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Introduction 
The unprecedented rise in greenhouse gas emissions in the years post-1900 and especially 

post-1970 have given rise to forecasts of a consequent warming of the earth's climate, 

accompanied by a litany of severe threats to the environment and human livelihood, growing in 

intensity as greenhouse gas emissions continue (IPCC, 2021). Naturally, the severity of the 

climate change issue has prompted coordinated and committed policy responses across all levels 

of governance. From the modeling work of the supranational International Panel on Climate 

Change as well as various international accords negotiated among the world's leading economies, 

to climate change mitigation programs operated at the subnational and municipal levels, the 

abatement of greenhouse gas emissions is a widely sought-after policy goal. The desire for a 

future of ‘net zero’ emissions in order to limit climate change and its associated costs is well-

documented at the level of public policy actors. The future implied in these visions of net zero 

emissions necessitates emission abatement and/or mitigation across all sectors of the economy, 

including those with the highest cost to do so.  

 

Standard economic theory has advocated for a policy dynamic whereby emission 

abatement initiatives are undertaken according to their relative cost-efficiency of emission 

reduction per dollar spent (Field & Field, 2021). This is the impetus behind ‘cap-and-trade’ 

systems of emission reduction such as the EU's Emissions Trading System, which formalize this 

policy dynamic into legislation. But this economic dynamic can be assumed to operate anywhere 

people or institutions are seeking to reduce greenhouse gas emissions under constrained 

resources. This cost-efficiency dynamic has crucial implications for public policy regimes with 

the goal of net zero emissions: the aggregate emissions mitigation problem gets harder and more 

costly as time and policy effort go into it, increasing in cost and complexity once the low 
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hanging fruit of cost-efficacious policy has already been undertaken, in sectors of the economy 

with lower abatement costs. 

 

Taking the United States as our example of a large greenhouse gas emitter, we can see 

that this is not merely an academic distinction wherein hard-to-abate sectors are marginal to the 

economy. In 2022, the transportation sector produced 28% of all US greenhouse gas emissions, 

while the residential and commercial sectors produced 13%, a number that climbs to 30% when 

accounting for the sector's electricity demands. (EPA, 2021). These two sectors alone therefore 

account for over half of the US's total emissions. Bringing them to net-zero levels of emissions 

necessitates tremendous capital investment in both the electrification of emission sources 

currently reliant on fossil fuels, as well as an overhauling of electricity production infrastructure 

towards low-emissions sources. In brief, these are precisely the sort of hard-to-abate emissions 

sources policymakers will need to plan to tackle sooner rather than later if they are serious about 

meeting net zero goals. 

 

It is this paper's goal therefore to examine emission-reduction policies implemented in 

the US residential sector, to contribute to the literature on abatement policy in sectors with high 

abatement costs. Specifically, this paper applies the novel break-detection approach introduced 

in Pretis (2022) to U.S. state-level residential emissions data, using machine learning to detect 

breaks in a difference-in-differences model, and attributing these breaks to policy mixes. In this 

way, questions of policy efficacy are answered in the opposite manner to the standard difference-

in-differences approach: As with the methodology of Pretis (2022), this paper does not assess the 

emission-reduction effectiveness of a particular policy, but rather first detects real emission 
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reductions, after which it can assess the viability of attributing those reductions to 

contemporaneous policies. 

 

The choice of residential emissions as the specific area of inquiry owes to two principal 

factors. Firstly, this paper's break detection methodology is now well-documented in handling 

policy cases concerning general C02 emissions (Pretis, 2022), as well as road emissions in 

specific (Koch, Naumann, Pretis, Ritter, & Schwarz, 2022). The methodology's application to 

residential emissions, a large emissions source that is similar to road emissions in its relative 

level of homogeneity, is a natural point of continuation. Secondly, the focus on residential 

emissions specifically over a wider focus on building-related emissions from both commercial 

and residential sectors owes to the tendency of public policy in the US to separate out policies 

dependent on building use-case, with differing policy regimes for commercial and residential 

buildings. (DSIRE, 2023) As residential emissions are higher than commercial emissions in the 

US, residential emissions reduction policy was chosen as the more pressing area of policy and 

therefore the subject of inquiry. (EIA, 2023) 

 

As this paper aims to exploit state-level variation in residential emissions data to detect 

state-specific policy-attributable breaks, the following section outlining the policy environment 

will naturally focus on state-level policy. This is not to discount federal or municipal initiatives, 

but rather is a concession on the part of the model that the efficacy of federal or municipal 

initiatives is not something the model directly tests.  As this essay centers on a two-way fixed 

effects model using state-level panel data, federal initiatives affecting all states in the model 

simultaneously would have their affects absorbed into time fixed effects, and therefore would not 
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be identifiable as breaks. Municipal level policies are not assumed to have an effect size large 

enough to signal state-level breaks and are better studied with more granular datasets. 

  

The key findings of this essay provide empirical support for Renewable Portfolio 

Standards (RPS) and interconnection policy in reducing residential greenhouse gas emissions 

and do so at a higher level of statistical significance than previous assessments in the literature. 

Policy mixes containing RPS are associated with four high-confidence emission reductions of 

16% to 20% which are not explained by the base two-way fixed effects model. North Dakota’s 

16% reduction in 2010 sees the enaction of RPS policy as the only relevant contemporaneous 

policy, while three higher magnitude breaks are associated with RPS policy mixes containing 

only 1-3 other relevant policies. Policy mixes containing interconnection standards are associated 

with five high-confidence emission reduction breaks beyond the explanation of model 

fundamentals with effect sizes signifying reductions of 12% to 20%. This includes a 14% 

reduction in Arkansas in 2003, wherein interconnection standards and associated supplemental 

policies are the only relevant contemporaneous policies identified. Given the identification of 

isolated policy effects for RPS and interconnection standards, as well as their broad proliferation 

across detected emission reduction breaks, this paper supports the conclusion that these policies 

can be effective at reducing residential emissions at the state-level. Even absent any additional 

novel policies discovered in the model, RPS and interconnection standards policies receive 

enough empirical support to encourage emulation from future policy at the state level and above. 
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Overview of US State-Level Climate Policies and Their Effectiveness  
In the realm of residential emissions abatement policy in the US, there exist a handful of 

favored policies that have received wide adoption among states. Net Metering provisions have 

been adopted by 46 states as well as the District of Columbia (DC), which allow for residents 

with renewable energy sources, such as residential-grade solar panels, to provide energy back to 

the electricity grid in exchange for a commensurate credit on future energy consumption from 

the grid (DSIRE, 2023). These net metering policies are accompanied by broadly 

contemporaneous laws which update a state's interconnection guidelines, standardizing and 

making transparent the technical and economic process of connecting distributed solar 

installations to the electricity grid. 47 States and DC have implemented broad updates to their 

interconnection standards, typically in line with net metering initiatives (DSIRE, 2023). 37 states 

and DC have enacted Renewable Portfolio Standards (RPS) laws, which represent a wide range 

of policies whose commonality is the setting of official targets such that a certain percentage of 

energy retail sales within the state be generated by renewable energy sources by a specified year 

(DSIRE, 2023).  

 

RPS policies can range widely on a number of policy specifics. California's current RPS 

law requires that 60% of the state's electricity sales come from renewables by 2030, while Ohio's 

current RPS laws began with a 25% by 2025 target that has since been amended downwards to 

8% by 2025 (DSIRE, 2023). Some state RPS policies apply only to the state-owned electricity 

regulator, while others apply to all retail sales in the state. More variation still lies in source-

specific carve-outs that are common in RPS policies, wherein total renewable percent sales 

targets are segmented by technology, requiring certain percentages from specific favored energy 

sources, such as solar or offshore wind. (DSIRE, 2023). In addition to the widely adopted Net 
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Metering and RPS policies, there are a litany of boutique tax credits, subsidies, and government 

programs enacted by smaller numbers of states. They will be familiar in mechanism amongst 

each other and when compared to other areas of US policy making, and therefore would be 

excessive to list in full here. Exceptional policies will be noted in the policy attribution phase of 

the break detection model, and the broad effects of tax and subsidy policies will be surveyed in 

the literature where available. 

 

The key findings of RPS literatures on energy creation and emissions will be summarized 

here. To begin with RPS policy's most direct goal, increasing renewable energy deployment, 

results have been unpromising at the state level. Studies treating RPS as a homogenous binary 

variable have predominantly found small negative or nil effects of RPS policy on in-state 

renewable energy deployment (Shrimali, Jenner, Groba, Chan, & Indvik, 2012). Yin and Powers 

(2010) implement a measure of RPS policy intensity in attempts to account for variation in RPS 

policy, and while they do find a significant positive effect of RPS on renewable energy 

deployment, this effect is not reproducible in datasets from other jurisdictions, nor in direct 

reproductions of the approach of Yin and Powers with subsets of their data which account for 

changes in measurement procedure within the initial study's dataset (Shirmali et al., 2012). 

 

Analyses of RPS policy's effect on renewable energy deployment which account for the 

spatial aspects of electricity grid dynamics have produced more promising results. Shirmali et al. 

(2012) include metrics of inter-state trade in electricity in their regressions, as well as a control 

variable indicating if neighboring states have implemented RPS policies. This modeling 

approach produces weakly robust positive findings for RPS policies encouraging renewable 
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deployment and suggest that RPS-implementing regions may undergo a dynamic whereby 

renewable energy deployment flows to the least-cost state for its development, regardless of 

whether that state in particular has enacted an RPS policy. This hypothesis is lent support by 

Bowen and Lacombe’s (2015) empirical assessment of the effects of U.S. RPS policy when 

observed on the level of electricity sharing regions rather than states, which find robust positive 

effects on renewable electricity deployment at this higher jurisdictional level. 

 

While regional versus state-level effects can be confounding for precise analysis of RPS 

policy's effectiveness on renewable energy deployment, the econometric relationship between 

state-level RPS policy and state-level residential emissions should be more straightforward to 

estimate. Whether energy comes within or without state bounds makes no difference for 

emissions accounting, so RPS policies requiring some portion of retail electricity sales be 

sourced from renewable energy should show up straightforwardly in emissions data. In spite of, 

or perhaps because of, this theoretically straightforward relationship, there exists markedly less 

empirical literature estimating RPS policy's impacts on emissions than exists for the 

aforementioned energy creation metric. 

 

Approaches focusing on theory-based mathematical models tend towards findings that 

support the economic theory proposition that RPS is a 'second-best' policy option that is higher in 

cost than approaches that focus on minimizing abatement cost, with inefficiency concerns 

growing more prevalent in results as RPS policies hew closer to industrial organization policy, 

with carve-outs favoring specific technologies (Bento, Garg, and Kaffine, 2018; Young, Bistline, 

2018). While no empirical studies exist to the author’s knowledge focusing on U.S. state-level 
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emissions reduction effects of RPS policy, national-level estimations have placed the effect of 

U.S. RPS policy at an emissions reduction of 4% nationwide from 1997 to 2010, compared to 

business-as-usual counterfactuals (Sekar and Sohngen, 2014).  

 

In contrast to RPS policy's focus on the commercial energy grid, other state-level policies 

focus on encouraging residential-level renewable deployment. Literature on the efficacy of these 

policies will be summarized here. Major solar incentive policies in wide use comprise net 

metering and interconnection guideline updates, a variety of tax incentives, and direct subsidies. 

The small econometric literature on policy efficacy in this space consistently shows that tax 

incentives, no matter whether they operate through income, sales, or property taxes, are not 

statistically significant drivers of residential solar deployment. Direct cash or subsidy incentives, 

which act at the point of purchase and so beneficially bypass the delayed compensation system 

of tax credit schemes, do see some weak statistical significance in terms of encouraging 

residential solar installation (Matisoff and Johnson, 2017, Shrimali and Jenner, 2013). Crucially 

given its widespread adoption, net metering policies also are not found to have statistically 

significant effects of solar deployment, (Shrimali and Jenner, 2013) but through promising 

results from interaction terms may be an important prerequisite or amplifier for future solar 

incentives (Matisoffa and Johnson, 2017). Interconnection standards policies, which tend to be 

enacted in a broadly contemporaneous manner with net metering initiatives and therefore may 

potentially benefit from that amplifying effect, present in the data as a weakly statistically 

significant positive effect on residential solar deployment. (Shrimali and Jenner, 2013) 
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The remaining sections of this essay are as follows. After an overview of general trends 

in the data, as well as notes on its usage and limitations, I will outline  the econometric 

methodology used in this essay, elaborating on its practical strengths, technical details, and 

theoretical motivations. Following this, results of the essay's analysis will be presented and 

discussed, delving into the notable findings of the model and the policy design repercussions 

they may indicate. Finally, a concluding section will note key findings and potential areas for 

future extended research. 

Data 

This paper focuses on yearly, U.S. state-level data on residential carbon dioxide 

emissions which include emissions owing to the energy production demands of households. This 

data is sourced from the U.S. Energy Information Administration (EIA, 2023), and spans from 

1970-2019. Five control variables enter the model to account for underlying non-policy 

characteristics that may influence emissions. Heating degree days (HDD) and cooling degree 

days (CDD), also collected from the EIA, act as measures of temperature-driven demand for 

heating and cooling in residential areas, and thereby predict the energy use associated with 

cooling and heating functions. Degree days compare mean outdoor temperatures to a standard 

temperature, usually 65° Fahrenheit in the United States (EIA, 2023).  

 

Degree days are reported by the EIA in nine regional divisions of 3-9 states, rather than 

on a state-by-state basis. EIA degree day data is an aggregated measure created by weighting 

degree day observations from weather stations throughout a regional division by that station’s 

associated population, as a percentage of total regional population. In order to cohere with state-
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level emissions data, the regional average figures for HDD and CDD are assigned to each state in 

that EIA region. The combining of regional degree day data with state-level data on emissions 

does introduce some room for error or misattribution. The East South Central region, for 

instance, includes only Texas, Oklahoma, Louisiana, and Arkansas. Texas is both 

disproportionately populous and extends substantially further south towards the equator when 

compared to the other states in the region, and therefore it stands to reason that Texas may bias 

the data for the more-northern Oklahoma and Arkansas, forcing them to present in the data as 

having fewer HDD and more CDD than is actually experienced in these states. While state-level 

fixed-effects could account for an average discrepancy caused by this regional-level data, the 

model could misrepresent the response of residential emissions to large changes in degree days 

for certain states. Nevertheless, degree days are a strong determinant of household energy 

demand and residential emissions, and robustness checks will be performed to ensure any undue 

effects stemming from regional degree day data are identified. A chart of degree day regions 

sourced from the EIA is given in Figure 1 below.  

 

A final note on the EIA's degree day data which is made clear by the figure below is that 

no data is recorded from non-contiguous U.S. states, which removes Alaska and Hawaii from the 

paper's analysis. To the best of my knowledge, comprehensive and reliable state-level data on 

degree days is not available for the time period under study. Subsequent studies which are 

narrower in focused time period or number of states may be able to exploit more precise 

geographic data on degree days and avoid regional-level degree day data as a source of potential 

error. 
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Figure 1 - Heating Degree Days by Region 

 

Continuing with descriptions of control variables and their sourcing, state-level data on 

population is taken from the U.S. Census Bureau. (U.S. Census Bureau, 2020). State-level data 

on Gross Domestic Product is sourced from the U.S. Bureau of Economic Analysis (BEA). This 

GDP data is the limiting factor in terms of the time period able to be assessed, as the BEA's 

measurement processes for GDP change in the year 1998, and the bureau therefore cautions 

against combining GDP data pre- and post-1998 (BEA, 2023). The effective time period for 

which all data is complete and without issue is therefore 1998-2019. Finally, to account for 

fluctuations in the energy market and the potential substitution effects they may have on 
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residential energy usage and emissions, state-level data on the residential price of natural gas is 

also collected from the EIA (EIA, 2023).  

 

With all relevant data collected, residential emissions are then log-transformed, along 

with population, GDP, and the natural gas price. HDD and CDD data are left untransformed. 

Log-transformation of variables is undertaken so that the interpretation of coefficients and break 

magnitudes is comparable across states in percentage rather than absolute terms. Figure 2 below 

provides a time-series graph of the log of residential emissions for the 48 contiguous U.S. states 

and DC.  

 

Figure 2 - Log(Emissions) by State and Year 
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The trends present in Figure 2 reveal some key features of the continental U.S.'s 

residential emissions landscape. Most immediately apparent is the data’s high variability on a 

year-to-year basis. Many states experience their absolute maximum and minimum recorded 

emissions over the 21-year time period under study within the same five-year span. See Texas 

from 2012-2017, Washington from 2014-2019, and Illinois from 2010-2015. This variation tends 

to transcend state boundaries, with extraordinarily high- and low-emission years echoing across 

geographic regions as well as at the national level, as with the notable dip in emissions in 2012 

that appears in the data coast-to-coast, apparent in the trends of Delaware, Florida, and California 

concurrently, among many other states. Also notable in a visual inspection of the data is that 

there appears to be no clear trend in residential emissions over time. There is neither a steady 

increase attributable to rising populations or living standards and an associated increase in 

demand for residential energy, nor is there any steady decrease in emissions that could be 

attributed to national-level policies, or broader economic trends such as energy efficiency 

improvements or a declining price of renewable energy. 

Methods 

The methods employed in this paper draw from the works of Pretis (2022), Koch et al. 

(2022), Pretis and Schwarz (2022), using autonomous break detection in panel data models 

towards the aim of policy attribution and analysis. In this section, I will provide a short overview 

of the methods of these papers, after which I will detail this essay’s application of the 

methodology to residential emission abatement policy. 
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Break Detection to Detect Treatment 

To begin with, I will summarize here Pretis and Schwartz's (2022) work situating the 

methodology of the break detection approach within the broader literature on econometric theory 

and practice. Break detection is in common use in time series analysis of policy impacts. 

However, it is difficult to assert the causality for detected structural breaks when most time series 

data is without an effective control group, and/or the super-exogeneity of the policy interventions 

under study is in question. In the panel data space, there are some existing approaches for the 

detection of breaks, but Pretis and Schwartz find no scholarship formally considering the link 

between structural breaks and treatment effects, as attempted in time series work. Wooldridge 

(2021) showed that heterogeneous and time-varying treatment effects can be consistently 

identified and estimated in the two-way fixed effects (TWFE) framework, using the interactions 

of treatment timing and dummy variables. Pretis and Schwartz build on this work, showing that 

in TWFE settings, treatment dummies are equivalent to structural breaks, taking the form of a 

step-shift in the individual fixed effects of the panel units. Estimating a TWFE panel model and 

searching it for potential structural breaks can therefore be interpreted as a search for unknown 

treatment effects, by the equivalence of fixed effect step-shifts and treatment dummies. This 

approach contrasts with time series break detection in that units under study without breaks can 

be used as a control group against which structural breaks can be identified. Finally, a strength of 

this approach relative to the large existing literature on TWFE policy evaluation is that the 

reverse-causal estimation strategy can account for previously unknown or unconsidered 

treatments. The policy attribution process is agnostic to which policies, well-established or 

novel, are included in attribution. Instead, the process searches for any applicable policies which 

may explain the unexplained variation of the base model, resulting a greater potential to identify 
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novel treatments than in an effects-of-causes framework (Gelman and Imbens, 2013). This is a 

boon in the policy area of residential emissions reductions, where a large variety of policies have 

been tried, but relatively few large reductions in emissions can be seen in the data. 

 

Moving to empirical uses of break detection for policy attribution in a TWFE panel 

model, this section will now summarize Pretis (2022) and Koch et al. (2022). Pretis (2022) 

assesses the effectiveness of British Columbia's carbon tax in reducing both sector-specific and 

aggregate C02 emissions. The well-established difference-in-differences approach is used, with 

results that are replicated afterwards by the novel break-detection approach. Using both methods, 

the carbon tax was found to have a statically significant effect only on emissions in certain 

sectors, while no statistically significant effect was found for aggregate emissions. In addition to 

replicating the findings of other models, the break detection methodology was able to identify 

several significant breaks aside from the carbon tax under study, attributable to various 

restructurings of provincial energy grids.  

 

Koch et al. (2022), in contrast to Pretis (2022), narrows the scope of inquiry purely to 

road-related C02 emissions, but broadens the policy question being asked to include any policies 

undertaken in the time frame under study. This broadening of the question is available because of 

the exclusive use of the aforementioned break-detection methodology, using EU data on road 

C02 emissions to detect structural breaks at the member state level, after which policy mixes can 

be attributed to those breaks. Koch et al. (2022) find ten structural breaks in their data, six of 

which are found at their model's highest targeted significance rate, with an expected false 
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positive rate of 0.1%. A notable benefit of the break detection approach over traditional 

difference-in-differences methods in the context of Koch et al. (2022) is that break detection 

allows for the assessment of a variety of policy mixes within the same analysis. This allows not 

only for comparisons of effectiveness between individual policies, but also provides a view into 

the potential cumulative effect of multiple policies acting at the same time. Indeed, one central 

conclusion of Koch et al. is that combinatory policy regimes featuring both carbon, fuel, or road-

use taxes as well as taxes or subsidies based on vehicle type appear in the data as the most 

effective regimes for reducing emissions. 

 

In terms of methodology, Pretis (2022) and Koch et al. (2022) saturate a TWFE panel 

with a full set of step shifts for every policy jurisdiction at every point in time under study. 

Variable selection methods from machine learning are used that allow the model to have more 

candidate variables than observations, which in turn allows the model to identify breaks 

independently, without the need for knowledge of break timing in advance. In panel data of N 

policy jurisdictions and T time periods, these new candidate variables add N(T-1) potential break 

variables, some number of which can be deemed as significant structural breaks depending on 

model specification. After choosing a targeted significance rate, those break variables that reach 

the significance threshold remain in the model, while those deemed statistically insignificant are 

dropped. The remaining significant break variables can then be interpreted as heterogeneous 

treatment effects, having been estimated through the interactions of unit-fixed effects with 

treatment timing.  
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The mechanical process of model creation is similar between Koch et al. (2022) and this 

essay. Therefore, the following section will summarize the model creation methodology of Koch 

et al. (2022), detailing how it has been adapted for the purposes of this paper. For this paper, the 

criteria for model selection and statistical packages used are unchanged in comparison to Koch et 

al. (2022), but the choice of independent and control variables differ, leading to slightly differing 

equations. To begin model specification, a TWFE panel model is saturated with a full set of step 

shifts, represented as: 

 

Where ψi and ρt denote unit and time fixed effects, and xi,t is a vector of control variables 

comprising log(population size), heating degree days, cooling degree days, log(GDP) and 

log(residential price of natural gas). The treatment coefficients τj,s are assumed to be sparse with 

zero coefficients for all but the treated jurisdictions (where treatment is unknown a-priori). Using 

the machine learning functionality of the R package 'getspanel', and the 'gets' block search 

algorithm contained within it, we are able to remove all but the breaks with a targeted level of 

significance. The block search algorithm is preferred over alternative shrinkage-based methods, 

such as LASSO and its derivatives, due to the ability to target a given level of significance. This 

allows for a stringently low expected false positive rate, if desired. The breaks which are deemed 

significant according to the 'gets' algorithm can then signify the presence of true, potentially 

unknown treatment effects. Letting 𝑇𝑟#  denote the treated jurisdictions, along with associated 

treatment timings 𝑇$  for each element of  𝑇𝑟# , the post-algorithm model can be given by: 



 19 

 

Where coefficients �̂�	j,s denote the estimated heterogeneous treatment effects for the 

detected treated jurisdictions. These treatment effects are each individually tied to specific states 

in specific years, denoting time periods in policy jurisdictions where emissions have over- or 

under-performed the model's fundamentals to a statistically significant degree. For the model's 

negative breaks, which denote statistically significant and large reductions in emissions, we can 

observe policy mixes in the break state for the years around the break, and attribute the detected 

reduction in emissions to said policy mix. 

For the sake of attribution, assessing the model's level of certainty as to the timing of 

breaks is crucial. Rather than treating detected breaks as indelibly associated with the exact year 

of their detection, the construction of confidence intervals around the detected breaks allows for 

a fuller and more certain picture of the policy mix associated with the reduction in emissions. 

Hendry and Pretis (2023) details the process of estimating confidence intervals through the use 

of the approximate normal distribution of error terms in order to compute the probability of 

underlying breaks falling within a specified interval around a step-indicator saturated model's 

breaks. This process is undertaken in this paper through the R package 'getspannel'. The range of 

dates indicated by these confidence intervals, rather than the model's exact year estimates, will 

serve as the basis for the policy attribution step. 
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The attribution step consists of matching state-level policy interventions to the state and 

year range of the model's detected breaks. Any policy applicable state-level policy interventions 

implemented within the confidence intervals of a given break are considered, and additionally I 

allow for a 'grace period' of two years prior to the break range to account for the potentially time 

delayed effects of many energy policies. Changes to energy grids, or the uptake of residential 

solar panels in response to policy incentives, for instance, may occur on a larger time frame than 

a strict year-by-year approach may be able to interpret. 

 

In discussion of policy mix attribution, it should be noted that the break detection 

approach employed by this paper targets the discovery of sharp, quick discontinuations in 

emissions. Therefore, the subsequent attribution should also be considered tailored to the 

discovery of sharp, swift discontinuations in emission reductions policy. This is to the notable 

exclusion of policies that act gradually or ramp up their effects over time, which is especially 

notable for emissions policy. A Renewable Portfolio Standard policy that increments its clean 

energy targets by 1% each year, for instance, may never reach the required drop in emissions 

within an isolated yearly data point to be considered a break in the model, but may nonetheless 

be effective in reducing emissions over the long term. However, the model is able to detect 

discontinuities in such long-form policies, detecting significant shifts in emissions after an RPS 

policy is amended to shift future targets upwards, for instance. In exploiting these discontinuities, 

the model is able to assess the effectiveness of these long-term policies, given that those long-

term policies are widely spread and long lasting enough to have received updated legislation in 

enough jurisdictions to draw meaningful statistical conclusions from. Some long-term emissions 
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reduction policies without a substantial number of step-shift breaks in their policy, however, may 

elude detection in the model. 

Policy Database for Ex-Post Attribution of Detected Breaks 

The Database of State Incentives for Renewables and Efficiency (DSIRE), compiled by 

North Carolina State University, is the most comprehensive source on policies in support of 

clean energy generation and energy efficiency in the United States, and acts as the policy 

attribution database for this paper (DSIRE, 2023). All state-level policies within the DSIRE 

relating to residential emissions for a given break state and within the year range specified by the 

model or the two years immediately prior to the break range will be noted in break attribution. 

As a final note on methodology, the results of some standard robustness checks for this paper's 

model can be found in the appendix. These include running the model with robust standard 

errors, as well as checks for the consistency of breaks and coefficient estimates as the model 

changes in variable specification. Based on these checks, the results of the model are considered 

sufficiently robust for the purposes of this paper, those being break detection and subsequent 

policy mix attribution. 
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Results and Discussion 

Regression 
Table 1 - Regression Summary, 0.1% Targeted Significance Level 

 

A regression summary for the model is provided in Table 1 above. The characteristics of 

the regression model will be assessed before analyzing detected breaks and their coefficients, 

which are reported later in the results section. Table 1’s regression coefficients are in line with 

conventional theoretical models of residential emissions intensity. The population of a state, its 

level of wealth as measured by GDP, and the demand for heating in heating degree days are all 

statistically significant drivers of aggregate emissions levels. Interestingly diverging from 

heating degree days, cooling degree days are not statistically significant drivers of emissions in 

the model. This may be a result of drawing data from each state in the contiguous U.S. as the 

base dataset, which will necessarily include many states for which air conditioning or other 



 23 

energy-intensive cooling devices are not widely proliferated. It is entirely possible that a subset 

of warmer states in the southern parts of the U.S. would yield a statistically significant 

coefficient for cooling degree days, but this effect is crowded out by its lack of effect in more 

northern states with less cooling demand. 

 

Representing the potential substitution effects brought about through increasing energy 

costs, the price of natural gas enters with strong statistical significance as the only negatively 

correlated control variable in the model. Some of the empirical literature on RPS policy indicates 

increasing energy prices as a key emission-reduction mechanism for RPS policy, and that the 

modeling of energy prices can attenuate the observed effects of RPS-related emissions reductions 

(Sekar and Sohngen, 2014). To account for this, the model has also been re-run absent natural 

gas prices as a control variable. The regression and break results of this model are listed in the 

appendix and will be summarized here. The effects of removing natural gas prices on the model 

is minimal. When compared to the base model at the highest target significance level, 0.1%, the 

model without natural gas increments break effects and regression coefficients up or down by 

0.01 or 0.02 log points, and renders a break in Florida in 2012 significant in the 0.1% targeted 

false positive rate model, rather than only in models at a 1% or 5% targeted false positive rate. 

As these are the sum total of changes in results between models, for discussion and analysis or 

results the full model with the included effect of natural gas prices will be used. 

Breaks 

The model finds twelve negative emission breaks at the lowest (most conservative) 

targeted level of significance, a false positive rate of 0.1%. As noted in Koch et al. (2022), one 
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concern with the break detection model is that an agnostic detection approach may neglect some 

real treatments which are lesser in effect than the most stringent breaks. To allay this concern, 

the model is run again at two higher (less conservative) target significance levels, 1% and 5%, 

yielding two novel negative breaks of small magnitude in the 1% model, and seven such novel 

breaks in the 5% model. The 1% model additionally splits a 2006 break in North Carolina into 

two separate breaks in 2006 and 2008, but this is not replicated in either the 0.1% or 5% model, 

and as such is not considered a novel break. A summary of the negative breaks found in all three 

models are detailed in Table 2 below with information on break magnitude, standard errors, the 

year of the break, and 99% confidence intervals around the break years. The model also finds a 

variety of positive emissions breaks in the data. However, for the sake of containing the scope of 

this essay to the topic of effective emission reduction policies, these positive breaks will not be 

listed in the table below, or analyzed in detail. For reference on effect scale, emissions are logged 

in the model, and so the effect of breaks can be seen as logged differences in emissions, 

approximating percent reductions for small values. 
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Table 2 - Summary of Negative Breaks Detected Across Models

 

5% 1% 0.10% 5% 1% 0.10%

Alabama Effect Size -0.184 -0.184 -0.190 Mississippi Effect Size -0.101
(1st Break) Standard Error -0.026 -0.028 -0.025 Standard Error -0.024

Year 2003 2003 2003 Year 2003
99% CI  ±1  ±1 ±1 99% CI  ±4

Alabama Effect Size -0.138 -0.142 -0.142 North Carolina Effect Size -0.215 -0.138 -0.207
(2nd Break) Standard Error -0.023 -0.024 -0.025 (1st Break) Standard Error -0.021 -0.039 -0.024

Year 2012 2012 2012 Year 2007 2006 2006
99% CI ±2 ±2 ±2 99% CI ±1      ±2 ±1

Arkansas Effect Size -0.129 -0.14 -0.142 North Carolina Effect Size -0.098
(1st Break) Standard Error -0.024 -0.025 -0.027 (2nd Break) Standard Error -0.038

Year 2003 2003 2003 Year 2008
99% CI ±2 ±2 ±2 99% CI ±5

Arkansas Effect Size -0.059 North Dakota Effect Size -0.108 -0.149 -0.155
(2nd Break) Standard Error -0.029 (1st Break) Standard Error -0.029 -0.026 -0.028

Year 2017 Year 2009 2010 2010
99% CI  ±11 99% CI    ±3  ±2  ±2

Delaware Effect Size -0.114 -0.124 -0.112 North Dakota Effect Size -0.079
Standard Error -0.022 -0.023 -0.024 (2nd break) Standard Error -0.03
Year 2006 2006 2006 Year 2013
99% CI  ±3  ±3 ±4 99% CI  ±7

DC Effect Size -0.177 -0.216 -0.198 South Carolina Effect Size -0.129 -0.135 -0.122
Standard Error -0.028 -0.028 -0.029 Standard Error -0.021 -0.022 -0.023
Year 2016 2016 2016 Year 2007 2007 2007
99% CI  ±1  ±1  ±1 99% CI      ±2   ±2  ±3

Florida Effect Size -0.106 -0.119 South Dakota Effect Size -0.081
Standard Error -0.021 -0.023 Standard Error -0.023
Year 2012 2012 Year 2004
99% CI ±4 ±3 99% CI   ±6

Indiana Effect Size -0.091 Texas Effect Size -0.085 -0.093
Standard Error -0.022 Standard Error -0.023 -0.025
Year 2004 Year 2004 2004
99% CI ±5 99% CI  ±6    ±5

Kentucky Effect Size -0.142 -0.159 -0.162 Virginia Effect Size -0.136 -0.135 -0.129
(1st Break) Standard Error -0.029 -0.03 -0.033 Standard Error -0.02 -0.021 -0.023

Year 2001 2001 2001 Year 2008 2008 2008
99% CI ±2 ±2 ±2 99% CI    ±2    ±2  ±3

Kentucky Effect Size -0.061
(2nd Break) Standard Error -0.026

Year 2016
99% CI ±10

Louisiana Effect Size -0.153 -0.151 -0.164
Standard Error -0.024 -0.025 -0.027
Year 2003 2003 2003
99% CI  ±2     ±2   ±2

Maine Effect Size -0.347 -0.349 -0.291
Standard Error -0.027 -0.029 -0.026
Year 2008 2008 2008
99% CI    ±0   ±0   ±0

State
Targeted Significance LevelTargeted Significance Level

*(Maine has a positive break of (+0.179, +0.178, +0.174) in 2015)

State



 26 

 The effect size for breaks in the most stringent 0.1% model tend to fall within the bounds 

of 0.10 and just above 0.20 log point reductions. A notable exception to this trend is Maine, with 

its 2008 break reaching an effect size of -0.291 in the 0.1% model, which only grows greater in 

magnitude in lower stringency models. This is the greatest single-year reduction break observed 

in the model, but this outlier is tempered by a subsequent positive break in Maine in 2015, with a 

magnitude of +0.174. Combining these effects yields a value of -0.117, which is within the 

normal range of break effect sizes. Given this complication, Maine should not be considered the 

high watermark for emissions reduction in the model. Maine has notably caused outlier data 

issues in similar studies, owing to the small size of its electricity grid rendering objectively small 

changes in grid structure as uncharacteristically large shocks in relative data. (Shrimali et al., 

2012) 

 

Leaving aside Maine as an outlier, the remaining highest reduction breaks belong to 

North Carolina in 2007 (-0.207), DC in 2016 (-0.198), and Alabama in 2003 (-0.190). Louisiana, 

with its 2003 break of magnitude -0.164, and Kentucky, with a 2001 break of magnitude -0.162 

comprise the following batch of effect size. North Dakota's 2010 break has a magnitude of -

0.155, which marks the final standout data point among the breaks, with the remaining five 

breaks in the 0.1% significance model ranging in effect size from -0.112 to -0.142. Throughout 

the model, confidence interval ranges have a general trend of increasing as effect sizes decrease. 

 

As expected, the 1% targeted significance model adds breaks which are smaller in 

magnitude and less certain in year specification. Florida's 2012 break has a magnitude of -0.119, 
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with a confidence interval range of ±3 years. Texas's 2004 break has a magnitude of -0.093, with 

a range of ±5 years. While these breaks provide a reasonable if non-ideal window for policy mix 

attribution, the same cannot be said for many of the breaks detected in the 5% target significance 

model. The 5% model detects seven breaks in total, although none of these breaks bear the level 

of statistical confidence necessary for use in policy mix attribution, for reasons which will be 

elaborated on here. The 5% model finds novel second breaks in North Carolina and North 

Dakota's, but these breaks land within the confidence intervals of the original breaks identified in 

more stringent 1% and 0.1% models. The effects of these supposed 'second breaks' are therefore 

not statistically distinguishable from these states’ original breaks, as is evidenced by the fact that 

the first breaks' effect sizes are attenuated in the 5% model. Novel second breaks are also 

detected in Arkansas and Kentucky, but while these breaks exist outside of the confidence 

intervals of these states’ higher-scrutiny first breaks, the confidence intervals of their novel 

breaks are too large to yield workable policy mix results, at plus or minus 11 and 10 years 

respectively, so these breaks are also excluded from consideration. The three remaining novel 

breaks found in the 5% model are lesser in effect size magnitude than any break in the 0.1% 

model which serves as a base, and so given their appearance only in models with high false 

positive rates, they will also be excluded from policy analysis. 

 

As a final presentation of model fit before moving to policy mix attribution, Figure 3 

below plots the fitted values of the most conservative break model in blue over the previous data 

summary plot of Figure 2, plotted in black. Additionally, breaks are identified with red vertical 

lines at their break year. The shaded grey areas surrounding these break indicators represent the 

breaks’ associated 99% confidence interval ranges. Counterfactuals representing estimated 
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emissions in absence of the treatment effect of breaks are given by the red plots diverging from 

break years. For the sake of a more complete presentation of the model and its fit, all detected 

emission breaks are present, which includes many positive changes in emissions which have not 

been relevant to this essay’s focus on effective emission reduction policies. 

Figure 3 - Model Fit, Break Detection, and Counterfactual Emissions by State and Year 

 

The previously noted year-to-year volatility in emissions data is captured well by the 

control variables of the fitted model. This is attributed primarily to the inclusion of Heating and 

Cooling Degree Days, which operate at the regional and national level in contrast to the other 

strictly state-level control variables, and appear to account for supra-state trends in emissions 

which might otherwise interfere with break detection. Estimated counterfactual pathways may 

appear visually steeper than their true values in cases where uncertainty around break timing is 
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high. Certainty on counterfactual emissions pathways rises in tandem in with certainty around 

break timing and effect size. 

 

In total, analysis of the models will attempt to match policy mixes focusing on the 12 

breaks detected in the 0.1% model, with supplemental, weaker evidence being garnered from 

policy mix matches from the two breaks of the 1% model. These 14 breaks will be sorted by 

effect size and subsequently linked to policy mixes enacted during their associated break 

intervals. Not all breaks detected in the model, however, are able to be matched to state-level 

policies. Alabama's 2003 and 2012 breaks, as well as Kentucky's break in 2001 are without any 

state-level policies listed in the DSIRE within their break windows. These three breaks are 

therefore the most demanding of discussion, in that assessments of these breaks' validity has 

important bearing on the validity of policy-attributable breaks, and therefore on the policy 

conclusions that can be drawn from their analysis. If Alabama's large 2003 break is attributable 

to some general factor that may affect another state with equal likelihood, for instance, then the 

certainty of policy effects weakens. Attaining some certainty as to the mechanisms of these non-

policy breaks is therefore crucial to assessing the strength of the model's findings for policy 

consideration. 

 

On the level of electricity management, Alabama is an atypical state. Alabama is the 

second largest exporter of power within the U.S., exporting 45 million MWh in 2019, while only 

15 of the lower 48 states exported 10 million MWh or above. (EIA, 2023). Given Alabama's 

abnormally large role in the trade of power, it might be assumed that Alabama would react to 
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changes in energy demand differently from the average state, as is represented by the effects of 

the fitted model against which breaks are drawn. Degree day data for 2003 and 2012 in 

Alabama's region show surprise drops of more than 300 CDD in 2003 and nearly 500 HDD in 

2012 when compared to their preceding years, representing a fall in domestic energy demand far 

above usual year-on-year ranges observed elsewhere in Alabama's data. It is possible that when 

Alabama 'over-performs' the emission reduction predictions of the model, what is being captured 

in the model is that the energy dynamic in Alabama for the 1998-2019 time period relies on the 

state's carbon-intensive fuels like coal in years of high domestic energy demand, but tends to 

export that coal in large amounts when domestic energy demand is low. In these low-demand 

years, Alabama may rely instead on its nuclear and natural gas power in place of coal. This may 

lead to a less carbon-intensive energy mix than would be seen either in Alabama’s usual years, or 

in other states’ low-demand years, wherein they simply use less coal energy in aggregate, but 

retain the same energy mix on a MWh-by-MWh basis. A more complete analysis of the energy 

dynamics at play in Alabama throughout the early twenty-first century is left for more 

specialized sources, but for the purposes of model analysis in this paper, it suffices to identify 

that Alabama is a unique state in terms of its energy management and trade behavior, its detected 

breaks occur at periods of unusually low domestic energy demand, and therefore the model may 

be detecting real reductions in emissions which nonetheless are not attributable to policy mixes, 

as they may be a result of economic factors unique to Alabama which lay beyond policy. The 

energy trade dynamic is given as one of many potential causes of the detected breaks but is not 

meant to be an exhaustive examination of the phenomenon. 
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Figure 4 - Alabama Net Generation by Source 

 

Given in Figure 4 above is a graph of Alabama's mix of energy production for the time 

period under study (EIA, 2023 ). Notable in explaining Alabama's breaks is the large shift away 

from coal production and into natural gas as an energy source within the state. This trend finds a 

notable local maximum in 2012, the year of Alabama's second break. This corroborates 

attribution of Alabama's breaks to energy mix factors, and also denotes a responsiveness in 

Alabama's grid makeup to wider factors affecting the economic viability of potential energy 

sources. This makes for a potent link to the literature on RPS policy which notes that RPS 

implementation sees its strongest energy creation effects at the regional level, encouraging 

development in least-cost regional areas (Bowen and Lacombe, 2015). As Alabama already 

stands out as a hub for energy generation as signaled by its strong energy exporting behavior, 
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then the observed policy-naive reductions in Alabama’s residential emissions may be a result of 

the changing regional energy demands of a market becoming more saturated with RPS-affected 

jurisdictions. This phenomenon may assist in explaining some trends in Figure 4, such as the 

cyclical peaks in hydroelectricity production and the 2008 increase in nuclear power.  

 

The case of Kentucky's 2001 break is less clearly attributable to consequential and unique 

factors of the state, but rather lends itself more in explanation to the limitations of the data. Data 

on heating and cooling degree days are pulled at the regional level, and as noted in Figure 2’s 

rendering of degree day regions, Kentucky is the northernmost state in a four state block 

principally situated along the U.S.'s southern border. Examinations of available state-level data 

on degree days reveals a notable difference in the climate experienced in the East South Central 

region's southern states of Mississippi and Alabama, compared against the more northern climate 

of Kentucky (NCEP, 2023). As noted in the earlier section of the paper detailing data limitations, 

this situation of a small state encountering a climate substantially different from the bulk of the 

populated area of its degree day region is a situation ripe for data distortions, and has a strong 

potential to lead to unsubstantiated breaks. When running the break detection model absent 

degree day data, Kentucky is one of only two states to see their detected breaks removed, the 

other being Delaware in 2006, which is in a similar regional geographic position, as the small 

northernmost state of a region spanning disparate climates. Given the strong theoretical backing 

for data distortion, these results caution against interpreting Kentucky's 2001 data as a relevant 

break, and provides pause for interpretation of Delaware's 2006 break as well, despite a litany of 

policy efforts within the state at the time available for attribution. Conversely, that the 10 other 

breaks in the 0.1% model remain even when absenting degree days does well to assuage 
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concerns that other states may be experiencing similar ghost effects as seen in Kentucky, as well 

as providing indication of general model robustness. With this and the above analysis, the 

conclusion is reached that the three policy-lacking breaks do not represent a generalizable issue 

in model specification. 

 

With model concerns addressed, attribution of detected emission reductions to policy 

mixes can begin. What follows in Table 3 below is a list of all examinable breaks, sorted first by 

the highest statistical stringency of model in which they are detected, and then sorted within 

those groups by the effect size of their break. To the right of the table is a list of all policies 

relating to residential energy and emissions that have been identified within the timeline of the 

break’s confidence interval range, with an additional lead time of two years previous to the break 

to allow for a delay in policy goal achievement. Policies that have received some support for 

emission reduction potential in previously surveyed empirical analysis are given in bold. Policies 

which have, to the knowledge of the author, not yet been assessed empirically for efficacy in the 

literature are given in underline. Policies such as net metering or income tax incentives, which 

have been assessed in the surveyed literature as having no statistical effect on green energy 

creation or emissions, are left as plain text. 
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Table 3 - Emission Break Policy Mix Attribution 

 

State, Year (99% CI) Approximate Effect Size Year Policy
0.1% Targeted Significance *** 
Maine, 2008 (2008-2008) -29% 2006 RPS increases targets
* Net effect accounting for subsequent 
positive break places Maine 2nd to 
bottom

(-12% net 2015 break) 2006 "Efficiency Maine" Trust established

North Carolina, 2006 (2005-2007) -20% 2005 Net Metering
2005 Interconnection Standards
2007 RPS established
2007 Solar Rights - Permitting

District of Columbia, 2016 (2015-2017) -20% 2015 Solar Energy Tax Credit

2016 RPS increases targets 
Alabama, 2003 (2002-2004) -19% 2002-2004 No State-Level Policies
Louisiana, 2003 (2001-2005) -16% 2003 Net Metering

2003 Solar Property Tax Incentive
2004 Interconnection Standards

2005 Home Energy Loan Program: $6000 for energy 
efficiency upgrades

Kentucky, 2001 (1999, 2003) -16% 1999-2003 No State-Level Policies
* Break Is not robust to removal of 
Degree Day climate data
North Dakota, 2010 (2008-2012) -16% 2007 RPS established
Alabama, 2012 (2010-2014) -14% 2010-2014 No State-Level Policies
Arkansas, 2003 (2001-2005) -14% 2001 Net Metering

2002 Interconnection Standards
Virginia, 2008 (2005-2011) -13% 2003 Interconnection Standards

2007 Sales Tax Incentive - Energy Efficiency
2007 Mandatory Green Power Option for Utilities
2008 Solar Rights - Permitting
2008 Energy Efficiency Property Tax Incentive
2010 Income Tax Deduction - Energy Efficiency
2011 RPS-like Energy Efficiency Resource Standard
2011 Solar and Wind Permitting Standards

South Carolina, 2007 (2004-2010) -12% 2006 Renewables Tax Credit

2006 Energy Efficient Manufactured Homes Sales Tax 
Incentive

2007 Interconnection Standards
2008 Net Metering

2008 Energy Efficient Manufactured Homes Tax 
Incentive

Delaware, 2006 (2002-2010) -11% 2000 Net Metering
* Break Is not robust to removal of 
Degree Day climate data 2000 Delmarva Green Energy Fund Created

2001 Direct Subsidy - Green Power
2002 Interconnection Standards
2005 RPS established

2007 Sustainable Energy Utility Foundation (SUEF) 
established

2009 Wind Power - Permitting
2009 Solar Rights - Permitting
2009 SUEF increases stringency
2010 RPS-like Energy Efficiency Resource Standard

1% Targeted Significance ** 
Florida, 2012 (2009-2015) -12% 2008 Net Metering
* Break Is not robust to removal of 
Degree Day climate data 2008 Interconnection Standards

2010 RPS-like Energy Efficiency Resource Standard
Texas, 2004 (1999-2009) -9% 2000 RPS established

2000 Property Tax Incentive - Renewables
* Break Is not robust to removal of 
Degree Day climate data 2002 Interconnection Standards
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The results of the policy attribution table are consistent with established empirical 

literature on renewable energy creation. Policies which have received empirical support for their 

renewable energy creation effects are well-represented in breaks' policy mixes. RPS policy or 

derivatives thereof are present in 8 of the 11 policy-attributable breaks. Pure RPS policy 

accounts for 6 of these breaks, while the RPS-derivative Energy Efficiency Resource Standard 

(EERS) accounts for 3 breaks, with one overlapping break between EERS and RPS. 

Interconnection standards are present in a separate but overlapping subset of 8 of the 11 breaks. 

Taken as a whole, policy mixes containing one or both of pure RPS policy and interconnection 

standards account for all 11 policy-attributable breaks. While novel policies do appear in the 

data, the overwhelming impression relates to the extreme prevalence of RPS and Interconnection 

policy as the clear connective tissue between policy-attributable breaks.  

 

The table's highest strength breaks, chronicling emissions reductions of 20% to 16%, are 

especially strong indicators of the strength of RPS policy for emissions reduction. RPS policy is 

involved in the policy mixes of three of these four policy-attributable breaks, as well as in 

Maine's massive but questionably short-lived 29% reduction in 2008. Isolating evidence 

indicating RPS policy's emissions-reduction efficacy can be found in North Dakota's impressive 

16% reduction, for which RPS is the only policy within the policy attribution window. 

Additionally, DC's 20% reduction is attributed to only one policy other than the twelve 

percentage point increase in its RPS targets. This additional policy is a solar tax credit, a policy 

form with little empirical support in the broader literature for its efficacy in promoting energy 

grid changes or emission reductions. RPS policy is also linked to Texas's -9% 2004 break, as 

well as Delaware's -11% 2006 break, although these breaks are both smaller in magnitude and 
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more complex in terms of policy mix when compared to the previously discussed breaks. 

Additionally, breaks in Delaware and Texas notably are not robust to the removal of degree day 

climate data, and so act as supplemental evidence to the more robust and precisely indicated 

findings above. 

 

Interconnection standards also demonstrate a strong link to residential emission 

reduction, being the most widely identified policy in break-attributable policy mixes. Compared 

to RPS, interconnection standards are more spread out among policy mixes contemporaneous 

with both large and small emission reductions. The only three policy mixes that do not contain 

interconnection standards are Maine, (-29%/-12%) DC (-20%), and North Dakota (-16%). While 

these breaks are high in magnitude as a group when compared to the rest of the table, this is not 

to indicate that interconnection standards cannot be a strong driver of emission reductions. 

Arkansas’s policy mix includes interconnection standards and associated net metering policy as 

the only relevant emission reductions policy during the break interval for its substantial -14% 

break, while Louisiana's -16% break has interconnection standards and accompanying net 

metering initiatives as two of only four policies. Interconnection standards are indicated in two 

of the top three emission reduction breaks in the model, when discounting Maine's emission drop 

to account for its subsequent positive shock. As such, interconnection standards are considered in 

the findings of this paper to have been effective emission reduction policy for the residential 

sector. 
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Moving to policies which have yet to be discussed in the surveyed literature, there are a 

number of unique policies which recur in the data, or which are noteworthy for their inclusion in 

policy mixes related to strong emission reduction numbers. One such notable policy is the RPS-

derivative Energy Efficiency Resource Standards (EERS) scheme. EERS policies operate by the 

same mechanism as RPS policy, but focus on energy use reductions through efficiency upgrades 

as their targeted metric of choice, rather than measures of renewables penetration in a state's 

electricity sales. EERS is given in underline in the table above because despite EERS being an 

offshoot of RPS policy, it is uncertain whether the empirical findings detailing RPS policy's 

emissions reduction effects can be carried over to the similarly structured but significantly 

altered EERS policy. 

 

EERS policies are part of three policy mixes attributed to emission breaks, while RPS-

specific policies can be found in six. A lessened popularity alone is not reason enough to believe 

EERS policy is less effective than RPS policy, but EERS policy presents with less strong 

emission reduction behavior than its parent policy of RPS. EERS is found exclusively in 

emission reduction breaks of 13% or smaller effect size, and of its three attributed breaks, two of 

them are not robust to the removal of degree day data. Additionally, attempting to isolate for the 

effects of EERS policy is difficult, as it does not appear in any policy mix absent interconnection 

standards, which is already expected to have an emissions reduction effect based on surveys on 

the literature and isolated findings within this paper's data. At a minimum, these results do not 

indicate that EERS policy is a substantially stronger pathway for emissions reduction policy than 

the already existing and well-tested RPS framework. 
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Solar and wind permitting measures are found in three attributable policy mixes. Two of 

these breaks occur near the bottom end of break effect size, and due to either policy fervor in the 

case of Virginia or an exceptionally large confidence interval range in the case of Delaware, are 

stranded in policy mixes containing eight or more separate policies, which cautions against 

extrapolating out a large effect of these permitting laws on emissions. Solar permitting reform in 

the case of North Carolina's impressive -20% break should appear more promising, as the policy 

mix for that break contains only four policies, but two of those are interconnection standards and 

RPS, both of which have already proven their effectiveness. The data does not support solar or 

wind permitting reform as a substantial reducer of residential emissions. 

 

Finally for novel policies observed in policy mixes, there is Louisiana's Home Energy 

Loan Program, which provides loans of up to $6000 for residential energy efficiency upgrades. 

This policy exists in a policy mix in which only interconnection standards is a proven policy, 

with net metering and a property tax incentive being the only other policy explanations for 

Louisiana seeing the highest percentage reduction in emissions for states not implementing an 

RPS policy, at -16% compared to the next highest -14%. It is feasible therefore that the Home 

Energy Loan Program could be responsible for this two percentage point gap. While these results 

alone are not conclusive enough to point to the efficacy of this loan policy, it does point to the 

Home Energy Loan Program as a potential area of further study. 
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Also in the realm of potential areas of further studies are unique and tangentially related 

policies out of Maine and Delaware, what will be termed here as 'efficiency trusts'. The 

establishment of the Efficiency Maine trust, as well as the creation of Delaware's Sustainable 

Energy Utility Foundation (SUEF) act as in-house expertise on energy efficiency incentives, 

programs, and best practices. The data does not provide any isolating policy mixes to assess their 

efficiency here, but the establishment of a new quasi-governmental agency to implement policies 

and build knowledge is a bold and uncommon step in comparison to other policies. That two 

such organizations appear in a small number of break confidence intervals may point to some 

efficacy in these setups worthy of investigation. 

 

An analysis of state-level policy mixes contemporaneous with large, autonomously-

detected reductions in residential emissions confirms the positive findings of the econometric 

literature, and also indicates why previous findings in this policy sphere have been so weakly 

statistically supported. Emission reduction breaks are strongly associated with interconnection 

standards legislation, which points to a successful policy lever states may have access to in 

meeting their climate goals. But the eight successfully identified interconnection standards 

policies belie the 39 other interconnection standards laws passed in the contiguous U.S. which 

were not identified in the model. The same worrying inconsistency shadows the six successfully-

identified RPS policy interventions compared against 31 such policies that were not identified by 

the emissions break model.  The lack of any other consistently identified workhorse policies 

which could lower emissions if passed in other jurisdictions leaves state policymakers either 

back at the drawing board entirely, or left to tinker with established RPS and interconnection 

standards policies, adapting them in the style of more successful peer states' policies. The notable 
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lack of a downward trend in residential emissions data across the U.S. highlights a general lack 

in effective residential emissions reduction policy in the 1998-2019 time period, not only at the 

state level, but at the regional and federal level as well. The passage of 2022's Inflation 

Reduction Act after the time period under study, with its substantial clean energy investments, 

may represent a stronger emissions-reduction policy pathway for the future. The results of this 

analysis of state-level policy indicates that the residential emissions issue may be acted upon 

most effectively not at the level not of the state, but rather of the regional electricity grid and 

higher still with nationwide initiatives. 

Conclusion 

Residential emissions comprise a significant portion of the total emissions owing to large 

greenhouse gas emitting nations like the United States, and as such these emissions will need to 

be reduced in order to meet climate targets. Using the novel TWFE break-detection approach 

seen in Pretis (2022) and Koch et al. (2022), this essay examines the efficacy of state-level 

emissions-reduction policies within the contiguous U.S. through a ‘causes-of-effects’ framework. 

First, large reductions in residential emissions are detected in panel data through an autonomous 

machine learning process, after which these large reductions can be assigned to 

contemporaneous policy mixes, in efforts to identify common effective policies. 

 

Fourteen such breaks were identified in this paper’s model as suitable candidates for 

policy mix analysis, of which eleven were matched with contemporaneous policy mixes. Strong 

support was found for both Renewable Portfolio Standards (RPS) and Interconnection Standards 

as emission reduction policies, both of which individually were present in over half of the policy-
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relevant breaks. These findings confirm the results of previous assessments in the literature, and 

to a stronger degree of statistical significance. In general, however, the results of this analysis 

may serve as evidence against state-level policy being an effective jurisdictional level for 

residential emission reduction policy, as much of those emissions are determined by regional 

electricity grids which transcend state boundaries. Despite state-level emission reduction policy 

being fertile ground wherein many disparate policies are attempted, and isolated policies can be 

shown to have desirable effects, the aggregate picture is one of stagnant outcomes. Even the 

proven-effective Renewable Portfolio Standard and Interconnection Standard policies have large 

majorities of their state-level implementations go entirely undetected in the model, indicating a 

small average effect size. This, combined with a lack of empirically effective novel emission 

reduction policies detected through autonomous breaks, leads to a dour assessment of state-level 

residential emission reduction policy, in line with the literature surveyed. 

 

Further research in the area may wish to focus on policy comparisons of break 

jurisdictions with non-break jurisdictions, identifying the particulars of effective policy at the 

state-level. Addressing the limitations of regional level climate data, additional statistical work 

may be performed on a more narrow band of jurisdictions that allows for more fine-grained 

control of climate-related variation in emissions. 

 

Pessimism importantly does not characterize this paper’s overall findings on residential 

emission reduction policy. Emission reductions of up to 20% were credibly detected in the 

model, indicating a strong possible effect size for top-performing emission reduction policies 
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when implemented effectively. The breaks states identified may be able to serve as examples of 

effective implementations of RPS or interconnection standards policies, for use in peer 

jurisdictions or indeed in higher levels of U.S. governance more in line with the jurisdictional 

areas that determine residential emissions. The wide variety of identified breaks in the model, as 

well as the consistency of identified policy in the greatest effect size emission reductions indicate 

that there do exist credible policy pathways to reduce residential emissions for large emitters like 

the United States. The ‘laboratories of democracy’, as state level policy may aspire to be, have 

yielded impressive results in isolated form, even if not in aggregate. While there is indication 

that state-level policy alone may not be sufficient or optimal in tackling the issue of residential 

greenhouse gas emissions, the results here exhibit successful policy mixes worthy of emulation 

for subsequent policy in peer jurisdictions at the state level and above. 
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Appendix 
Table A 1 - Regression Summary and Break Detection by Varying Model Specification 
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Table A 2 - Regression Summary and Break Detection, State Cluster-Robust Standard Errors 
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