2 and 3. There are 8,000 observations and 16 clusters, of

which 5 are treated. All experiments use 100,000 replications, and bootstrap tests use B = 399.

on the right it is 0.034. Thus Panel (a) is a case where asymptotic theory might be expected
to perform well, and Panel (d) is a case where it might be expected to perform poorly.

In Panel (a), which is the best case, all tests except the CV; t-test perform extremely
well for small values of ¢. They would have performed even better if GG;, which equals 5 in
all these experiments, had been 6, 7, or 8. The performance of all tests deteriorates as ¢
increases, but the two restricted bootstrap tests always reject less than 6.0% of the time.

In Panel (b), where m = 0.034, all tests perform well when ¢ is very small, but their
performance then changes dramatically as ¢ increases. Most noticeably, the WCLR-S boot-
strap over-rejects more severely than any of the other tests for ¢ > 0.15; recall Panel (b)
of Figure 4. In contrast, the WCR-S bootstrap under-rejects quite substantially for larger
values of ¢. Surprisingly, the most reliable test is the CVj t-test, which actually under-rejects
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Figure 8: Rejection frequencies for tests at the 0.05 level as functions of G
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Notes: For notation, see the notes to Figures 2 and 3. There are between 12 and 120 clusters, with an
average of 500 observations per cluster, v = 2, and ¢ = 0.1. All experiments use 100,000 replications, and
bootstrap tests use B = 399.

slightly for some values of ¢ and never rejects more than 6.9% of the time. The CVjy, t-test
is somewhat less reliable than the CVj t-test, and the WCLU-S bootstrap test is even worse.

In Panel (c), where cluster sizes vary greatly but 7 = 0.5, the relative performance of
all the tests is similar to what we see in Panel (a), but their absolute performance is worse.
The WCR-S bootstrap test is the best performer, never rejecting more than 5.6% of the
time, followed by the WCLR-S bootstrap. The CV; t-test is the worst performer by far.
The remaining three tests are hard to distinguish from each other, but they reject noticeably
more often than they did in Panel (a).

We might expect Panel (d) to be the worst case, since it combines highly variable cluster
sizes with a small value of 7 = E(y,;). The WCLR-S bootstrap test does indeed over-reject
severely for large values of ¢, although it is nothing like as bad as the CV; t-test. In contrast,
WCR-S under-rejects even more than it did in Panel (b). However, the CVj t-test and the
WCLU-S bootstraps perform fairly well and in a remarkably similar way.
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Figure 8 shows what happens as the number of clusters increases from 12 to 120. There
are four cases. The fraction of treated clusters is either 1/3, in Panels (a) and (b), or 1/6, in
Panels (c) and (d). The expected value of the dependent variable is moderate (7 = 0.316) in
Panels (a) and (b) but quite small (7 = 0.081) in Panels (c) and (d). Note that the vertical
axis is not transformed in Panels (a) and (b), because there was no need, but it is subjected
to a square root transformation in Panels (c¢) and (d).

In Panel (a), which is moderate in both dimensions of the DGP, every method improves
steadily (albeit sometimes slowly) as G increases. CVj t-tests and the three bootstrap tests
always perform much better than CV; t-tests. The best method, by a very small margin
for larger values of G, is the WCR-S bootstrap. In Panel (b), 7 is more extreme, but the
fraction of treated clusters is still 1/3. The best-performing test is once again the WCR-S
bootstrap, but by a slightly larger margin than in Panel (a). The second best performer is
now the CVj t-test. Curiously, most of the tests do not improve as G increases.

In Panels (c) and (d), where the fraction of treated clusters is only 1/6, all the methods
perform considerably worse. Because G; = 2 for G = 12 and 3 for G = 18, the WCLR-S and
WCR-S bootstraps under-reject in these two cases. The latter also under-rejects for G = 24
in Panel (d). For larger values of G, WCR-S is the best-performing test in both of the lower
panels, with WCLR-S the second best.

Finally, in Figure 9, we study the performance of several confidence intervals. The number
of clusters varies from 8 to 64, and the number of observations from 4000 to 32,000. In the
two left-hand panels, one-quarter of the clusters are treated, and in the two right-hand ones,
half of the clusters are treated. The top two panels show coverage, and the bottom two
panels show average length.

By far the worst performer for coverage is the conventional interval based on CV; standard
errors and t(G — 1) critical values. Note that it would have performed considerably worse,
especially for small values of G, if N(0, 1) critical values had been used, as Stata does. In
contrast, the interval that uses CVj standard errors under-covers only slightly in Panel (a)
and even less in Panel (b). Using CVjy, instead of CVj standard errors does not affect the
results to a discernible extent. The WCLU-S studentized bootstrap interval performs slightly
better than the CV3 interval in both panels. However, the WCLU-C studentized bootstrap
interval under-covers noticeably for smaller values of G, especially in Panel (a).

The last interval reported in Figure 9 computes a WCLU-S bootstrap standard error
using (44) and then constructs a t-statistic, which is combined with (G — 1) critical values.
Surprisingly, this is often the best-performing interval. Of course, it is not at all clear that
t(G —1) critical values should be used here. Interestingly, whereas bootstrap standard errors

from WCLU-S seem to be quite reliable, ones from WCLU-C are always too small, leading to
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Figure 9: Performance of several confidence intervals as function of G
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(d) show the average lengths of the same intervals. Two of the intervals use standard errors from either CV;
or CV3 together with critical values from the ¢(G — 1) distribution, two are studentized bootstrap intervals
based on the WCLU-C and WCLU-S bootstraps, and one uses WCLU-S bootstrap standard errors together
with ¢(G — 1) critical values. There are between 8 and 64 clusters, with an average of 500 observations per
cluster, v = 2, ¢ = 0.1, and w = 0.5. All experiments use 100,000 replications, and the bootstrap intervals
use B = 999.

intervals (not shown) that cover substantially less than the WCLU-C studentized bootstrap
intervals based on the same bootstrap samples. This should not have been a surprise. Using
bootstrap samples based on transformed residuals is evidently more important for estimating
standard errors, which are not asymptotically pivotal, than for estimating the critical values
of t-statistics, which are; see Hall (1992).

Panels (c) and (d) report the average lengths of all five intervals, although it is often
difficult to make out all five lines. The CV; intervals are noticeably shorter than the others,
which is to be expected given their under-coverage. In Panel (c), the studentized WCLU-S

interval is substantially longer than any of the others for smaller values of GG, even though it
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does not have the best coverage. The interval that uses WCLU-S bootstrap standard errors

is always shorter, on average, than the studentized bootstrap one, even though it has better

coverage. This is probably because these standard errors are less variable than the CV3 ones,

especially for small G. In Panel (d), all intervals except the CV; interval are just about the

same length, on average.

Taken together, our simulation results suggest that the finite-sample performance of

cluster-robust tests and confidence intervals for logit models can vary greatly. Nevertheless,

it seems fairly safe to draw the following conclusions:

Conventional ¢-tests based on the CV; variance matrix and the ¢(G — 1) distribution
generally over-reject, often severely, and the corresponding confidence intervals often

under-cover seriously. This method should not be relied upon.

Cluster jackknife, or CVj, t-tests always appear to be more reliable than conventional
CV; t-tests. However, they can under-reject moderately in a few cases, and they can
over-reject significantly in others, especially when the fraction of treated clusters is
small, the average value of the dependent variable differs greatly from one-half, or the

amount of intra-cluster correlation is large.

Linearized cluster jackknife, or CVjsy,, t-tests often yield results that are close to those
from CVj t-tests, but not always. The former should probably only be relied upon

when computing the latter is very expensive.

The WCLR-S bootstrap often performs well, but it can over-reject substantially when
there is a lot of intra-cluster correlation. When its performance can be distinguished

from that of the WCLR-C bootstrap, it almost always rejects less frequently.

Methods based on the linear probability model, notably the WCR-S bootstrap, can
perform very well indeed. In many cases, the WCR-S and WCLR-S bootstraps yield
similar results. However, they can differ greatly when there is a lot of intra-cluster

correlation and the expectation of the dependent variable differs greatly from one-half.

The restricted bootstrap methods usually (but not always) perform better than the
unrestricted ones. However, the WCLU-S bootstrap can sometimes outperform both
WCLR ones, and it often performs much better than the WCLU-C bootstrap.

When the CVj t-test and the WCLR-S and WCLU-S bootstrap tests yield similar

results, it may be fairly safe to rely on whichever of them has the largest P value.

Because confidence intervals based on the WCLR bootstrap seem to be difficult to

compute, we did not study them and cannot recommend them.
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« Confidence intervals based on CVj standard errors and the ¢(G'—1) distribution usually
perform well. Intervals based on the WCLU-S bootstrap perform about the same as
CV3 intervals. Unless B is very large, they are also usually less expensive to compute,
because they require only one nonlinear optimization instead of G + 1. Intervals based
on the WCLU-C bootstrap mostly perform worse than WCLU-S intervals.

o If bootstrap standard errors are desired, they should be based on the WCLU-S boot-
strap. In some cases, these seem to be more accurate, and less variable across samples,

than CVj standard errors. They are also usually less expensive to obtain.

Since all these conclusions are based on simulation experiments, they should be inter-
preted with caution. In the context of a specific empirical application, it may often be de-
sirable to see which methods, if any, yield reliable results by performing placebo regression
experiments; see Bertrand, Duflo, and Mullainathan (2004) and MacKinnon et al. (2023a,
Section 3.5). We will do so in Section 9.

9 Empirical Examples

In this section, we use two empirical examples to briefly illustrate the tests and confidence
intervals that we discuss. The first uses a relatively small sample (N = 1861) with a
moderate number of clusters (G = 34) and treatment at the cluster level. The second uses a
much larger sample (N = 133,016) with a small number of clusters (G = 10), a continuous

explanatory variable, and cluster fixed effects.

9.1 Cash Incentives

Angrist and Lavy (2009) studies the impact of a randomized cash incentive on the outcome
of a high-stakes examination. A significant sum of money was offered to “low-achieving”
students in some Israeli high schools for passing the exams required to earn their high
school matriculation certificate, or Bagrut. This certificate is a prerequisite for enrolling in
university in Israel. Treatment was assigned randomly at the school level.

We focus on the estimates for 1861 female students who were enrolled in G = 34 schools
in the 2001 panel of the study. These are reported in Table 2, columns 5 and 6, of the original
paper. Students were offered the cash awards in GG; = 16 of the schools. In addition to the
treatment dummy, the equation includes nine other explanatory variables, some of which
(notably, measures of past performance on examinations) have considerable explanatory

power. Because treatment was at the school level, school fixed effects cannot be included.
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Table 1: Effects of Cash Incentives on Passing the Bagrut

Model Method Coef.  Std. error t stat. P value CI lower CI upper Placebo

LPM CV, 0.1047  0.0444 23572 0.0245 0.0143  0.1952 0.0866
LPM  CV; 0.1047  0.0466  2.2483 0.0314 0.0100  0.1995 0.0681
LPM  CV; 0.1047  0.0506  2.0695 0.0464 0.0018  0.2077 0.0454
LPM  WCR-C 0.1047 2.3572  0.0393 0.0055  0.2033 0.0530
LPM  WCR-S 0.1047 2.3572  0.0418 0.0042  0.2041 0.0497
LPM  WCU-C 0.1047 2.3572  0.0381 0.0064  0.2031 0.0603
LPM  WCU-C*  0.1047  0.0437  2.3982 0.0223 0.0159  0.1936 0.0918
LPM  WCU-S 0.1047 2.3572  0.0401 0.0053  0.2042 0.0555
LPM  WCU-S* 0.1047  0.0513  2.0400 0.0494 0.0003  0.2092 0.0430
Logit CV; 0.7164  0.3149 22746 0.0296 0.0756  1.3571 0.0794
Logit  CVy, 0.7164  0.3303  2.1687 0.0374 0.0443  1.3884 0.0607
Logit  CV; 0.7164  0.3609 1.9850  0.0555 —0.0179  1.4506 0.0373
Logit  CVsy, 0.7164  0.3592 1.9941 0.0545 —0.0145  1.4472 0.0387
Logit WCLR-C 0.7164 2.2746  0.0523 0.0464
Logit WCLR-S  0.7164 2.2746  0.0564 0.0426
Logit WCLU-C  0.7164 2.2746  0.0457 0.0151  1.4175 0.0529
Logit WCLU-C* 0.7164  0.3095  2.3142 0.0264 0.0866  1.3461 0.0846
Logit WCLU-S  0.7164 2.2476  0.0487 0.0042  1.4280 0.0476

Logit ~WCLU-S* 0.7164  0.3645 1.9655 0.0578 —0.0251  1.4579 0.0364

Notes: Methods based directly on t-statistics use the #(33) distribution. Bootstrap methods use the
Rademacher distribution and 9,999,999 bootstrap samples so as to minimize dependence on random numbers.
Bootstrap methods with an asterisk employ bootstrap standard errors computed using (44) and t-statistics
based on them. Bootstrap methods for which no standard error is shown use symmetric bootstrap P values
based on (34) and studentized bootstrap confidence intervals based on (45). Entries in the rightmost column

are rejection frequencies for placebo regressions based on 400,000 replications with B = 999.

Angrist and Lavy (2009) reports estimates for both the LPM and logit model. Our results
for the former agree with the ones in the paper to the number of digits reported. Our results
for the latter do not quite agree, however, because the paper reports marginal effects rather
than coefficient estimates. However, the t-statistic that is implicitly reported is within the
range of the ones that we obtain.

Angrist and Lavy (2009) reports CV; standard errors for the LPM and similar ones for the
logit model. These are almost certainly more reliable than CV; standard errors. However,
because the number of clusters is quite small and cluster sizes vary considerably (from 12 to
146), CV3 standard errors are likely to be more reliable than ones based on either CV; or
CV, (MacKinnon et al., 2023b).

Table 1 reports several results for a large number of methods. Of course, we do not

recommend reporting this many numbers in practice. The sixth column shows P values
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calculated in many different ways, and the next two columns show the lower and upper limits
of 95% confidence intervals. For the LPM, all P values are less than 0.05, and all confidence
intervals exclude zero. For the logit model, every P value is larger than the corresponding
one for the LPM, three of them exceed 0.05, and the three confidence intervals to which the
latter correspond include zero. Overall, there seems to be modest evidence against the null
hypothesis, but the evidence is much less convincing than we might suppose if we simply
looked at the results for either CV; or CVy and CVyy, standard errors.

The final column of Table 1 contains rejection frequencies for a placebo regression exper-
iment, where we add one additional regressor to the original model and test the hypothesis
that the coefficient on it equals zero. The placebo regressors equal 1 for 16 randomly chosen
schools and 0 for the remaining 18 schools. There are 34C = 2,203,961,430 ways to choose
these placebo regressors. We did this 400,000 times and recorded the fraction of rejections
at the 0.05 level.

As can be seen from the last column of Table 1, several methods actually under-reject, and
no method over-rejects much more than 9% of the time. The methods that come very close
to 0.05 are the WCR-S and WCR-C bootstraps for the LPM, and the WCLR-C, WCLU-S,
and WCLU-C bootstraps for the logit model. Interestingly, ¢-tests based on CV3 and CVjy,
both under-reject somewhat. Reassuringly, the methods that over-reject most significantly
are the ones that yield the smallest P values for the actual dataset. These P values should
evidently not be trusted. Based on all these results, we conclude that the true P value for

the hypothesis under test is probably very close to 0.05.

9.2 Tuition Fees

There is an extensive literature about the effects of college or university tuition on educational
attainment. Many studies have examined the relationship between tuition and the likelihood
of attending college or attaining a degree; see, for example, Heller (1999).

We examine the effects of tuition on university attendance in Canada in recent years.
Specifically, we use data from the public-use version of the Labour Force Survey (LFS), com-
bined with data on average university tuition in each province. The LFS surveys individuals
once per month, and individuals are included in the survey for six months. There is much
less variation in tuition fees across schools in Canada than in the United States, because (for
the most part) the provinces regulate them. The tuition data come from Statistics Canada
“Canadian and international tuition fees by level of study” Table 37-10-0045-01.

We use the LFS data from 2009-2019, restricting our sample to individuals aged 20 and

21 who are citizens or permanent residents and live in one of the ten provinces. The public-
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use version of the LF'S does not give us the exact age of respondents, so we treat them all as
being the same age. We restrict the sample to the standard Canadian university academic
calendar, so we omit responses from May through August. We estimate the following logistic

regression at the individual level:
Pr(Student;,; = 1) = A(a + [Tuition,, + YEAR,; + PROV, + Xipt'y>, (50)

where the outcome variable Student;,, equals 1 if person ¢ in province p in year ¢ is listed
as either a part-time or full-time student. The regressor of interest is Tuition,, which is the
average domestic tuition in province p in year ¢t expressed in thousands of Canadian dollars.
Because there are year fixed effects, we do not bother to convert these into constant dollars.

The row vector X;,; contains three binary variables. One of these equals 1 when a person
lives in any of the nine largest cities in Canada. We cannot use dummies for different large
cities, because each city is located in only one province. This would make it impossible to
estimate, say, the coefficient on Montreal when a jackknife sample clustering at the provincial
level omits the province of Quebec. The other two dummy variables in X, indicate whether
someone is a recent (less than 10 years in Canada) or not-so-recent immigrant. We cluster
by province, because our measure of tuition is constant at the province-year level and highly
persistent across years.

We estimate the logit model (50) and the corresponding linear probability model for men,
women, and both genders together. However, to save space, we only report results for men,
because they are the only ones for which the tuition variable appears to be significant using
CV; standard errors. Since our objective is to illustrate the consequences of using different
methods of inference, we focus on the case where different methods yield different inferences.
There are 133,040 observations and just ten clusters. The cluster sample sizes vary from
3,464 (P.E.L) to 39,438 (Ontario). Thus they vary by a factor of about eleven. Note that
the LFS sample sizes vary much less than actual provincial populations. For example, as of
2019-Q4, the population of Ontario was about 93 times the population of P.E.I.

Table 2 is similar to Table 1. It reports several quantities for a large number of methods.
One striking feature is how much P values and confidence intervals vary across methods. Six
P values are less than 0.03. These are the ones for the CV; t-statistics for both the LPM
and logit models, for the WCU-C and WCLU-C bootstraps, and for t-statistics based on
bootstrap standard errors using those two bootstrap methods. At the other extreme, all the
restricted wild bootstrap methods yield P values greater than 0.14. So do t-statistics based
on both WCU-S and WCLU-S bootstrap standard errors.

With only 10 clusters that vary quite a bit in size, it is possible that no method is very

reliable. We attempt to get a sense of which methods work best by performing a placebo
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Table 2: Effects of Tuition on University Attendance

Model Method Coef.  Std. error ¢ stat. P value CIlower CI upper Placebo
LPM CV; —0.0280 0.0104 —2.6854 0.0250 —0.0517 —0.0044 0.1790
LPM CV; —0.0280  0.0167 —1.6772 0.1278 —0.0659 0.0098  0.0571
LPM  WCR-C —0.0280 —2.6854 0.1466 —0.0489 0.0178  0.0627
LPM  WCR-S —0.0280 —2.6854 0.1681 —0.0496 0.0203  0.0519
LPM WCU-C —0.0280 —2.6854 0.0273 —0.0513 —0.0048 0.0966
LPM WCU-C* —0.0280 0.0099 —2.8307 0.0197 —0.0505 —0.0006 0.1478
LPM  WCU-S —0.0280 —2.6854 0.0841 —0.0604 0.0043  0.0696
LPM WCU-S* —0.0280 0.0176 1.5910 0.1460 —0.0679 0.0118  0.0481
Logit CV; —0.1234  0.0467 —2.6454 0.0267 —0.2290 0.0179  0.1283
Logit CVj —0.1234  0.0730 —1.6911 0.1251 —0.2886 0.0417  0.0553
Logit  CV3y, —0.1234 0.0731 —1.6887 0.1256 —0.2888 0.0419  0.0554
Logit WCLR-C —0.1234 —2.6454  0.1486 0.0617
Logit WCLR-S —0.1234 —2.6454  0.1699 0.0506
Logit WCLU-C —0.1234 —2.6454 0.0254 —0.2246 —0.0222 0.0951
Logit WCLU-C* —0.1234 0.0443 —2.7887 0.0211 —0.2236 —0.0233 0.1451
Logit WCLU-S —0.1234 —2.6454 0.0938 —0.2634 0.0165 0.0677

Logit WCLU-5* —-0.1234 0.0771  —1.6019 0.1436 —0.2978 0.0509  0.0464

Notes: Methods based directly on t-statistics use the ¢(9) distribution. Bootstrap methods use the six-point
distribution of Webb (2023) and 9,999,999 bootstrap samples so as to minimize dependence on random
numbers. Bootstrap methods with an asterisk employ bootstrap standard errors computed using (44) and
t-statistics based on them. Bootstrap methods for which no standard error is shown use symmetric bootstrap
P values based on (34) and studentized bootstrap confidence intervals based on (45). Entries in the rightmost

column are rejection frequencies for placebo regressions based on 400,000 replications with B = 999.

regression experiment, where a placebo regressor is added to the original model. We generate
artificial tuition series by using an AR(1) model, which is run separately for each province.
The only parameter that seems to matter is the autoregressive coefficient. Reported results
are for the random walk case, where this parameter equals 1. For smaller values of this
parameter, rejection frequencies tended to be a little higher.

The rightmost column of Table 2 shows rejection frequencies for the coefficient on the
placebo regressor based on 400,000 replications. Because of the fairly large sample size, these
experiments were much more expensive than the comparable experiments in Section 9.1.
Computing the CV3 variance matrix for the logit model is by far the most costly part of
the process, because it requires GG additional logit estimations. In fact, calculating CVj
takes about 70% of all the computer time for the placebo regression experiments of this
section. Estimating the LPM and the original logit model and performing all the bootstrap
computations, with B = 999, for both models takes only about 30% of the time. Remarkably,
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the cost of calculating CVsy,, which yields results almost identical to CVj here, is only about
1/41 of the cost of calculating the latter.

Interestingly, methods for the logit model and the LPM that are similar (e.g. WCLR-S
and WCR-S) tend to perform almost the same in the placebo regressions. As for the first
example, there is evidently a strong, inverse relationship between these rejection frequencies
and the reported P values. All the methods with P values less than 0.05 over-reject between
9% and 18% of the time. Conversely, the methods that perform well all yield P values well
in excess of 0.10. The methods that perform particularly well include the CV3 and CVjy,
t-tests for both models, the WCR-S bootstrap, and the WCLR-S bootstrap. The worst
methods for both models are the ones that use ¢-tests based on either CV; standard errors
or bootstrap standard errors using the WCU-C and WCLU-C bootstraps. In sharp contrast
to what conventional methods of inference suggest, there seems to be very limited evidence

that tuition fees affected university attendance in Canada during the 2009-2019 period.

10 Concluding Remarks

In this paper, we propose several new procedures for inference in binary response models
with clustered disturbances, focusing on logit models. Conceptually the simplest of these
is to employ t-tests, or Wald tests, based on the cluster jackknife, or CVj, variance matrix.
This variance matrix has apparently not been studied previously in the context of binary
response models; although Stata has been able to compute it for many years.

We also propose several new procedures based on a linear approximation to the original
nonlinear model. This approximation can be used for a wide variety of nonlinear models
in addition to binary response models. The simplest procedures involve tests based on the
CV3p, variance matrix, which is just a cluster jackknife matrix for the linear approximation
evaluated at the unrestricted estimates. Computing CV3y, can be orders of magnitude cheaper
than computing CV3 when there are large numbers of observations and/or clusters. In many
cases, including both of our empirical examples, the two variance matrices yield almost
identical results, but they can yield noticeably different ones when the linear approximation
does not work well. The same linear approximation can also be used to compute the CVyy,
variance matrix, which is analogous to the CV, matrix for linear regression models; see
Appendix A.

The other new tests that we propose are variations of the wild cluster bootstrap. They
all start with the same linear approximation as CVs,. Conditional on it, they are compu-
tationally almost identical to corresponding variants of the wild cluster bootstrap for linear

regression models. We study four bootstrap tests. Two of these, denoted WCLR, evaluate
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the linear approximation at restricted estimates, and the other two, denoted WCLU, eval-
uate it at unrestricted estimates. For each of them, the classic (or “-C”) version generates
bootstrap samples directly from the cluster-level empirical scores, and the score (or “-S”)
version generates them from empirical scores that have been transformed so as to undo some
of the distortions caused by the estimation process, as proposed in MacKinnon et al. (2023b).

The WCLR/WCLU-S bootstraps employ the usual CV; variance matrix, not the cluster-
jackknife one. It would be very much more expensive to employ the latter, and simulation
results for linear models in MacKinnon et al. (2023b) suggest that, in most cases, doing so
would not lead to better finite-sample properties.

Extensive simulation experiments, in Section 8, suggest that the new procedures always
work better, often very much better, than the conventional approach that uses CV; t-tests.
However, which of them works best seems to vary from case to case. CVj3 t-tests are almost
always more reliable than CV; t-tests. In a few cases, they are actually more reliable than
some or all of the bootstrap tests. In many cases, the WCLR-S bootstrap works very well.
There are a few cases in which it can perform poorly, however. This tends to happen when
the fraction of 1s in the sample is very small or very large, and when there is a lot of intra-
cluster correlation. In most cases, the WCR-S bootstrap for the linear probability model
rejects less frequently than the WCLR-S bootstrap. The difference is often tiny, but it can
sometimes be substantial, especially when the latter over-rejects noticeably.

For confidence intervals, it is much more convenient to use WCLU bootstraps than WCLR
bootstraps, because there is no need to estimate the restricted logit model multiple times.
In this case, the choice between WCLU-C and WCLU-S is very important. Intervals based

on the latter seem to provide much better coverage for small numbers of clusters.

Appendix A: The CVy;, Variance Matrix

The CVyy, variance matrix can readily be computed by combining the linearization proposed
in Section 5 with the procedure for computing CV, given in MacKinnon et al. (2023b), which
is based on an ingenious algorithm proposed in Niccodemi et al. (2020). First, form the &k x k

madtrices

Ay = (JI)I]T(TT) V2 g=1,...,G, (A1)
where J,(8) was defined in (25), and

F=Sd, = ¥ 0,8 - XTX (A2)

g=1 g=1



is the empirical information matrix. Then calculate the rescaled score vectors
8= (JTVAL, — Ay) VAJTTT) s, g=1,....G, (A.3)

where 8, = s,(8), and s,(8) was defined in (6). The variance matrix we want is then
A A A A G A A
Vi VaulB) = (T) (X 8,8] ) (T7) (A4)
g=1

CVyy, looks very similar to CViz given in (17). It just omits the leading scalar factor and

replaces the §, by the §, given in (A.3).

Appendix B: Computation by Artificial Regression

Although the computations for the WCLR and WCLU bootstraps are not difficult, there is
at present no package explicitly designed to perform them. Some of them can be performed
using a regression package, but at present it does not seem to be possible to trick the
boottest package for Stata (Roodman et al., 2019) into performing them.

Following Davidson and MacKinnon (1984), the linearization used in Section 5 can be
written as an artificial regression. The “binary response model regression,” or BRMR, pro-

posed in that paper is
agi(B) = Ayu(B)b+residy;, i=1,...,N, g=1,...G. (B.1)

For the logit model,

Ygi — A(ngﬂ)
(AX,B)A-X,8) "
Agi(B) = (A(Xg,ﬂ)A(—Xgiﬁ))ngi. (B.3)

agi(B) = and (B.2)

Notice that
G Nyg

q
s(B) =2_54(B) =>_> as(B)Agu(B),

g=1 g=1i=1

and
G Nyg

XTT(/@)X = Z Z Agi(:@)TAgi(B)-

g=11i=1

Thus

39



The vector b(8) is simply the vector of OLS estimates from regressing the a,(8) on the
Agi(B); compare (26).

These results make it possible to implement (for example) the WCLR-S bootstrap by
using a regression package. First, estimate the logit model subject to the restriction(s) to
be tested to obtain 8 and then compute the vector @ with typical element agi(,é) defined
in (B.2) and the matrix A with typical element A, (8) defined in (B.3). Note that the
latter has k columns, not & — r. The bootstrap algorithm given in Section 5 can then be
implemented by treating A as the matrix of regressors and @ as the vector of residuals. For
each bootstrap sample b, the subvectors a, are multiplied by the random variables vg*, as

%

in (29), the results are stacked into the vector a**, and it becomes the regressand for the

bootstrap regression.
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