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Abstract

Insider trading plays a significant role in financial markets and how markets respond to new in-

formation. Informed high-frequency traders pose a major risk to liquidity providers in financial

markets due to adverse selection, which can result in market failure. To mitigate this risk, some

exchanges have implemented speed bumps which delay trades. Using trade and quote (TAQ) data

of 45 stocks on the NYSE American and the NASDAQ from May 2017 to August 2017, I identify

the impact of a trading delay of 350 microseconds on the probability of informed trading for the

NYSE American using difference-in-differences estimation. I find a statistically significant decline

in the probability of informed trading after the implementation of the speed bump on the NYSE

American stock exchange.
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Introduction

Asymmetric information is a common feature of financial markets. In equities markets the trans-

action price of a firm’s stock is determined by the discounted future profits of the firm. Since

the stock’s transaction price reflects the forecast of the firm’s profitability, any information on the

future profitability of a firm will have an impact on the transaction price today. Therefore, any

market participant with information on the future prospects of the firm can benefit from trading on

that information. Due to the competitiveness and speed of financial markets, this pricing occurs

quickly. Other participants, the market makers, face risk when trading with these informed traders

since they consistently lose value on these trades. In effect, market makers are exchanging assets at

inaccurate prices, either over-evaluating or under-evaluating the asset. This poses a risk to market

liquidity if market makers leave the market when a large amount of informed trading occurs, or

when they suspect they are trading with informed traders (Easley & O’Hara, 1992; Easley et al.,

2012; Grossman & Stiglitz, 1980; Kyle, 1985). This can result in events such as the Flash Crash,

where a liquidity crisis caused a financial panic for thirty minutes in the E-mini S&P 500 futures

market (Easley et al., 2012).

In this environment, there are three major categories of traders: informed, uninformed, and

market makers (Grossman & Stiglitz, 1980; Kyle, 1985). Market makers are traders who take on

the opposing side of an initiated trade, taking the bid-ask spread as compensation. Informed traders

and uninformed traders, distinguished by their degree of information about financial markets, ini-

tiate trades with market makers. For market makers, informed traders are risky to trade with since

informed trades will come up favourably to the informed traders at the expense of market makers
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(Kyle, 1985). Market makers are unable to identify which traders have portfolios that are consis-

tent with insider trading (Grossman & Stiglitz, 1980; Kyle, 1985). Therefore, when market makers

suspect that there are too many informed traders in the market, they will exit the market, creating a

liquidity crisis (Easley & O’Hara, 1992). In a speech at the 11th Annual SIFMA Market Structure

Conference Berman (2010) discussed the role of high-frequency trading firms in the Flash Crash:

It would therefore seem, at least on May 6, that HFTs took as much liquidity from

the equity markets as they provided. Furthermore, data show that in the 15 minutes

leading up [sic] the Flash Crash at 2:45, HFT activity increased proportionately with

the market, as HFT algorithms transitioned from being aggressively neutral to being

net aggressive sellers. This transition was roughly in line with the market as a whole,

though HFT activity after 2:45 dropped off considerably. So while it does not seem

that HFTs directly caused a wave of selling, HFTs did ride that wave down as prices

declined.

One of the more common types of informed traders is high-frequency traders, and it is this

group that will be affected by a latency delay or speed bump. By slowing down trades, these high-

frequency traders are not able to implement their informed trading strategies as effectively (Aldauf

& Mollner, 2020). By implementing a speed bump market makers are, in theory, less exposed to

informed trading making low-frequency traders more secure (Brolley & Cimon, 2020). Following

this rationale some equity markets including the IEX, NYSE American, CHX, and TX Alpha have

implemented speed bumps (Chen et al., 2017). The NYSE American’s implementation of a latency

delay is the subject of this paper and the findings of this thesis have implications for all exchanges

with latency delays.

If latency delays can reduce market uncertainty and lower the toxicity of the order flow, flash

crashes could be less likely to occur. This provides the motivation to study the effect of the NSYE

American’s speed bump on order flow toxicity. In addition, order flow toxicity impacts the cost of

trading and volatility providing further motivation for the study of order flow toxicity in financial

markets (Yildiz et al., 2020). Small changes in trading costs and realized volatility due to order
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flow toxicity have significant economic effects due to the large volume of trading on financial

markets. In 2017 NYSE American implemented one such speed bump of 350 microseconds, or

7/20,000 of a second, to all trades. This delay is small, but in the world of high-frequency trading

algorithms, represents a substantial delay. Latency created by trades travelling between Chicago

and New York City financial markets was 4 ms or 1/250 of a second (Kuhle, 2023; Laughlin et al.,

2014). For the sake of comparison, the speed bump at the NYSE American was roughly 9% of the

time it takes for a trade to travel from Chicago to New Jersey, where the New York metropolitan

area based exchanges are located. For low-frequency traders such a delay is inconsequential. Yet,

even this very small delay can stop New York-based high-frequency traders from front-running

trades from other New York-based traders. Jones (2018) found that NASDAQ listed securities on

the NYSE had an average latency of 17 microseconds. For New York based traders the NYSE

American’s delay of 350 microseconds is therefore quite substantial. NYSE American would on

November 18, 2019, ended the use of the speed bump, citing a larger bid-ask-spread, the difference

between the selling and buying prices, and declining market share. This represents a trade-off for

exchanges between market efficiency and averting informed trading (Liu & Xu, 2023).

Collecting data on informed trading is difficult. Companies and traders have to file their hold-

ings with the Security Exchange Commission but this isn’t done in real-time and therefore is not

useful for measuring intraday activity. Instead, using the volume-synchronized probability of in-

formed trading (VPIN), created by Easley et al. (2012), I can estimate the probability of informed

trading for a given stock using the transaction price and volume intraday data. This technique has

been used to measure liquidity-induced volatility in many markets, especially in the area of flash

crashes (Easley et al., 2012; Kitamura, 2017).

Previous work on latency delays has shown clear implications for my analysis, with theoretical

results suggesting that a latency delay will lower informed trading. Aldauf and Mollner (2020)

provides the underlying mechanism for why a latency delay would lower the number of high-

frequency traders. They suggest that high-frequency traders can exploit changes in the midpoint

of the bid/ask spread by trading with low-frequency traders before they can update their orders.
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Brolley and Cimon (2020) find that informed traders will migrate away from exchanges with speed

bumps to conventional exchanges. Cartea and Penalva (2013) find that high-frequency trading

increases order imbalances. Both of these results suggest that the VPIN metric should fall after the

NYSE American implemented a speed bump. In contrast, Aoyagi (2019) suggests that the impact

of a speed bump’s implementation on informed trading depends on the initial number of informed

traders on the given exchange. Chakrabarty et al. (2020) found that market quality improved on the

IEX due to the latency delay on the exchange. In a study of the Taiwan Futures Exchange Chang

and Chou (2022) find that high-frequency traders provide liquidity during stable market conditions

but become liquidity demanders during turbulent market conditions. In a working paper, Liu and

Xu (2023) find that the NYSE American’s speed bump reduced informed trading and lowered price

discovery. My analysis offers support to this result using an alternative methodology.

Using three months of financial market data I select 45 of the most frequently traded stocks

on the NYSE American for the entire sample length as my treatment group. The speed bump

was implemented in the middle of the sample period such that there is sufficient data for the pre-

treatment and post-treatment periods to estimate the effect of the speed bump. Using those same 45

stocks I create a control group using data from the NASDAQ. This three-month window represents

a large data set due to the high volume of trades that are completed every day on these exchanges. I

measure the effect of the implementation of the speed bump on the probability of informed trading

using a difference-in-differences quasi-experimental identification strategy. My findings suggest a

statistically significant decline in the probability of informed trading after the implementation of

the speed bump. The 3.6% decline in informed trading due to the latency delay is a substantial

effect given that the latency delay is 350 microseconds. My results suggest that such speed bumps

are effective in deterring informed trading in equities markets. As such latency delays can be used

in equity markets to lower order flow toxicity.
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Literature Review

Public information is incorporated into the transaction price of a stock such that the market reaches

equilibrium, quickly eliminating arbitrage opportunities. Such a situation is described as the semi-

strong efficient market hypothesis since prices reflect all public information. If a party has private

information that has not yet been incorporated into the equilibrium price they can still benefit by

trading even at the equilibrium price since they have information which hasn’t been incorporated

into the stock’s price. By doing so the equilibrium price of the stock will reflect all information

(Fama, 1970). There are three major types of traders: informed, noise, and market makers which

define the model used in this analysis. In the Kyle model, risk-neutral informed traders create

market imbalances which can be detected by market makers who adjust prices upward in the pres-

ence of increased demand. Informed traders then must optimize their trading strategy such that

they maximize their profits by holding additional shares while also increasing the transaction price

through their trading activity (Kyle, 1985). In the Grossman-Stiglitz model, the informed trader

is risk-averse and submits a menu of prices and trade quantities, such that their marginal utility

of owning additional shares is offset by the additional variances of their portfolio (Grossman &

Stiglitz, 1980). Building on the Kyle model, Easley and O’Hara (1992) use maximum likelihood

estimation to estimate the probability of informed trading (PIN). In their specification, information

arrives daily and is incorporated into prices by the end of each trading day. This model detects

informed trading using order imbalances caused by informed trading. Easley et al. (2002) find

that PIN is positively related to asset returns. This insight is the foundation for my analysis. I

use an updated form of this methodology found in Easley et al. (2012). In this new methodology
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the volume-synchronized probability of informed trading is estimated using the order imbalance

for each minute of each trading day in the sample. Abada and Yagüe (2012), uses data from the

Spanish Stock Exchange of 15 Spanish companies data and found that VPIN proxies for adverse

selection risk in a comparable way to PIN when the VPIN parameters are chosen to mimic the

original implementation of PIN estimators. As such, Abada and Yagüe (2012) find that VPIN, de-

spite a very different implementation, can effectively mimic PIN estimates given parameters that

are consistent with PIN. This result indicates that the theoretical link between PIN and VPIN is

empirically consistent.

Using the VPIN methodology Easley et al. (2012) found that VPIN is positively associated

with periods of market instability and uncertainty. Using the sample between January 1, 2008,

and August 1, 2011, they found that the VPIN estimates for the E-mini S&P 500 reached its peak

during the Flash Crash on May 6, 2010. However, Andersen and Bondarenko (2014b) dispute

whether VPIN was predictive of the Flash Crash. They find that the VPIN metric rose prior to

the Flash Crash and continued to rise afterwards providing an ex-post measurement rather than a

predictive one. They also find that VPIN is highly correlated with trading intensity and volatility

but isn’t strongly predictive of future volatility and is sensitive to the classification technique used

to classify trades.

In response to Andersen and Bondarenko (2014b), Easley et al. (2014) show that the cumula-

tive distribution function of VPIN was above 99% prior to the Flash Crash, showing that the VPIN

estimates were at unusually high levels before, and after, the Flash Crash. In addition, Easley et al.

(2014) also states that VPIN, by construction, should rise during a period of intense trade imbal-

ances, such as the Flash Crash, and that VPIN isn’t designed to predict future volatility. Instead,

VPIN is measuring order flow toxicity, which can have a short-run impact on volatility as market

makers leave the market. Andersen and Bondarenko (2014a) counter this response, suggesting that

a CDF of 99% isn’t high enough, suggesting instead the use of a daily maximum. Using such a

maximum they note that VPIN was high before the Flash Crash. Citing Chakrabarty et al. (2015)

they found that bulk classification underperforms the Lee and Ready algorithm developed by Lee
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and Ready (1991). Andersen and Bondarenko (2014a) also suggest that controlling for realized

volatility is necessary for measuring the predictive power of VPIN on future volatility. Easley

et al. (2014) agree, stating that VPIN captures information in volume, not price, and measures the

impact of toxicity-related volume information on volatility.

Easley et al. (2012) found that the S&P 500 VPIN rose during the Fukushima nuclear disaster

in the wake of the Tōhoku earthquake. A major difference from the Flash Crash was that the market

reacted during the night session, from 6 p.m. to 11 p.m. EST. This suggests that informed trading

was occurring in periods of low trade intensity. In addition, they found that VPIN is resilient

to "fat finger error" price movements, when human or computer error results in a sudden rise or

fall in prices which quickly return to their previous values, but which aren’t related to informed

trading. Easley et al. (2012) show one such case on June 8, 2011, in the New York Mercantile

Exchange natural gas market. The VPIN metric wasn’t high before this mistake, which is expected

since in this case the increase in volatility was due to error and not order flow toxicity. In the

forex market, Kitamura (2017) found that VPIN was able to predict the August 24 2015 U/$ forex

flash crash, when the exchange plummeted from U119.15 to U116.15 within four minutes before

rising to U118.9 at closing. In the energy futures market, Bjursell et al. (2017) find evidence that

VPIN estimates increased significantly before the inventory announcements period and peaked

afterwards.

Geopolitical instability can also impact financial markets and lead to increases in informed

trading. This large-scale military operation provided an effective area for insider trading due to the

secrecy involved and the possibility of economic sanctions on Russian companies in the event of

war. Using the Russian RTS equity index and 161 individual Russian equities Silva and Volkova

(2018) find that VPIN spiked in the days prior to the Russian invasion of Crimea. The authors found

that the maximum CDF of the previous day’s VPIN predicted a decline in the next day’s return.

They also found that VPIN was more predictive of future returns for Russian firms with government

ownership between 0% and 90%, suggesting that firms with moderate government ownership were

more influenced by informed trading, with the high and low government ownership interaction
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terms being insignificant. The authors suggest that firms with over 90% ownership might not be

affected by sanctions, since those firms would, or would be expected to, be the main targets of

government support.

While VPIN’s relationship with liquidity in short-run liquidity crises is investigated quite thor-

oughly in the above papers, its long-run relationship with liquidity outside of crises is investigated

by Yildiz et al. (2020). Even outside of these rapid drops, liquidity is a major concern for traders

on a regular basis. Yildiz et al. (2020) use the relative quoted and effective spreads to measure

market liquidity. To measure revenue to liquidity providers they use the relative realized spread

and to measure the gross loss to liquidity demanders due to adverse selection they use the price

impact of the trade. In addition, Yildiz et al. (2020) investigate VPIN in the equity market, rather

than in futures markets and due to structural differences between the two markets the relationship

between VPIN, liquidity, and volatility will be different. The authors suggest that this is partially

due to index futures having lower adverse selection costs, lower execution costs, and lower short

selling costs. This suggests that the relationships found in futures markets may differ compared

to those found in this analysis. Yildiz et al. (2020) suggest that these additional costs will affect

the arrival of information. Yildiz et al. (2020) using S&P 500 data from 2015 found that changes

in VPIN influence the relative effective spread, relative realized spread, and the adverse selection

component of spread in a given volume bucket. Yildiz et al. (2020) also find VPIN is positively

related to market volatility. They also find that low-volume stocks have higher VPIN values in line

with the results found in Easley et al. (1996). Following this approach I use the relative quoted

spread, relative effective spread, relative realized spread, and the adverse selection component of

the spread as controls in my analysis. The authors also find that trade size is positively correlated

with VPIN, in line with Easley and O’Hara (1992) who found that trading size is related to adverse

selection. The authors find that order imbalances, sell volume, and buy volume have the highest

correlations with VPIN. As such I include these metrics as control variables in my analysis along

with the bid and offer volumes.

The largest empirical test of VPIN’s ability to predict liquidity-based volatility of one hundred
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highly liquid futures contracts over a period of five and a half years amounting to over 3 billion

trades was done by Wu et al. (2013). Using a US National Laboratories supercomputer, Wu et al.

(2013) were able to test whether VPIN predicts volatility, based on the Maximum Intermediate

Return (MIR), an instantaneous measurement of volatility. Wu et al. (2013) use the 99% CDF of

an asset’s VPIN metric to define periods of high order flow toxicity, or a VPIN event, and then

measure the following values of the MIR. They then use the Kolmogorov-Smirnov test to compare

the resulting MIR sequences to a random event series to see if they are of the same probability

distribution. The authors find that the VPIN events are extremely different from a series of random

events, having different distributions. The authors test 1,600 possible parameter values for VPIN

and MIR. The values the authors consider are: the nominal price of a bar p, the buckets per day

B, the support window s, the event duration h, the parameter for BVC n, and the threshold for

CDF of VPIN t. Of the combinations that were tested, the best-performing combinations had a

false positive rate of 7%. The authors find that VPIN performs well, being a strong predictor of

liquidity-induced volatility in this very large and representative data set.

In order to understand how the speed bump on the NYSE American might affect the VPIN es-

timates, we should review the literature on the effects of speed bumps. Aldauf and Mollner (2020)

create a theoretical model of uniform delays found on the IEX and NYSE American featuring

pegged orders which are market orders that have been queued behind visible orders, and so are

invisible, and older pegged orders at the midpoint between the best offer and best bid. One way

that high-frequency traders can benefit is by sniping old peg orders when the midpoint changes. A

latency delay allows the exchange’s matching engine to view changes in the National Best Bid and

Offer database, the aggregated public price quotes, and reprice pegged orders before new orders

from fast traders arrive on the market. This protects low-frequency traders from high-frequency

traders sniping their orders. Aldauf and Mollner (2020) found that a lower ratio of high-frequency

traders compared to market makers results in prices that deviate less from fundamental value, albeit

with higher costs of queuing. This is the mechanism which explains why high-frequency traders

would be deterred from using an exchange with a speed bump.
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Brolley and Cimon (2020) found that the implementation of a speed bump will drive informed

traders away from exchanges with the increased latency and that uninformed traders will flock to

the delayed exchange. This directly implies that the VPIN metric should decline as the numerator,

the number of informed trades will decrease as a proportion of overall trades. The effect on the

overall market might be less positive. In Brolley and Cimon (2020) the effect of the speed bump

is to move uninformed trading to the exchange with the speed bump improving liquidity on that

exchange. This results in a decline in liquidity on the exchange without a speed bump. Aoyagi

(2019) found a mixed effect on price discovery, with the result depending on the original quantity

of informed traders on the exchange before the speed bump is introduced. When there is an initially

high level of informed trading, after the implementation of a speed bump Aoyagi (2019) predicts

lower price discovery, however, when there are few initial informed traders the implementation

of a speed bump may improve price discovery. The tactic of fading, whereby market makers can

exploit the increase in latency by changing their prices before trades so that the trades are executed

at a price worse for the trader and better for the market maker is a concern on exchanges with speed

bumps (Aoyagi, 2019). A distinction is that Aoyagi (2019) uses a model with a random latency

rather than the uniform one that was implemented on the NYSE American which is the subject of

my analysis. According to Aoyagi (2019) the effect of the speed bump is a decline in the number

of informed traders on the exchange. This would be consistent with a negative effect of the speed

bump on the volume-synchronized probability of informed trading.

The role of stale orders in high-frequency trading is also a result found in Hoffmann (2014),

expanding on the Foucault (1999) game-theoretic model with the addition of traders having dif-

fering speeds. Since limit orders are fixed over time, unlike market orders, they can become stale

when new information arrives on the market. Foucault (1999) creates a model that explains the

mix of limit orders and market orders used in financial markets and finds that volatility is the main

driver between the choice of limit and market orders, the proportion of limit orders being positively

related to volatility and the size of the spread. Hoffmann (2014) extends this framework with fast

traders being able to adjust their limit orders if the next trader is a slow trader but not if the next
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trader is a fast trader. This lowers the inefficiency compared to the model in Foucault (1999) since

limit orders are less likely to be picked off. Slow traders respond by making limit orders that are

unlikely to be executed. With a speed bump the risk of adverse selection is decreased for fast

traders but increases for slow traders.

Cartea and Penalva (2013) provide a model in which high-frequency traders act as an interme-

diary between market makers and liquidity traders and find that high-frequency traders exacerbate

the price impact of liquidity trades and generate a temporary order imbalance, which means that

the VPIN estimate, based on the order imbalance, would rise. Hu (2018) studies the effect of a

speed bump on the IEX and finds that liquidity measures improve after the introduction of the

speed bump. Chakrabarty et al. (2020) found that back-running strategies declined on the IEX and

that market quality improved. Chen et al. (2017) found that asymmetric and randomized speed

bump implemented on the TX Alpha decreased traded volume and led to an increase in the quoted

spread.

Using VPIN to measure the impact of a latency delay on informed trading has not been done

yet in the literature. However, the literature strongly indicates that the effect of such a delay on

the probability of informed trading would be negative. In this analysis I find that this is indeed the

case for the NYSE American. I find that there is a decline in the probability of informed trading

after the latency delay was implemented on the NYSE American.
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Data Description

For my analysis I use a three-month subset, June to August 2017, of the NYSE Exchange Propri-

etary Market Daily Trade and Quote (TAQ) database. Since the NYSE American stock exchange

implemented the speed bump of 350 microseconds on July 24, 2017, I have 37 trading days of data

prior to the speed bump’s implementation and 29 trading days after its implementation. The TAQ

data set contains intraday transaction data for all North American exchanges. Each trade completed

in this three-month period on every exchange is recorded. This provides high-frequency data for

this three-month period at the nanosecond frequency. Due to this high frequency and the large

volumes of financial trades that are completed each day this three-month period represents a very

large data set. The trade data set records all trades in North American exchanges with trade price,

trade volume, the exchange the trade was traded on, the time the trade was completed, and trade

indicators for each individual trade. The National Best Bid and Offer (NBBO) records information

on the highest bid, lowest ask, the sizes of the bid and ask, and the recorded time.

Table: 1

NYSE American lists primarily small and medium-cap stocks. Prior to the implementation of

the speed bump, NYSE American had only 240 stocks listed on the exchange, however, after the

implementation of the speed there was a substantial increase in the number of listed companies,

with the NSYE American listing over 4,500 companies. Furthermore, after the implementation of

the speed bump, there is a large increase in trading volume (Liu & Xu, 2023). This indicates a

substantial interest on the part of market participants for time-delayed trading.
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The sample excludes stocks that were not traded on the NYSE American exchange prior to

the implementation of the speed bump on July 24th. Of these, I select the 45 most actively traded

stocks by volume on the NYSE American that are also listed on the NASDAQ. For each of these

45 stocks, I select all trades and quotes data from both the NASDAQ and the NYSE American

exchanges.

To clean the data I follow the methods from Hendershott and Moulton (2011). I filter out all

trades with the following criteria: non-positive price or volume, trades with special trade condi-

tions, and trades that are 150% larger or 50% smaller than the previously listed trade. For the

quote data set I filter out any quotes with non-positive prices or volumes, bid prices greater than

the asking price, where the quote is greater than 25% of the quote midpoint, or when the asking

price is more than 150% of the bid price.

I apply the Lee and Ready algorithm developed by Lee and Ready (1991) to estimate whether

a trade was buyer or seller-initiated. The Lee and Ready algorithm determines this by using the

midpoint, the average of the bid and ask prices, and compares each trade’s price to the midpoint.

When the trade price is higher than the midpoint it is classified as a buyer-initiated trade. If the

trade price is below the midpoint it is considered a seller-initiated trade. When a trade price is equal

to the midpoint, the trade is classified by the tick rule, comparing the current transaction price to the

previous transaction price. If the transaction price has increased it is classified as a buyer-initiated

and if the price has fallen it is classified as a seller-initiated trade. The Trade and NBBO data

sets are not synchronous, so in order to compare the trade to the quote midpoint poses a technical

problem. The NBBO quote data can be updated at a different time than the contemporaneous trade

is recorded. Typically, trades are recorded after the quotes have been updated with a lag of a few

seconds. Lee and Ready (1991) propose using a five-second delay between the trade and quote

data since the quote is updated faster than the trade data. The Lee and Ready algorithm is not

perfect and there exists potential for misclassification.

For the NASDAQ data set, there exists a substantial difference between the pre-treatment and

post-treatment periods. The VPIN average for the NASDAQ in the pre-treatment period is 0.36
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and in the post-treatment period is 0.38.

Table: 2

For the NYSE American, there is also a difference between the pre-treatment and post-treatment

periods. Prior to the implementation of the speed bump, the NYSE American had an average VPIN

of 0.32 and in the post-treatment period, VPIN rose to 0.38. The realized spread also declined,

showing a decrease in revenue to liquidity providers after the implementation of the speed bump.

Table: 3

The differences in VPIN values between the NASDAQ and the NYSE American are also statis-

tically significant, with the NASDAQ having a higher average VPIN value than the NYSE Amer-

ican. The NASDAQ is also reported to be more liquid than the NYSE American, which given

its larger size is expected. The realized spread, revenue to liquidity providers, is higher on the

NASDAQ and conversely the loss to liquidity demanders, measured by the impact spread, is lower.

Volatility is slightly higher on the NASDAQ compared to the NYSE American.

Table: 4

Using the Lee and Ready algorithm classification, I calculate the liquidity measures using the

R package developed by Boudt et al. (2022). This calculates a wide variety of liquidity measures,

and in line with Yildiz et al. (2020) I use the relative quoted spread, the relative effective spread,

the relative realized spread, and the relative price impact. To estimate the volume-synchronized

probability of informed trading, I use the R package developed by Ghachem and Ersan (2022).

This provides the VPIN estimates and the metrics used to calculate it, such as aggregated buy and

sell volumes and the order imbalance.
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Methodology

4.1 Theoretical Foundation

The foundational model of Kyle (1985) provides the underlying theory of informed trading behav-

ior. Kyle (1985) describes a model of large risk-neutral informed traders, optimizing the impact of

their trades on market makers. In the Kyle model, there are three types of traders: informed, noise,

and market makers. In the Kyle model informed traders have private information on the asset’s

value while noise traders are trading randomly. Informed traders are risk-neutral and optimize on

profit maximization for a given quantity x̃. Informed and noise traders submit their market orders

to the market maker, who is unable to discern what orders are from noise traders, ũ, and informed

traders, x̃. The ex-post liquidation value of the asset, ñ , is normally distributed with a mean of p0

and a variance of S0. The quantity traded by noise traders, ũ is normally distributed with a mean

of zero and a variance of s2
u ,

ñ ⇠ N(p0, S0) (4.1)

ũ ⇠ N(0, s2
u ) (4.2)

The market maker adjusts the price based on aggregate demanded quantities for the asset, x̃+ ũ,

so that the market clears using a pricing rule P(x̃, ũ). The profit to the informed trader, p̃ , is the

difference between the ex-post liquidation value of the asset, ñ , and the market clearing transaction
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price, p̃, times the quantity traded by the informed trader, x̃.

p̃ = (ñ � p̃)x̃ (4.3)

p̃ = P(x̃, ũ) (4.4)

The informed trader faces a trade-off on the size of the market order, since the larger the market

order the larger the effect on the price but the greater the profit. The optimization results in that

the informed trader will trade until the profit on the trade is equal to the price impact of the trade.

Defining the constants ´ and B, where the inverse of lambda is a measurement of the quantity of

trades, the order flow, needed to induce a price change of one dollar and B is twice that quantity.

b =

 
s2

µ
S0

! 1
2

(4.5)

l = 2

 
s2

µ
S0

!�1
2

(4.6)

The equilibrium of the Kyle model is defined for linear functions X and P, with the following

unique equilibrium for a single auction.

X(ñ) = b (ñ � p0) (4.7)

P(ũ+ x̃) = p0 +l (ũ+ x̃) (4.8)

Generalizing to a sequential auction, the insider trader’s quantity is described as a function of the

previously observed prices and the ex-post evaluation of the stock. Market makers set a market

clearing price based on previous order flows and profits from auctions, n, ...,N, which are deter-

mined by the sum of the difference in price times the quantity traded, for n = 1, ...,N.

x̃n = Xn(p̃1, ..., p̃n�1, ñ) (4.9)
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p̃n = Pn(ũ1 + x̃1, ..., ũn�1 + x̃n�1) (4.10)

p̃n =
N

Â
i=n

(ñi � p̃i)x̃ (4.11)

These equations define the trading model in a sequential auction. For a sequential auction equilib-

rium through the trading day there exists a unique linear equilibrium, which is a recursive linear

equation, with the following solutions.

p̃n = p̃n�1 +l (Dx̃n +Dũn) (4.12)

x̃n = x̃n�1 +bn(ñ + p̃n�1)Dtn (4.13)

Since the volume of noise trades lessens the price impact, informed traders will be more aggressive

in markets with a substantial amount of noise trading. In addition, Kyle (1985) separates the

informativeness of trading into trades that are informative on stock prices and trades that are not

based on prices, such as liquidity trading.

4.2 Probability of Informed Trading Estimators

The original framework for the probability of informed trading models was developed by Easley

et al. (1996). Building on Kyle (1985), informed traders are risk-neutral and profit-maximizing.

Information can arrive daily, with a probability a determined exogenously. The new information

can either positively impact prices or negatively impact stock prices. The probability of the new

information being negative is d and the probability it is positive is therefore 1-d. PIN is estimated

based on a decision tree, where events are assigned probabilities. After the completion of a day

of trading, the new information which arrived at the beginning of the day is fully incorporated.

The arrival rate for uninformed trades, both buy and sell trades, is E daily orders which are both

independent Poisson processes. Informed traders orders, µ, arrive based on the information that

arrived in the market at the beginning of the trading day, d. This too, follows an independent
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Poisson process. Therefore, when good information arrives, a high signal, the buy orders per

minute is µ + E, while in the presence of bad information, a low signal, the sell orders are µ + E. On

non-event days, the buy and sell orders are simply E since there is no informed trading activity on

those days. In this model, therefore, the market imbalance µ, indicates the presence of informed

trading.

Figure: 1

The market maker is Bayesian, who uses the arrival of trades, the order flow, to estimate the

probability that informed trading is occurring. Theta is the parameter vector which defines the

likelihood function.

Q = (a, d , µ, eB, eS) (4.14)

Using the notation from Abada and Yagüe (2012): L is the likelihood function, B is the number of

buy trades, S is the number of sell trades, a is the probability of information arriving, es is the sell

order from noise traders, eb is the buy order from noise traders, µ is the informed traders’ order, e

is Euler’s number, and d is the probability of negative information.

L((B,S)|Q) =(1�a)e�eb
eB

b
B!

e�es
eS

s
S!

+adeeb
eB

b
B!

e�es�µ (es +µ)S

S!

+a(1�d )e�e�µ (eb +µ)B

B!
e�es

es
S

S!

(4.15)

Since these processes are assumed to be independent across days, the likelihood function for the

data set,

M = [(B1,S1), ...,(BJ,SJ)], (4.16)

is simply the product of the daily likelihoods.

L(M|Q) =
J

’
j=1

L(Q|B j,S j) (4.17)
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Using this maximum likelihood estimation of the parameters vector Q, Easley et al. (1996) com-

pute the probability of informed trading estimator. PIN is then a composite variable defined by the

parameters: a, µ, eb, and es.

PIN =
aµ

aµ + eb + es
(4.18)

The numerator is the rate of arrival of informed traders and the denominator is the rate of all

orders. PIN is therefore the estimated ratio of informed trade orders to the number of total orders.

Using this model, Easley et al. (1996), differing from Kyle (1985), that active stocks have a lower

probability of informed trading estimates than medium and low-activity stocks. They suggest

that this is due to the greater importance of private information for low-activity stocks. While this

model sufficed in the 1990s, the computerization of finance and the resulting rise of high-frequency

trading has made this model impractical to estimate due to data sizes. The dramatic increase in

trading speed has meant that a daily value is no longer adequate for modern financial markets. In

addition, the rise of high-frequency algorithmic trading has not only changed the speed of trading

but also how information is processed. Computers now trade far faster than any human being can

react to and at such speeds trading information being incorporated over an entire day is no longer

realistic (Abada & Yagüe, 2012; Easley et al., 2012). The increase in the number of trades makes

the PIN estimation using a maximum likelihood function impractical (O’Hara, 2015).

These changes in the market microstructure of financial markets in the new millennium moti-

vated the creation of VPIN, which is designed to capture these changes. The link between PIN and

VPIN is found in Easley et al. (2008) updating the PIN methodology for this new environment.

They find that the number of informed orders can be approximated by the order imbalance, the

difference between the total sell and buy orders.

E(V Sell �V Buy)⇡ aµ (4.19)
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And that the total number of orders is exactly the total volume bought and sold.

E(V Sell +V Buy) = aµ +2e (4.20)

The second component of the VPIN metric is the concept of volume, or trade, time. High-

frequency algorithms operate on the volume of trades they process and their order, rather than

the timing of trades (Easley et al., 2012). Instead of updating the VPIN metric every hour, instead,

it is updated once a given volume has been traded in the market.

4.3 Volume-synchronized Probability of Informed Trading

The variable of interest for my analysis is the volume-synchronized probability of informed trading

(VPIN) developed by Easley et al. (2012). Using the R package by Ghachem and Ersan (2022) I

estimate the VPIN for each stock in the sample. The first step in the calculation of the VPIN metric

is to define standardized volumes of trade, the volume bucket size (VBS), where i is a day in the

sample, j is a firm, N is the total number of days in the sample, and V is the trade volume for firm

j on day i.

V BS j =

1
N

N
Â

i=1
Vi, j

50
(4.21)

The VBS is the average daily trade volume for a given stock divided by fifty. This results in each

trading day being divided into, on average, 50 volume buckets. The VBS is unique for each firm in

the sample. These segments are sequential and indicated by t. Trades in bucket t are aggregated by

the minute and added to the total volume traded in t until the volume traded reaches the VBS. Any

excess volume in the last added trade is added to the next volume bucket. For each volume bucket,

t, the order imbalance is calculated. Easley et al. (2012) developed a technique for determining the

number of buyer-initiated and seller-initiated trades probabilistically in every minute which is used

for calculating VPIN, this process is bulk classification and uses the standard normal distribution,

Z, evaluated at the change in the transaction price, DP, and the standard deviation of the change
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in the transaction price, sDP. The buy volume is the VBS times the value of the standard normal

distribution of the standardized change in the transaction price in the bucket t for the firm j. The

sell volume is the complementary of the standard normal distribution for the buy side times the

volume bucket size.

V Buy
t, j =V BS j ⇥Z

 
DPt, j
sDPt, j

!
(4.22)

V Sell
t, j =V BS j ⇥

 
1�Z

 
DPt, j
sDPt, j

!!
(4.23)

OIt, j =|V Sell
t, j �V Buy

t, j | (4.24)

The order imbalance is the absolute value of the volume sold and the volume bought in each volume

bucket. With these order imbalances (OI) we can calculate the VPIN metric.

V PINt, j =

50
Â

t=1
OIt, j

50⇥V BS j
(4.25)

VPIN is therefore a moving average of the order imbalance over the volume bucket sample length,

in this case as in Easley et al. (2012), the sample length is 50 buckets. This results in VPIN being

updated on average 50 times a day. Longer sample lengths are possible, to estimate any given

sample length h we can use the following equations.

V BS j =

1
N

N
Â

i=1
Vi, j

50
(4.26)

V PINt, j =

h
Â

t=1
OIt, j

h ⇥V BS j
(4.27)

Abada and Yagüe (2012) find that the sample length parameter changes exactly what the VPIN

metric is measuring. For instance, a sample length of 50 is equivalent to a daily average, while

a sample length of 250 is a five-day average. Abada and Yagüe (2012) note that it is possible
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to change the time bar length, the sample length, and the number of buckets. Changing these

parameters will change the interpretation of the VPIN metric. In this analysis the sample length

is set to 50, the VPIN is therefore approximately a rolling daily average, with a rolling window

of 50 volume buckets. The maximum possible value for the VPIN estimate is one and the lowest

possible estimate is zero.

4.4 Liquidity Measures

Next, I create measures of liquidity using the methods from Hendershott et al. (2011) using the R

package developed by Boudt et al. (2022). Following the methodology from Bessembinder (2003)

and Boehmer (2005), I estimate a wide variety of liquidity measurements as controls, in addition to

the measurements from the VPIN estimation estimated using the package developed by Ghachem

and Ersan (2022). To measure market liquidity I use the effective and quoted spreads. The quoted

spread is the bid and ask spread divided by the mid-quote which is the average of the highest ask

and lowest bid, (Bidt +Askt)/2. The effective spread is twice the ratio of the difference between

the trade price and the mid-quote, where D is the direction of the trade from the Lee and Ready

algorithm, which is equal to 1 for a buyer-initiated trade and -1 for a seller-initiated trade. These

measures use matched trades and quotes so that the time, t, is the time of the matched trade and

quote, not the time of the quote data.

RelativeQuotedSpreadt =
Bidt �Askt

MidQuotet
⇥100 (4.28)

RelativeE f f ectiveSpreadt = 2Dt ⇥
TradePricet �MidQuotet

MidQuotet
⇥100 (4.29)

The realized spread measures the cost of immediacy, estimating revenue to the liquidity providers

over a 300-second, five-minute, window following the methodology in Chang and Chou (2022).

This estimates the revenue to the liquidity providers or the cost of immediacy for the liquidity
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demander.

RelativeRealizedSpreadt = 2Dt ⇥
TradePricet �MidQuotet+300

MidQuotet
⇥100 (4.30)

The final measurement of liquidity used is the price impact of a trade. The price impact is half the

difference between the effective and realized spreads and measures the loss to liquidity demanders.

Relative Price Impactt =
RelativeE f f ectiveSpreadt �RelativeRealizedSpreadt

2⇥MidQuotet
(4.31)

This is in line with the methodology of Yildiz et al. (2020), who aggregate liquidity measures to

the VPIN volume bucket. In addition, I include the volumes bought and sold, the order imbalance,

and the bid and offer volumes. These measures are then aggregated into the VPIN buckets by a

time-weighted average to control for liquidity effects for firm j and volume bucket t.

Liquidityt, j = RelativeQuotedSpreadt, j +RelativeE f f ectiveSpreadt, j

+RelativeRealizedSpreadt, j +RelativePriceImpactt, j

+SellVolumet, j +BuyVolumet, j +OIt, j

+BidVolumet, j +O f f erVolumet, j

(4.32)

4.5 Volatility

To measure the volatility I use the daily realized volatility of returns and the daily realized variance

of the returns of the firm j and the VPIN bucket t using the R package developed by Boudt et al.

(2022).

Volatilityt, j = RealizedVolatilityt, j +RealizedVariancet, j (4.33)

This gives a quadratic relationship for volatility, allowing for a non-linear effect of volatility on the

volume-synchronized informed trading estimates. These values, as daily values for each firm, are

not aggregated and are merged with the VPIN estimates on the date when each volume bucket, t,
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begins.

4.6 Fixed Effects

Trading is highly irregularly spaced with large increases in trading at the beginning and the end of

the trading day and reduced trading activity during the lunch break (Balaban et al., 2018; Easley

et al., 2012). To control for this intra-day seasonality I use hourly fixed effects, dt , as controls

following the methodology from Yildiz et al. (2020). In addition, trading varies based on the day

of the week, with activity on Friday being affected by traders closing for the weekend and activity

on Monday incorporating new information that was announced during the weekend (Balaban et al.,

2018; Kim & Ryu, 2022). This Monday effect decreases returns and increases volatility (Balaban

et al., 2018; Kim & Ryu, 2022). To control for this weekly seasonality I use day of the week

fixed effects, ht . These temporal dummy variables will control for the effect of the hour and the

weekday on VPIN. Following Yildiz et al. (2020) I used firm-fixed effects to treat time-invariant

differences between firms in their VPIN values. The firm-fixed effects, f j, adjust the mean for

each stock, capturing some of the firm-specific non-observables. These fixed effects are used in

every regression. For my two-way fixed effects specification I use a time trend indicator variable

for each day of the sample, pt . The difference-in-differences specification uses only the hourly,

firm, and day-of-week fixed effects.

4.7 Difference-in-Differences

Using a difference-in-differences approach I have three variables of interest: the treated group

(Treatment), the period after the treatment (Time), and the difference-in-differences estimator

(DID).

V PINt, j = b1DIDt, j +b2Timet, j +b3Treatmentt, j +b4Liquidityt, j

+b5Volatilityt, j +f j +ht +dt + êt, j

(4.34)
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The exchange variable, Treatment, is a dummy variable measuring the difference in the con-

ditional mean of the VPIN estimates between the control group, the NASDAQ, and the treatment

group, the NYSE American. The NYSE American is indicated with a value of 1 and the NAS-

DAQ is indicated with a value of 0. Time is a dummy variable equal to 0 before the speed bump

was implemented on the NYSE American and 1 afterwards. The Time indicator measures the

difference in the conditional mean of the VPIN estimates before and after the implementation of

the speed bump for both the treatment and the control. The effect of the speed bump itself is the

difference-in-differences estimator which is equal to 1 for the NYSE American after the exchange

implemented the speed bump on July 24 and zero otherwise, measuring the difference in the con-

ditional mean for the treated group after the treatment. The two-way fixed effects model includes

the daily indicator variable.

V PINt, j = b1DIDt, j +b2Timet, j +b3Treatmentt, j +b4Liquidityt, j

+b5Volatilityt, j +f j +ht +dt +pt + êt, j

(4.35)
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Empirical Results

The alternative hypothesis is that informed trading, as estimated by the volume-synchronized prob-

ability of informed trading, will decline as informed traders leave and uninformed traders flock to

the NYSE American. The null hypothesis of this analysis is that the implementation of the speed

bump will have no effect on informed trading. My results show that the NYSE American’s speed

bump was responsible for a decline in informed trading on that exchange. The difference-in-

differences estimate shows a 3.6% decline in the probability of informed trading due to the imple-

mentation of the latency delay. The two-way fixed effects specification estimates a 3.1% decline in

the probability of informed trading due to the latency delay’s implementation. The effect is statis-

tically significant with a p-value below 0.01 with both heteroskedasticity robust and firm-clustered

standard errors in both specifications. The Treatment coefficients can be interpreted as the differ-

ence in the probability of informed trading between the exchanges, all else equal. The Time coef-

ficients can be interpreted as the difference in informed trading on both exchanges after the speed

bump was implemented on the NYSE American, all else equal. The difference-in-differences coef-

ficient is the causal effect of the speed bump on the volume-synchronized probability of informed

trading.

In the first regression, I apply a two-way fixed effects model with heteroskedasticity-robust

standard errors. For this specification the estimated effect of the speed bump on the probability

of informed trading is a decline of 3.1%. For this specification, the Time effect is not statistically

significant. The treated group, Treatment, has a lower average VPIN value which implies that the

NYSE American had a higher conditional mean of informed trading compared to the control group,
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the NASDAQ. In the second regression I implement a firm-fixed effects model without daily fixed

effects using heteroskedasticity-robust standard errors. In the firm-fixed effects specification the

estimated effect of the speed bump is -3.7%, and remains highly significant. In this specification,

the Time variable is statistically significant and the Treatment has a lower coefficient but remains

statistically significant.

Table: 5

I repeat these specifications with clustered standard errors with firm-level clusters. For the

third specification, neither the Treatment nor the Time effects are statistically significant, however,

the difference-in-differences estimator remains statistically significant for both the two-way fixed

effects and difference-in-differences specifications. In the two-way fixed effects specification with

clustered standard errors, the p-value for the difference-in-differences estimator rises to the 0.001

significance level but remains highly statistically significant.

These results show that the speed bump implemented on the NYSE American exchange had a

negative effect on informed trading. In all specifications, the effect is statistically and economically

significant. As can be seen in Table 2, VPIN estimates for the NYSE American were 31.5%

prior to the speed bump’s implementation and 36.8% after the implementation. In Table 5 the

effect of the speed bump is -3.1%, representing a substantial decline in informed trading after

the implementation of the speed bump on the NYSE American. The difference-in-differences

estimator can be interpreted as the causal effect of the speed bump on informed trading, all else

equal.

This result is in line with the expected effect of a speed bump and shows that even a small

latency delay can have substantial effects on informed trading. This confirms the alternative hy-

pothesis. The effect of this speed bump on lowering order flow toxicity suggests that similar speed

bumps may lower the likelihood of liquidity crises, like the Flash Crash, from occurring on ex-

changes with these speed bumps. It also suggests that speed bumps effectively deter informed

trading on these exchanges, however, this result doesn’t prove that speed bumps deter informed

trading for the financial system as a whole.
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Conclusion

In financial markets, there are three different types of traders: informed, uninformed, and market

makers (Grossman & Stiglitz, 1980; Kyle, 1985). Informed traders have private information on

stock values which has not yet been incorporated into the market price. In order to profit from this

private information informed traders must trade with market makers. Market makers are traders

who take on the opposing side of an initiated trade taking the bid-ask spread as compensation. As

such, market makers who are exposed to informed traders can face unexpected losses on trades

with informed traders (Easley & O’Hara, 1992). Since North American financial markets are

anonymous, market makers are unable to distinguish between trades by uninformed traders and

informed traders. As such, market makers will pull out of markets where there is substantial

information risk leading to a liquidity crisis which can cause substantial issues for the functioning

of the financial system by creating high volatility periods (Easley & O’Hara, 1992; Easley et al.,

2012; Yildiz et al., 2020).

In order to detect informed trading, researchers have used market imbalances. Easley and

O’Hara (1992) began this strand of research by creating the probability of informed trading esti-

mator, however, the rise of high-speed trading and the resulting changes in financial markets made

their methodology impractical and slow (Easley et al., 2012). In response, Easley et al. (2012)

developed an intraday measure, the volume-synchronized probability of informed trading (VPIN)

estimator with an updated methodology for a high-frequency setting. VPIN is correlated with mar-

ket liquidity, trading costs, and volatility of returns (Yildiz et al., 2020). Given the extremely high

volumes of trade in financial markets, small changes in the VPIN can have economically significant
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effects.

An innovation in exchange technology designed to mediate the effect of high-frequency traders

is the latency delay. Aldauf and Mollner (2020) suggest that high-frequency traders can exploit

changes in the midpoint of the bid/ask spread by trading with low-frequency traders before orders

can be updated. Cartea and Penalva (2013) find that high-frequency traders increase order im-

balances. Brolley and Cimon (2020) find that informed traders will move away from exchanges

with latency delays. Both of these results suggest that the VPIN metric should decline after the

NYSE American implemented a speed bump. In contrast, Aoyagi (2019) suggests that a latency

delay may increase or decrease the number of informed traders, depending on the initial number of

informed traders on the exchange. In a study of the IEX Chakrabarty et al. (2020) found that back-

running strategies declined and market quality improved due to the latency delay on the IEX. In

an working paper, Liu and Xu (2023) find that the implementation of a speed bump on the NYSE

American reduced informed trading and lowered price discovery. My analysis offers support to

this result using the alternative methodology of volume-synchronized informed trading estimates.

On July 24th the NYSE American implemented a latency delay of 350 microseconds. Using a

data set from the TAQ database, I selected 45 of the most actively traded securities from the NYSE

American, the treatment group, and the NASDAQ, the control group, which were traded on the

NYSE American for the entire sample period. Using this data set I estimate the VPIN metric for

each stock on both exchanges along with liquidity and volatility measures. Using a difference-

in-differences estimation strategy I am able to estimate the causal effect of the speed bump on

informed trading on the NYSE American. I find a statistically significant negative causal effect

in informed trading on the NYSE American due to the introduction of the latency delay. This

result remains statistically significant using both heteroskedasticity robust and firm-level clustered

standard errors.

This result strongly suggests that latency delays are an effective strategy to limit the amount

of informed trading in equity markets. By introducing speed bumps exchanges can lower order

flow toxicity. The introduction of the speed bump on the NYSE American caused VPIN values to
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fall indicating that the speed bumps reduce liquidity-induced volatility on these exchanges. This

suggests that speed bumps may be able to decrease the severity and or frequency of events like

the Flash Crash. Future research avenues would include the effects of latency delays on informed

trading for the financial system as a whole, the effect of latency delays on flash crash severity

and frequency, the use of other estimation strategies of informed trading, and the use of synthetic

controls to measure the effect of speed bumps on informed trading.
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