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Abstract 

With increased frequency and severity of extreme weather events such as droughts due to climate 

change, crop yields are increasingly vulnerable to weather related damages, leading to potential 

risks of increased food insecurity and reduced agricultural productivity. It is essential to have 

measures against predicted hazards that may lead to substantial crop damages. This paper 

compares two predictive models; Panel Linear Probability Model (PLPM) and Random Forest 

(RF) for predicting crop damage events. Based on the analysis, RFs produce fewer errors, are 

more accurate and have higher recall than PLPMs. 

Keywords: Classification, Panel Linear Probability Model, Random Forest, Prediction, 

Training, Testing, Climate Change, Temperature, Precipitation, County, Fixed Effects, Crop 

Damage.  
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Introduction 
Since the pre-industrial period (post 1850-1900), the earth’s global surface temperature 

has increased by an average of 1oC (NASA, 2022). The earth is currently warming at a rate of 

0.2oC per decade. This phenomenon has been coined Global Warming; “a long-term heating of 

the earth’s surface temperature”. Scientific consensus suggests that global warming is primarily 

due to human activities, particularly fossil fuel burning which has increased “heat-trapping 

greenhouse gases in the Earth’s atmosphere” (NASA, 2022).  

Global warming is a key indicator of climate change, which refers to a long-term change 

in the average weather patterns across “local, regional and global climates” (NASA, 2022). 

Scientists have used environmental data and computer models “to monitor past, present and 

future climate change”. The data and applied models have produced key climate indicators that 

show global land and sea temperature increases, rising sea levels, melting of ice from earth’s 

poles and mountain glaciers, changes in cyclical ocean patterns, an increased frequency and 

severity of extreme weather events such as droughts, and the changes to the coverage patterns of 

clouds and vegetation (NASA, 2022).  

The Intergovernmental Panel on Climate Change (IPCC) on its Sixth Assessment Report 

presents the observed and projected impacts, risks, adaptation measures and enabling conditions 

of climate change, and strategies for climate resilient development (IPCC, 2022). Notably, the 

IPCC asserts that climate change and the related frequent and severe extreme weather events 

have led to natural and societal damages and losses of a greater magnitude than natural climate 

variability. The observed increase in frequency and intensity of extreme weather events, such as 

droughts and fires, extreme hot weathers in land and oceans, and heavier rainfall events have 

extensively impacted “ecosystems, people, settlements, and infrastructures”. Some of these 
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impacts include increased tree mortality due to droughts, increased bleaching and mortality of 

warm-water corals, and increased human mortality due to extreme heat (IPCC, 2022). 

Increased frequency and severity of extreme weather events due to climate change have 

impacted agriculture and food security across the world (IPCC, 2022). The rate of growth of 

agricultural productivity has declined in the last 50 years worldwide. Mid and low-latitude 

regions experienced negative impacts of climate change, but there were some positive impacts to 

agriculture and food resources in high-latitude regions. Notably, the IPCC reports with high 

confidence the negative impacts to global aggregate agriculture/crop production in Africa and 

Australasia, and mixed (negative and positive) impacts to North America, Europe, the Arctic, 

and Asia. Extreme weather and increased heat and dry conditions have caused loss of crop 

production in Europe and Africa, with the additional adverse impact of increased food insecurity 

in Africa (IPCC, 2022).  

In addition to increased and more severe extreme weather events, an increase of 

concurrent extreme weather events has also been observed (IPCC, 2022). Increased concurrent 

drought and heat events have led to losses in crop production and tree mortality. This increase in 

concurrence of drought and heat events above 1.5oC global warming is projected to cause an 

increase in the loss of maize production in major food-producing regions. The forecasted 

decrease in crop production is further intensified by a projected decrease in labor productivity 

due to extreme heat conditions. With reduced crop production, the supply of food would 

decrease, leading to increased pricing to curb food demand. Furthermore, low labor productivity 

and expenses would decrease household incomes. Therefore, there would be an increase in the 

risks of malnutrition and climate-related mortality with little to no means of adaptation, 

particularly in tropical regions (IPCC, 2022).  
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The adverse effect of climate change on agricultural production has also been extensively 

studied in scientific literature. Rosenzweig et al. (2013), through the use of multiple global 

gridded crop models (GGCMs), found strong negative effects on climate change on agriculture, 

particularly in areas of low-latitude and higher levels of warming. Majority of the models studied 

by the authors also indicated decreased agricultural yield in both high and low latitude regions. 

The authors stress that many agricultural areas across the globe are prone to future declines in 

crop yield due to climate change and additional issues such the water scarcity and soil 

degradation, and concerns regarding pests. This was exemplified by the 2012 drought in the 

United States (US), where declines of up to a quarter of total maize yields was observed, but the 

reduction in US maize exports was even greater. The authors also note that even though high-

latitude regions may be better adapted to the effects of drought, other factors such as quality of 

soil may limit crop production (Rosenzweig et al., 2013).  

To estimate the impact of climate change on the global agricultural market, Costinot, 

David and Smith (2016) aggregated data of 10 crops across 1.7 million agricultural fields in the 

world. The authors first generated estimates of agricultural productivity pre and post climate 

change. They then developed a general equilibrium model of trade between the 1.7 million 

fields. The authors estimated a 0.26% decrease in global GDP, allowing for adjustment of trade 

and production patterns. As the 10 crops in this study accounted for 1.8% of world GDP, the 

0.26% decrease in global GDP accounted for one sixth of the “total crop value”. The authors 

suggest that while trade adjustments may not significantly mitigate the decline in crop related 

GDP, production adjustments stemming from changing comparative advantages can substantially 

reduce climate change related impacts.   
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As discussed so far, the adversities of climate change have been documented thoroughly. 

Particularly for the case of agriculture/crops, the risks range from economic (reduced grain 

exports/imports and gross domestic product), social (increased food insecurity in Africa) and 

biological (higher risks of toxicity and soil quality due to reduced availability of fertile soil and 

increased pollution) (Rosenzweig et al., 2013; IPCC, 2022). These risks are further exacerbated 

by more frequent and severe extreme weather events such as droughts (IPCC, 2022). Therefore, 

it is essential that adaptation and planning measures are in place for climate change and related 

extreme events for effective intervention and reduction of adversities to the affected regions 

(Mann, Warner and Malik, 2019). Interventions can be achieved by means of policy and climate 

resilience strategies (IPCC, 2022). However, for a more targeted approach to solving real-time 

crises that are likely to be more frequent in the near future and moving forward, predictive 

modelling using real time climate data is crucial (Mann, Warner and Malik, 2019). This would 

entail acquisition of climate and geographic data, sub-setting part of the data to train econometric 

or machine learning models, generating predictions of interest (e.g. crop damage) on the 

remaining sub-set of data (test data), and lastly comparing the predicted events against the true 

events in the test data set (Mann, Warner and Malik, 2019).  

Although both econometric and machine learning models can be used as predictive tools, 

machine learning has some advantages in the arena of prediction (Chen, 2021). Chen states that 

traditional statistical models, such as linear regression models can help researchers infer the signs 

and magnitudes of relationships between input and response variables. Using climate data as an 

example one can model the effects of climate variables, such as temperature and precipitation, on 

agricultural variables, such as crop yields. The significance of these effects can further be 

evaluated through statistical hypothesis tests, which include test statistics, confidence intervals, 
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and coefficient standard errors. However, Chen states that such models have limited predictive 

accuracy when data is high dimensional and has heteroskedastic error terms. Furthermore, 

statistical regression techniques often require the removal of outliers in data, which is in conflict 

with phenomena such as natural hazards. Hazards may be infrequent, but pose serious 

consequences to the environment and populations inhabiting it. In such cases where outliers 

provide valuable information to a model, machine learning can provide more accurate 

predictions (Chen, 2021).  

Machine learning models fare better with hard to interpret, high dimensional data with 

heteroskedastic errors (Chen, 2021). Tree-based models such as random forests are robust to the 

presence of outliers and so are ideal for modelling impacts of natural hazards on crop damage. 

Furthermore, machine learning models can select control variables and, in some cases, 

interactions based on the data used for training to optimally fit models for predictions, and are 

better at error reduction than statistical models (Schrimpf, 2020). For statistical models, 

researchers set arbitrary set of controls and interactions e.g. polynomials, interactions and 

dummies. However, in situations where interpretability is important e.g. signs and magnitudes of 

coefficients, machine learning provides little information. At best, machine learning can act as a 

complement to statistical models for interpretability through providing information on 

importance of features (Chen, 2021). Therefore, it is important to understand the purpose of the 

modelling task; statistical models are superior when it comes to interpretability, but machine 

learning models are superior in prediction (Chen, 2021).  

In their 2019 article, Mann, Warner and Malik (2019) state that current impact 

assessments of droughts on agriculture are “ad hoc, late or spatially imprecise”. The authors state 

that this fails to capture the large amounts of variability of these agricultural losses due to 
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drought at the village level. They proposed utilizing a hybrid of remote sensing and agricultural 

survey data to mitigate timing and scale related limitations of current impact 

monitoring/assessment practices. Utilization this type of data is particularly impactful for 

developing countries. For example, in Ethiopia, crop farming generally takes place in rainfed 

small hold agricultural lands. Only 2% of farms have irrigation systems in place. Droughts are 

especially harmful for crops in these lands, further exacerbated by the more frequent and severe 

droughts brought about by climate change (Mann, Warner and Malik, 2019).  

As an adaptive measure against drought, remote sensing can monitor growth phases of 

crops and utilize this information around the midpoint of the growing season, which allows 

advanced prediction of substantial crop losses at time of harvest (Mann, Warner and Malik, 

2019). The authors used agricultural survey data from 2010-2015 of Ethiopian sub-kebeles 

(villages with approximately 200 households, covering an area of 24km2), combined with remote 

sensing from early growing season to forecast crop losses during harvest. Additional variables 

included precipitation, water for hydrological use and energy availability. The five major cereal 

crops harvested in Ethiopia were considered for this analysis; maize, wheat, sorghum, barley and 

teff (Mann, Warner and Malik, 2019). 

The authors then trained a random forest model with remote sensing and agricultural data 

and the additional variables. This allowed for predictions in the test set using only remote 

sensing data. The authors predicted substantial crop losses using this model, which was defined 

as “crop losses of greater than or equal to 25% due to drought at a village level for five primary 

cereal crops”. The most important features identified for predicting substantial crop losses using 

this random forest model were the time of maximum greenness and the initial greenup of crops. 

Results showed high predictive accuracy of substantial crop damage for all five cereal crops 
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investigated. Maize showed the best predictions for substantial crop damage - 81% correct 

predictions, followed by sorghum, wheat, barley and teff (75%, 65%, 58% and 57% correct 

predictions respectively) (Mann, Warner and Malik, 2019). 

Given the current global situation with climate change, this essay draws inspiration from 

Mann, Warner and Malik’s (2019) work on predicting substantial crop losses in Ethiopian Sub-

kebeles. Using hazard data from the Spatial Hazard Events and Losses Database for the United 

States (SHELDUS), combined with annual US temperature and precipitation data, this study 

develops models to predict out of sample crop damages due to drought. Annual data from 1979 

to 2018 at a county level for the US states California and Iowa is subset into an 80:20 split for 

training and testing respectively. California and Iowa are chosen as they were the top two states 

in the US in terms of agriculture production (USDA, 2021). A panel-linear probability model 

(PLPM) and a random forest (RF) are trained and then compared in terms of predictive 

performance. Results from this analysis shows that in predicting crop damages, the RF produced 

more accurate predictions with higher recall and fewer errors than the PLPM. 

The remaining sections of this essay are as follows. The essay will briefly discuss RF and 

PLPM as predictive models. This will then be followed by the methods section, which introduces 

the data and variables, presents some summary statistics, and provides a note of caution on data 

leakage. This is then followed by the results of this analysis. Lastly, a concluding section 

discusses some caveats of this paper and recommends some future directions for predictive 

modelling in relation to climate change research.  

Methods 
Random Forests 

This section summarizes Breiman’s (2001) paper on random forests. In predictive 

modelling, random forests construct multiple decision trees. These decision trees have “nodes’ 
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which represent thresholds for a particular input that branches the output variable into its 

possible classes. For example, using the variable temperature as a node in a hypothetical decision 

tree, if temperature exceeds a 25oC threshold, crop damages will occur, but not occur at 25oC or 

below. In this example, crop damages are classified as damage versus no damage. Breiman states 

that growing an ensemble of trees and letting these trees vote for the most popular class leads to 

significantly more accurate classification. Random vectors govern the growth of each tree in the 

ensembles. Each tree is grown using a training set and a random vector (independent from 

previously grown trees but identically distributed), which results in a classifier function h(x, 

random vectork), where x is an input vector. Examples of ensemble methods include bagging, 

random split selection, new training set generation, and written character recognition. 

  Random forests are procedures where a large number of trees are grown, which then vote 

for the most popular class. Breiman formally defines this as: 

“A random forest is a classifier consisting of a collection of tree-structured 

classifiers {h(x, random vectork), k = 1, . . .} where the {random vectork} are 

independent identically distributed random vectors and each tree casts a unit vote for the 

most popular class at input x.” 

Breiman states that, based on the strong Law of Large Numbers, RFs always converge to 

a limiting value of a generalization error. This is shown by a margin function constructed from 

the classifier functions to measure how much the average number of votes for the correct class 

exceeds average votes for any other class, where a larger margin gives more confidence in the 

classification. As the number of trees increases, all sequences of random vectors converge to a 

limiting value of a generalization error (probability that the margin function is less than zero). 
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Therefore, random forests do not have issues related to overfitting if more trees are added as a 

model is trained, as the generalization error converges to a limiting value. 

Accuracy of RFs depend on the strength of individual tree classifiers and a measure of 

dependence between them. The upper bound for the generalization error for random forests can 

be derived from the strength of individual classifiers and the correlation between them. The 

generalization error is less than equal to the ratio of correlation to the squared strength of 

accuracy. 

Out of bag estimates (generalization error, classifier strength, and dependence estimates) 

are used determine the number of features (randomly) selected to determine splits at each node. 

There are two forms of random features - random selection of original inputs and random linear 

combinations of inputs. Results (classification accuracy) are insensitive to the number of features 

selected to split each node, thus usually 1-2 features can provide near optimal results. 

Adaboost (Freund & Schapire, 1996), another ensemble classifier method, grows an 

ensemble of trees by successively reweighing the training set but has no random elements. 

Current weights of the Adaboost training set depend on how previous ensembles were formed. 

RF with random features provide favorable results to Adaboost, whereas other random feature 

models (e.g. bagging) are not comparable to Adaboost in terms of performance.  

Algorithms that use bagging, random split selection, or those that introduce random noise 

into the outputs consistently have shown lower generalization error, but none of these perform as 

well as Adaboost or other training set reweighing algorithms. Therefore, for accuracy 

comparable to Adaboost, randomly selected inputs or combinations of inputs to grow each tree 

are introduced. To improve accuracy, the randomness should minimize correlation between 

features while maintaining strength. This class of procedures have desirable characteristics such 
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as having accuracy as good (sometimes better) than Adaboost, being relatively robust to outliers 

and noise, faster computation speeds than bagging and boosting, providing useful internal 

estimates of error, strength, correlation and variable importance, and being simple and easily 

parallelizable. 

For cases with many input variables (e.g. medical diagnosis and document retrieval), a 

single tree classifier only slightly improves accuracy over random choice. However, combining 

trees using random features can improve accuracy. Computing internal estimates of variable 

importance and binding these together by reuse reruns help understand the mechanism of the RF 

“black box”.  

The sections below provide additional details on out of bag estimates and the two types 

of random features used in RFs. 

Using out of bag estimates to monitor error, strength, and correlation 
 

Breiman’s (2001) experiments use bagging in along with random feature selection. Each 

new training set is drawn, with replacement, from the original training set. Trees are then grown 

using random features in the new training set, and are not pruned. Bagging is utilized for two 

reasons; Bagging using random features enhances accuracy and bagging produces ongoing 

estimates of generalization error, strength, and correlation of the ensemble of trees that are done 

out-of-bag. 

An out of bag error estimate is as accurate as using a test set the same size as the training 

set. Therefore, using out-of-bag error estimates eliminates the need for a set aside data for a test 

set (Breiman, 2001). Additionally, out-of-bag error estimates are unbiased, unlike methods like 

cross validation. For each (bootstrapped) training set generated, one-third of the instances are left 

out. This fraction of the training sets is combined, and the error rate decreases as the number of 
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combination increase, potentially overestimating the out-of-bag error rate. Therefore, it is 

necessary to go beyond the point where the test set error converges to get unbiased out-of-bag 

estimates i.e. running as many iterations until the training error goes beyond test error. 

Random forests using random input selection (Forest-RI) 
 

The simplest random forests grow trees to maximum size without pruning using 

classification and regression trees and at each node, randomly selecting a small group (fixed 

number) of input variables for splitting (Breiman, 2001). Breiman’s experiments used 100 trees 

to get reliable out of bag estimates, as out-of-bag estimates are based on 1/3 of trees as in forest. 

Furthermore, growing 100 random forests with random features is much faster than growing 50 

trees using all features in AdaBoost. 

Breiman (2001) found that test set errors of Adaboost versus RF were comparable. In 

smaller datasets, difference in error between single input RF versus multiple inputs was 

negligible, but more pronounced in larger datasets. Additionally, for the datasets tested, a single 

random input produced smaller test errors than multiple random inputs in some cases, whereas 

multiple inputs had slightly smaller test errors in other datasets. Therefore, in RF, a single 

random input to split each node could produce good accuracy. Lastly, computation time using 

random input selection is faster than Adaboost and bagging when there is a single input. Breiman 

suggests that this may scale to multiple inputs. 

Random forests using linear combination of inputs (Forest-RC) 
 

Breiman (2001) states that if there are only a few inputs, using a substantial subset of 

inputs may increase strength but also lead to higher correlation between inputs.  Alternatively, 

additional features can be generated by random linear combinations of several input variables. 

Weighted inputs are added with coefficients that are uniform random numbers on [-1,1]. This can 
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increase the strength without a large increase in correlation. For the random combinations 

generated, the best split is searched. This compares better with Adaboost than Forest-RI 

(Breiman, 2001). 

Breiman (2001) states that sometimes, the selection model produces a smaller test error 

than single input Forest-RI or 2 combination Forest-RC, as the out of bag estimate selects 

inputs/combinations at random when error rates between the two feature choices are close. He 

conjectures that on large datasets, as more features are added, strength keeps rising while 

correlation becomes asymptotic more quickly. Adding more features with forest RC can reduce 

errors, but if there is no change, additional features using forest RI can reduce the error rate. 

Panel Linear Probability Model (PLPM) 
Linear probability models are multivariate regressions with a binary or categorical 

dependent/output variable (Wooldridge, 2012). The coefficient estimate of a regressor in a LPM 

with a binary dependent variable represents the change in probability that an event will occur 

(for example, change in probability that crop damage will occur), in response to a change in that 

specific regressor (for example, a change in precipitation by 1mm, holding other regressors 

constant).   

A PLPM is the application of an LPM on panel data. As this dataset includes year and 

county information, techniques of panel regressions were applied to LPM for this study. 

Specifically, the PLPM model took the form: 

𝑃(𝑌$,& = 1)𝑋$,&+ = 𝑎$ +	𝐵0𝑋0,& +	𝐵1𝑋1,& + ⋯+ 𝐵3𝑋3,& + 𝑢$,& 

Here, the probability that Yi,t is true conditional on the probability of the regressors Xi,t, is 

a linear function of the regressors X and the county fixed effects ai. The coefficient estimate on 

B1 is the change in probability of the occurrence of Y (Y = 1), given a marginal change in the 

regressor Xi, holding the effects of counties (ai) and other X-i regressors constant.  
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For predictive modelling, a PLPM with individual fixed effects, as specified above, was 

implemented using the PLM package in R (Croissant et al., 2022). A subset of data was used to 

train the PLPM, and then the trained model was used to make predictions of the occurrence of 

crop damage on a test dataset. Time fixed effects were excluded, as the future years that are only 

present in the testing set in an out-of-sample forecast cannot be estimated in the training dataset, 

which only contains data on existing years. 

Predictions on the test set produced predicted probabilities of the occurrence of Y. The 

occurrence of Y is then determined by an arbitrary threshold of P(Y = 1|X) > 0.5, at probabilities 

of 0.5 and below the event Y is classified as “not occurring”. 

Data 
Aggregated loss data from SHELDUS was linked with annual temperature and 

precipitation data by US counties. As the SHELDUS data was in monthly format, it was 

summarized to an annual frequency to match the frequency of the temperature and precipitation 

data. Table 1 contains the variables considered for this study. 

Table 1 Variables extracted from the SHELDUS, Temperature and Precipitation datasets. 

Variable Definition Type  Database 
Crop 

Damage (D) 
A value of 0 indicating US$0 in crop damages for 
a particular observation, 1 if damages exceed 
US$0 

Binary SHELDUS 

Year (t) Time dimension, spanning from 1979 to 2018  Time SHELDUS 
County (i) Geographical index, counties selected for the two 

states; California (n = 58) and Iowa (n = 99) 
Categorical SHELDUS 

Hazard (H) Variable describing natural disaster/extreme 
weather event. For this study, drought was 
selected. 

Categorical SHELDUS 

Temperature 
(W) 

Temperature for a particular county in a particular 
year, measured in degrees Celsius. 

Numeric ERA5 

Precipitation 
(P) 

Precipitation for a particular county in a particular 
year, measured in millimeters. 

Numeric ERA5 
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The loss dataset from SHELDUS only included observations during the presence of 

hazards. As a result, years or counties without any corresponding hazards were missing from this 

dataset. To fill in these missing years and counties, the temperature and precipitation data 

(hereafter weather data) were merged with the SHELDUS loss data such that all observations 

from the temperature and precipitation data was retained (left-merging of tables, using year and 

county to link the 3 datasets). This essentially joined the weather information to any 

corresponding loss data observation by year and county, and joined any non-corresponding 

weather data to empty rows of observations (as a successful merge would require datasets to be 

of the same number of rows). The empty rows for year, state, and county was then filled with the 

corresponding value in the weather datasets, empty rows for Hazard was filled with “No hazard”, 

and empty rows for crop damage was filled with zero. Lastly, the merged dataset was checked 

for duplicates, which were removed upon detection. This resulted in a panel dataset with a total 

of 6,280 observations, where the time spanned from 1979 to 2018, and included 157 counties (58 

counties in California and 99 counties in Iowa). 

Due to hardware limitations, data for two states was considered for the years between 

1979 and 2018. California and Iowa were selected for this predictive exercise, as they were the 

largest crop producers in the US in 2021 (USDA, 2021). In 2021, California and Iowa had 11.8% 

and 8.0% share of US receipts for all US agricultural commodities. In 2022 dollars, these shares 

would be US$54 billion for California, and US$37 billion for Iowa of a total national production 

of US$463 billion. Being the largest producers of US agriculture, drought prediction would 

benefit the aforementioned states to prepare for shortages, as well as allow local and national 

governments to strategize in case of emergencies.  
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Table 2 and Figure 1 show the number of drought events in California and Iowa over the 

timespan considered for this study. In this timespan, while Iowa had 687 drought events, 

California had only 9. However, upon looking at drought events in these states by year, some 

additional observations are made. California experienced droughts in the years 2000, 2009 and 

2014. Across these years there were 1, 3, and 5 droughts respectively. Although only 3 

“Drought” years were identified, the frequency of droughts increased with each of the 3 

occurrences. Iowa experienced over 90 droughts per “Drought” year in the late 1980s and early-

middle 1990s. After this, number of droughts per “Drought” year in Iowa peaked at 72 droughts 

in 2003, fluctuating between 20 to 51 droughts per “Drought” year.  

It is also observed that although a minority, not all drought events were associated with 

crop damage. The 3 droughts during the year 2000 in California were not associated with crop 

damage. In the case of Iowa, only 21 of 72 droughts had were associated with crop damage in the 

year 2003. 
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Table 2 (Top) Total Number of Droughts in California and Iowa between 1979 and 2018. (Bottom) Total Droughts and Crop 
Damage Events Disaggregated by Year. 

State Droughts 
California 9 
Iowa 687 
Total 696 

 
Year State Droughts Crop damage 

2000 California 1 1 
2009 California 3 0 
2014 California 5 5 
1988 Iowa 99 99 
1989 Iowa 99 99 
1992 Iowa 95 95 
1995 Iowa 99 99 
1999 Iowa 24 24 
2000 Iowa 32 32 
2001 Iowa 51 51 
2003 Iowa 72 21 
2005 Iowa 20 20 
2012 Iowa 51 51 
2013 Iowa 45 45 
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Figure 1 Comparison of the Number of Drought Events and Crop Damage Events During Drought Years in; (Top) California 
and (Bottom) Iowa California.  

 

 

The dataset above for California and Iowa, between the years 1979 to 2018 was then split 

into training and testing sets using an 80:20 train-test split ratio. The training data used a subset 

of data from the years 1979 to 2008 (n = 4710), while data from 2009 to 2018 was withheld for 
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the test set (n = 1570). Two models were then fit with the training data – a panel linear 

probability model (PLPM) and a random forest (RF). PLPM was used as a baseline predictive 

model, which was then compared with the RF for performance, similar to the work done by Chen 

(2021) which compared linear regression with machine learning. 

The PLPM model was specified as below: 

𝑃(𝐷$,& = 1|𝑊$,&, 𝑃$,&)

= 𝛼$ +	𝛽0𝑃$,& + 	𝛽1𝑊$,& + 𝛽;𝑊$,&
1 + 𝛽<𝑊$,&=0 + 𝛽<𝑃$,&1 + 𝛽>𝑃$,&=0 + 𝛽?𝑊$,& ∗ 𝑃$,&

+ 𝑢$,& 

Where the dependent variable Di,t stands for the binary crop damage variable and 𝛼$are 

the county fixed effects. Variables denoted with W and P stand for temperature and precipitation, 

and their squares, lags, and an interaction is included in this model. The PLPM only considers 

county/individual fixed effects, as all counties appear in both training and testing sets. Hence, 

intercepts for each county can be calculated in the training set and used to predict crop damages 

in the testing set. A threshold of P(Di,t = 1) > 0.5 was set to predict the occurrence of crop 

damages, whereas no crop damage was predicted at probabilities of 0.5 or below. Time fixed 

effects are excluded as the training set only includes years up to 2008, and the test set contains 

data from year 2009 to 2018. In a true out-of-sample prediction, time fixed effects would not be 

available as the data would be from the future (with no data available on input variables). As a 

result, any intercept calculated for time fixed effects would not apply to the withheld years of 

data available in the testing set.  

 

The RF model was specified as follows: 

𝐷$,& = 𝑓(𝑖,𝑊$,&,𝑊$,&
1 ,𝑊$,&=0, 𝑃$,&, 𝑃$,&1 , 𝑃$,&=0,𝑊$,& ∗ 𝑃$,&) 
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Where the binary crop damage is a function of county, temperature, precipitation, and the 

lags, squared polynomials and interaction of temperature and precipitation. As stated in Breiman 

(2001), each tree that is grown either randomly selects either of the input variables to classify 

crop damage, or uses a random weighted linear combination of the 8 input variables, with 

weights picked from uniform random numbers between [-1,1].  

One way of including time fixed effects would involve time demeaning the dataset used. 

However, this type of manipulation has the potential to influence predictions in the testing set. In 

this case, as all observations would be time demeaned, the same manipulation would occur in the 

training and testing data, and therefore lead to incomplete separation of the training and testing 

sets. As all data would be time demeaned, this would essentially “train” the test dataset regarding 

time fixed effects. This manipulation of test data before prediction cause issues with prediction 

when the model is used to predict new data which has not been time demeaned. Kapoor and 

Narayan (2002) extensively outline this issue as a type of Data Leakage, where “leakage” of 

information from the training set to the testing set caused reproducibility issues in 329 scholarly 

articles about civil war prediction. The authors found that once leakage was controlled for using 

model information sheets, the predictive performance of logistic regression and several machine 

learning models were not significantly different, contradicting the analysis of these papers 

investigated (Kapoor and Narayan, 2022). 

Kapoor and Narayan (2022) identified 8 sources of data leakage, which they 

recommended checking for and documenting in model information sheets. The 8 types of data 

leakage, and the strategies used to counter them in this paper are outlined below: 
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Table 3 Model Information Sheet for the Predictive Models Used in this Paper 

Type of leakage Definition Strategy 
No test set How training and testing 

sets are split on all steps of 
the modelling process. 

Set a random number seed at the very beginning of 
the script. Split data into training and testing sets 
prior to fitting model and making predictions. 

Preprocessing 
on training and 
test set 

How training and testing 
data sets are separated 
during pre-processing and 
selection. This is to 
address leakage due to 
incorrect imputation. 

Similar to above, all pre-processing is done for the 
training data, and predictions are made on separate 
unprocessed test data. 

Feature 
selection on 
training and 
test set 

How data is split into 
training and testing during 
feature selection. 

Features strongly correlated with crop damages, 
such as occurrence of drought, duration of drought 
event and number of records were not selected as 
they lead to near perfect collinearity in the model. 

Duplicates in 
datasets 

How duplicates in data 
have been handled, if 
present. 

Duplicates were scanned for and deleted. 

Use of 
illegitimate 
features 

Precisely explain that 
features and proxy 
variables are legitimate for 
the particular modelling 
task. 

Features include US county code, precipitation and 
temperature levels in each county for the given 
timespan. No proxy variables were used. 
Temperature and precipitation patterns, and 
inclusion of county information legitimately 
provide information on rainfall and temperature 
across the US counties studied, which are relevant 
to study the extent of crop damages in the presence 
or absence of droughts. 

Temporal 
leakage 

Train and test timestamps 
must be separate, and test 
date should be at a later 
timestamp. 

Training data takes a subset of the dataset from 
1979 to 2008, which testing data subsets data from 
2009 onwards. There is no overlap in timestamps 
between training and testing data. 

Dependencies 
in training and 
test data 

Reason and address 
dependencies that exist in 
data. 

As mentioned in “Feature selection on training and 
testing set”, variables highly correlated to crop 
damages were excluded from modelling. The top 8 
features by predictive strength were included for 
modelling. 
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Sampling bias 
in test data 
distribution 

Reason about selection 
bias, how rows were 
selected for analysis, and 
how test set matches the 
distribution about the 
scientific claims that are 
being made. 

Selection bias may have been present if only 
observations during droughts were used. However, 
the dataset was infilled to include non-drought 
observations for the counties studied across the 
years, including the corresponding precipitation and 
temperatures.  

 

Model Evaluation 
 

A confusion matrix presents combinations of actual and predicted values of crop damage 

to assess the performance of a model as a classification model (Zhou & Liu, 2021). These 

components of the confusion matrix and measures that are functions of these components are 

used in this paper to compare the predictive performance of the two models tested (PLPM and 

RF). The following table presents the information organized on a confusion matrix. 

Table 4 Components of a Confusion Matrix 

  Actual Class 
  Crop Damage No Crop Damage 

Pr
ed

ic
te

d 
C

la
ss

 

Crop Damage True Positive (TP) 
False Positive (FP) 

Type I Error 

No Crop 
Damage 

False Negative (FN) 
Type II Error True Negative (TN) 

 
 

Each of the four quadrants present the correctly predicted crop damage events (True 

Positive) and non-crop damage events (True Negative), and the incorrectly predicted crop 

damage events (False Positive) and non-crop damage events (False Negative). The values on 

these four quadrants can be used to calculate the following model performance measures (Zhou 

& Liu, 2021): 
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Accuracy – the ratio of correct predictions to all predictions, used to measure the proportion of 

correct predictions by the model:  

 

Accuracy = CDECF
CDEGDECFEGF

 

 

Error rate – the ratio of incorrect predictions to all predictions:  

 

Error rate = GDEGF
CDEGDECFEGF

 

 

Precision – the ratio of true positive predictions to all positive predictions: 

 

Precision = CD
CDEGD

 

 

Recall (Sensitivity) – ratio of true positive predictions to the sum of correct positive predictions 

and incorrect negative predictions: 

 

Recall = CD
CDEGF

 

 

Specificity – ratio of correct negative predictions to the sum of correct negative and incorrect 

positive predictions: 

Specificity = CF
CFEGD
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F1 – the harmonic mean of precision and recall, used as a combined measure of both of these 

metrics. Compared to arithmetic and geometric mean, the harmonic mean puts more emphasis on 

small values.  

1
𝐹1 = 	

1
2 J
1
𝑃 +

1
𝑅L 

 

Results and Discussion 
This section presents model summaries of based on the training data, predictions on the 

test data, and evaluates the two models that were fitted for prediction on the test set. Firstly, 

trained model summaries and confusion matrices for the Panel Linear Probability model are 

presented, followed by the Random Forest. Model performance based on predictions on the test 

data is then presented for both models. 

Panel Linear Probability Model (PLPM) 
 

As stated in the previous section, the PLPM used temperature, precipitation, as well as 

the first lags, polynomials and interactions of these two variables. Entity (county) level fixed 

effects were included in this model, while time fixed effects were excluded to prevent data 

leakage. The table below presents the model summary for the PLPM based on the training data. 
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Table 5 Summary statistics of PLPM model based on training data 

  Dependent Variable 
  Crop Damage (Binary) 
Precipitation -0.715***  

(0.043) 
Temperature -0.228***  

(0.027) 
Temperature2 0.004***  

(0.001) 
Temperature (1st lag) 0.088***  

(0.006) 
Precipitation2 0.030***  

(0.004) 
Precipitation (1st lag) -0.050***  

(0.008) 
Temperature × Precipitation 0.036*** 
  (0.003) 
Observations 4,553 
R2 0.154 
Adjusted R2 0.122 
F Statistic 113.811*** (df = 7, 4389) 
Note: *p<0.1; **p<0.05; 

***p<0.01 
 
The regression summary, such as input variable coefficient signs, magnitudes and 

standard errors, and related test statistics provide some context on the features of the PLPM 

model. From the regression table above, all inputs are significant at the 1% level (p<0.01), 

suggesting that each input variable is significantly related to crop damage. The F statistic of the 

training model is also significant at the 1% model, suggesting that at least one of the input 

variables significantly explains the variation in crop damage, rather than the baseline assumption 

that the dependent variable fluctuates randomly around a mean value.  Taking the model as a 

whole, the inputs explain 15.4% of the variation in crop damage based on R2, and 12.2% if 

penalizing for excessive regressors (Adjusted R2). 
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Precipitation, its first lag, and temperature all have negative signs on their coefficients, 

suggesting a negative relationship between these variables and crop damage. This suggests that 

in this model, an increase in precipitation in the current or previous year, or an increase in 

temperature in the current year would lead to no crop damage. The negative relationship between 

precipitation and its lag with crop damage is intuitive, as a lack of moisture, particularly during 

droughts can be damaging to crops (Mann, Warner and Malik, 2019). However, it is surprising 

that an increase in temperature in the current year is not associated with crop damage in this 

model. Some potential explanations for this are that increased temperature on its own in the 

current year is not associated with the occurrence of crop damage, preventative measures against 

the effects of temperature fluctuations on crop damage in California and Iowa, or due to sample 

size issues or unobserved heterogeneity.  

The squared polynomials of precipitation and temperature, the first lag of temperature, 

and the interaction between precipitation and temperature all show positive coefficients in this 

model. This suggests that for temperature and precipitation, there is a certain threshold beyond 

which increases and temperature and precipitation lead to the occurrence of crop damage. The 

positive coefficient on the first lag of temperature suggests that increased temperature in the 

previous year is associated the occurrence of crop damages in the following year. Lastly, the 

interaction between temperature and precipitation is also associated with crop damage 

occurrence, suggesting that concurrent rises in temperature and precipitation is positively related 

with crop damage.  

The trained PLPM model was then tested on data withheld from the training set to obtain 

predictions of crop damage. The table below presents the confusion matrix for predicted values 

based on the PLPM. Out of 1,570 observations, there were 57 (3.63%) correctly predicted crop 
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damage events, and 741 (47.20%) correctly predicted events without crop damage. Furthermore, 

there were 44 (2.80%) false positive and 728 (46.37%) false negative events.  

 
Table 6 Confusion Matrix based on PLPM 

  Actual Class 
  Crop Damage No Crop Damage 

Pr
ed
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te

d 
C
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ss

 

Crop Damage 57 44 

No Crop 
Damage 728 741 

 
Random Forest (RF) 
 

Similar to the PLPM above, the random forest was trained to predict the occurrence of 

crop damage using inputs of county, temperature, precipitation, and the lags, squared 

polynomials and interaction of temperature and precipitation. The RF model was implemented 

using the CARET (Classification and Regression Training) package developed for the R 

programming language (Kuhn, 2022). Upon training, the importance of each input (feature) was 

obtained for the RF (Figure 1). The first lag of temperature was deemed the most important 

feature in classifying crop damage events, followed by the first lag of precipitation, the 

interaction of temperature and precipitation, temperature, temperature squared, precipitation 

squared, and lastly precipitation.  

Breiman (2001) states that random forests either use randomly selected inputs or linear 

combinations of random inputs to split the ensemble of trees.  RF aggregates ensemble votes 

over several random inputs and random linear combinations of inputs to determine feature 

importance. As a result, random selection of the first lags of temperature and precipitation, or a 

random linear combination of the top important features allowed for more accurate classification. 
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Figure 2 Features Ranked by Importance in RF 

 
 

The confusion matrix below presents the predictions of the RF model in the withheld 

testing data. Notably, there were 34 (2.17%) correctly predicted crop damage events, fewer than 

the PLPM model. However, the RF predicted 1,418 (90.32%) non-crop damage events correctly, 

almost double of what was correctly predicted by the PLPM. The RF predicted 51(3.25%) false 

positive events, 7 (0.45%) more than the PLPM, while it only predicted 67 (4.27%, 42.10% 

fewer than PLPM) false negative events compared to the 728 (46.37%) false negatives predicted 

by PLPM. 
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Table 7 Confusion Matrix Based on RF 

  Actual Class 
  Crop Damage No Crop Damage 
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d 
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Crop Damage 34 51 

No Crop 
Damage 67 1,418 

 
Comparing Performance Metrics of PLPM and RF 
 

The table below provides the results of the model performance metrics for both the 

PLPM and RF models. Upon making predictions on the test data, the RF made more accurate 

predictions with a smaller error rate, higher recall and marginally higher specificity than PLPM. 

The precision for PLPM was surprisingly higher than RF, but this was mainly due to the fact that 

RF produced fewer true positive predictions and slightly more false positive predictions than 

PLPM, leading PLPM being 16.44% more precise than RF. The F1, which is the harmonic mean 

of precision and was also higher for RF than PLPM, suggesting that RF had better performance 

when considering recall and precision simultaneously. Based on the performance metrics 

calculated, the RF fared better in making predictions compared to PLPM on five out of six 

metrics. The results from the performance metrics support the findings of Chen (2021) that 

machine learning models are superior to linear regressions in predictive modelling.   

Table 5 Comparison of Model Performance Metrics of PLPM versus RF 

Metric PLPM RF 
Accuracy 50.83% 92.48% 
Error rate 49.17% 7.52% 
Precision 56.44% 40.00% 
Recall 7.26% 33.66% 
Specificity 94.39% 96.53% 
F1 12.87% 36.56% 

 



 31 

To visualize test set predictions for California and Iowa, heatmaps with actual and 

predicted crop damages are presented in Figure 2. Each map presents the total number of crop 

damage events in each state for the entire time span included in the test set. In the case of 

California, PLPM predicted more crop damage events across several states in California, which 

otherwise did not observe crop damages in reality. However, PLPM did predict crop damages in 

areas that did actually experience crop damage. RF did not predict such widespread crop damage 

events across Californian counties, but failed to predict crop damages in counties that actually 

experienced them. These observations can be explained by the lack of actual crop damage events 

in California, leading to RF predictions failing to precisely predict these events. Furthermore, the 

accurate predictions from PLPM can be attributed to chance, as it predicted crop damage across 

almost all counties in California.  

In the case of Iowa, majority of crop damage events were found in high frequency in the 

central north and south of the state. PLPM predicted more frequent events in the south-east and 

south-west of Iowa, but predicted either less frequent events or no events in the central region. 

RF on the other hand did predict frequent floods in one of the central-south counties in Iowa as 

seen in the actual data, but also incorrectly predicted frequent crop damage events in north-west 

of Iowa.   
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Figure 2 Aggregated Crop Damages for California (Left) and Iowa (Right). Top: Actual Occurrences, Middle: PLPM 
Predictions, Bottom: RF Predictions 

  

  

  
 



 33 

Conclusions and Future Directions 
In this work, the RF predicted crop damages with a smaller error rate (7.52% versus 49.17%), 

more accuracy (92.48% versus 50.83%), and higher recall (33.66% versus 7.27%) with 

marginally higher specificity (96.36% versus 94.39%) than the PLPM. Although RF produced 

less precise predictions (40% versus 56.44%), the higher F1 score of RF (36.56% versus 

12.87%) suggests that RF fared better when considering precision and recall simultaneously. 

Based on better performance in five of six metrics and by rationalizing the lower precision by 

way of the F1 score, RF outperformed PLPM in this exercise. These results agree with Chen’s 

(2021) finding that machine learning models fare better in predictive modelling. However, the 

faster computation speed, higher precision and similar specificity of PLPM to RF also gives 

PLPM some merit as a predictive model.  

 The recall of the RF used in this model (33.66%), was lower than the recall for crop 

damage of teff (57%) in Mann, Warner, and Malik’s (2019) paper, which was the cereal crop 

with the lowest recall. This can be attributed to several factors. This study does not include 

remote sensing data and data on biological characteristics of the crops. Furthermore, the dataset 

used in this study excludes information on the type of crops that were faced with droughts and 

experienced crop damages. Inclusion of these features would potentially improve recall of the 

predictions in the data subset for testing.   

This work is an initial approach to predicting damages associated with natural disasters. 

Classification models were compared for their predictive performance. By definition, binary 

classification predicts either the presence or absence of a particular event. In this paper, crop 

damages encoded as “crop damage” versus ‘no-crop damage” based on whether or not dollar 

damages were recorded in SHELDUS data. However, this type of predictive model is limited in 

predicting the extent of crop damages, which would be predictions of exact dollar amounts to 
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compare with actual dollar amounts of damage. Thus, a logical next step would be to either 

create a crop damage classifier with more than two levels (multi-class). A further step would be 

to design regression models to predict dollar amounts of damages instead of levels.  

Due to hardware limitations, this study was limited to testing a panel linear probability 

model with a random forest model for prediction. Furthermore, only two states with high 

agricultural production was considered. This work can be expanded to test additional models, 

such as logistic regression, Adaboost, and other model along with all US counties and states for a 

more comprehensive study. With more data and additional models to test, further comparisons 

can be made in terms of predictions across different regions and more comprehensive tests 

against data leakage. In addition, the reproducibility of this model can be tested by using data 

from other countries and regions. 

Lastly, additional inputs and dimensions would be beneficial in modelling crop damages. 

This essay excludes remote sensing data, visual inputs, and time series components seen in 

related works such as Mann, Warner and Malik (2019). Remote sensing data and visual inputs 

can provide additional information on crop characteristics such as quality, growth stage and 

visual anomalies that can be useful to detect potential crop damages. With regards to time, 

increased frequency, such as daily, weekly, or monthly data can provide information on 

repetitive trends (seasonality) or other fluctuations within a particular growth cycle of a crop.  
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