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Abstract

This paper first derives an adaptive estimator when heteroskedasticity is present
in the unit-specific error in an error component model and then compares the finite
sample performance of the proposed estimator with various other estimators. While
the Monte Carlo results show that the proposed estimator performs adequately in
terms of relative efficiency, its performance on the basis of empirical size is quite
similar to the other estimators considered. The results from using the different es-
timators in two applications highlight the importance of devising a test in future to
distinguish between the source of heteroskedasticity.
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1 Introduction:

One of the common problems encountered in the econometrics literature is the estimation

of linear regression models with heteroskedastic error of unknown functional form. There

is an extensive literature on this issue in the context of cross-sectional and time-series

data. It is widely recognized that we seldom know the form of the heteroskedasticity and

that the application of estimated generalized least squares (EGLS) in the face of such

misspecification would lead to inefficient estimators which in turn can lead to erroneous

inferences. One approach to deal with this problem is to apply EGLS in the models

using nonparametric methods since such estimators are robust to misspecification of the

functional form; see Carroll (1982), Delgado (1992), Hidalgo (1992), Robinson (1987),

among others. Even though the resulting EGLS estimators are asymptotically efficient, we

need to know their finite sample performance as the data we encounter are always finite.

Rilstone (1991) addresses one aspect of this question by undertaking a Monte Carlo study

to compare the nonparametric EGLS estimators with various parametric estimators using

both correct and incorrect forms for the heteroskedasticity. One of his results is that,

apart from correctly specified EGLS, the semiparametric approach generally dominates

other estimators in larger samples1 with models exhibiting moderate and large amounts of

heteroskedasticity.

Surprisingly, the issue of heteroskedasticity in the case of panel data has not been

studied as extensively. In a recent survey, Baltagi (1998) mentions only four references

(Mazodier and Trognon, 1978; Baltagi and Griffin, 1988; Randolph, 1988 and Li and

Stengos, 1994). Randolph’s work is based on unbalanced panel data while Baltagi and

Griffin (1988) extend on Mazodier and Trognon’s work for the balanced case. Baltagi

and Griffin (1988) consider heteroskedasticity coming in through the unit specific error

component while Li and Stengos (1994) look at heteroskedasticity in the unit-time varying

1Note that in Rilstone’s experiment, “larger” refers to a sample size of 50 which is actually quite a
small sample size, as he points out as well.
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error component. The first study uses parametric methods while the second one uses a

semiparametric approach2.Both studies show that their proposed EGLS estimators have

the same asymptotic distribution as the true GLS estimator. While Li and Stengos (1994)

provide a Monte Carlo study to show that the finite sample behavior of their estimator is

adequate as well, Baltagi and Griffin (1988) simply use an empirical example to provide

some support for their estimators3. Also, the procedure proposed by Baltagi and Griffin

(1988) requires a large time component for the panel4, which may not always be available.

In fact, Baltagi (1995, p.78) points out “this is not the typical labor or consumer panel

data situation , but it is likely to be the case when pooling a few countries, states or regions

over a long time period”.

Given that both Rilstone (1991) in the non-panel context, and Li and Stengos (1994) in

the panel context find semiparametric estimation in the face of heteroskedasticity encour-

aging in moderately sized samples, this paper first proposes a semiparametric estimation

procedure in the presence of heteroskedasticity of unknown functional form in the unit-

specific errors . Our procedure does not require a large time component unlike the estimator

proposed by Baltagi and Griffin (1988). We then undertake a Monte Carlo experiment to

study the finite sample behavior of the proposed estimator and one of the parametric es-

timators proposed by Baltagi and Griffin (1988) in the presence of heteroskedasticity of

the unit-specific errors; we also include some other standard estimators. This is followed

by the application of the various estimators to two empirical examples to illustrate our

results. The last section has the conclusion.
2Their work is a generalization of the results of Carroll (1982) and Robinson (1987) to the panel data

case.
3Note that the results in the latter may be specific to the data set and do not necessarily provide

convincing evidence of the superiority of their estimators over the standard estimators in finite samples.
4For example, if the number of time periods (T) in the data and the number of parameters to be

estimated (K) from the model are equal, then the formula given on p.748 in Baltagi and Griffin (1988)
is undefined. Also, if T is less than K, which might well happen with short panels with T=2 or 3, the
formula returns a negative estimate for the variance.
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2 An Error Component Model with Heteroskedastic-
ity:

A standard one-way error component model is given as

yit = xitβ + µi + vit i = 1, ...., N ; t = 1, ...., T (1)

where xit is 1 x k, µi ∼ i.i.d.(0, σ2
µ) is the unit-specific error component while vit

∼ i.i.d.(0, σ2
v) is the unit-time varying error component. For details of such models and its

estimation, see Baltagi (1995), Hsiao (1986), among others.

According to Baltagi and Griffin (1988, p.745), “ particularly bothersome are the as-

sumptions of the absence of autocorrelation in the error term vit and homoskedasticity of

the country [unit] specific variances”. Like them, we concentrate on the second problem

here but unlike them, we propose a semiparametric estimation method (as opposed to a

parametric method) to estimate the regression coefficients. The justification of using a

semiparametric method stems from the encouraging results of the Monte Carlo studies

undertaken by Rilstone (1991) and Li and Stengos (1994) in similar contexts. The model

under study is the same as in equation (1) but with a change in the assumption about the

unit-specific error µi. More specifically, we assume that the µi’s are i.i.d. with E(µi|xi) = 0

and V ar(µi|xi) = ω(xi) ≡ ωi where xi = 1
T

T∑
t=1
xit. In other words, the conditional variance

of the unit-specific error term has heteroskedasticity of unknown functional form.

Rewriting (1) in vector-matrix form, we have

y = xβ + Zµ+ v (2)

where Z = IN⊗eT , eT is a T dimensional column vector of ones and µ = [ µ1 µ2.....µN ]′.

y and v are NT x 1 column vectors of the dependent variable and the unit-time varying

error component respectively while x is an NT x k matrix of regressors, all of which are

formed by stacking the data using t as the fast index and i as the slow index. Then follow-

ing Baltagi and Griffin (1988), the inverse of the conditional variance-covariance matrix of
3



the error term in equation (2) (i.e. Zµ+ v) denoted by Ω−1 is given as

Ω−1 = diag[1/σ2
i ] ⊗ (JT/T ) + diag[1/σ2

v ] ⊗ (IT − JT/T ) (3)

where σ2
i = Tωi + σ2

v ∀ i and JT is a square matrix of ones of dimension T.

The true GLS estimator of β is then given as

β̃ = (x′Ω−1x)−1x′Ω−1y. (4)

It should be noted that the formula above involves working with a NT x NT (Ω−1)

matrix which can be quite demanding if one has a large data set5. So we propose rewriting

equation (4) as

β̃ =
(

N∑
i=1
x

′
iA

−1
i xi

)−1 (
N∑

i=1
x

′
iA

−1
i yi

)
(5)

where xi is a T x K matrix of regressors for the i-th individual, yi is T x 1 and A−1
i is

given as

A−1
i =

1
γi(1 − ρi)

[
IT − eT e

′
Tρi

(1 − ρi + Tρi)

]
(6)

with ρi = ωi/γi and γi is defined below. The calculation of the estimator following the

formula given in equation (5) involves using a T x T covariance matrix which for most

panel data is quite managable.

Since γi and σ2
v are unknown, we need to find estimators of them to obtain an EGLS

estimator of β. σ2
v can be estimated, following Hsiao (1986) in the standard case, as

σ̂2
v =

N∑
i=1

T∑
t=1

[(yit − ȳi) − β̂
′
w(xit − x̄i)]2

N(T − 1) − k
(7)

where ȳi is similarly defined as x̄i and β̂w is the within estimator.

Then we define γi = E(u2
it|x̄i) = ωi + σ2

v and propose the following kernel estimator for

γi :
5For example, in the empirical part, we used a data set from China where NT = 5950. Gauss Version

3.2.34 on a 266 megahertz pentinum machine with 128 megabytes of Ram (with 120 of that allocated to
Gauss) reported insufficient workspace memory while trying to calculate β̃ by using equation (4). So this
can be a real problem for the applied researcher.
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γ̂i =

N∑
j=1

T∑
t=1
û2

jtK(
x̄i − xjt

h
)

N∑
j=1

T∑
t=1
K(
x̄i − xjt

h
)

(8)

where ûjt is the OLS residual from the regression of yjt on xjt, K(.) is the kernel function

with h as the smoothing parameter. Once we have γ̂i we can obtain an estimator of ωi as

ω̂i = γ̂i − σ̂2
v and hence an estimator of A−1

i by replacing the unknown parameters in (6)

by their estimators. The EGLS estimator of β is then obtained as

β̂ =
(

N∑
i=1
x

′
iÂ

−1
i xi

)−1 (
N∑

i=1
x

′
iÂ

−1
i yi

)
(9)

3 Monte Carlo Experiment

Here we describe the Monte Carlo experiment undertaken to study the finite sample proper-

ties of the proposed estimator and report the relative efficiency of the proposed estimator

as compared to other estimators, including the iterative estimator proposed by Baltagi

and Griffin (1988) under the same heteroskedasticity assumption. It should be noted that

Baltagi and Griffin (1988) did not study the finite sample properties of their proposed

estimators.

For comparative purposes, the design of our Monte Carlo experiment is similar to that

of Li and Stengos (1994) and Rilstone (1991). The following simple model is considered:

yit = β0 + β1xit + µi + vit i = 1, ...., N ; t = 1, ...., T (8)

where xit = 0.5wi,t−1 + wit. We generate wit following two different data generating

processes, namely

(i) wit ∼ i.i.d. U(0, 2). We denote this as DGP1.

(ii) wit ∼ i.i.d. eνit and νit ∼ i.i.d. N(0, (0.4)2) i.e. wit is lognormal. We denote this as

DGP2.

The parameters β0 and β1 are assigned values 5 and 0.5 respectively. We generate

vit ∼ N(0, σ2
v) and µi ∼ N(0, ωi) where ωi = ω(x̄i) = α2(1 + λx̄i)2; i.e., we assume
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heteroskedasticity of additive form. Given our earlier definition of the total variance as

γi = ωi + σ2
v and denoting the expected variance of µi by ω̄, we set the expected total

variance, ω̄+ σ2
v = 8 to make it comparable across the different data generating processes.

We let σ2
v take values 2, 4 and 6; that is, we vary the share of the variance of the unit-specific

error term in the total variance. For each fixed value of σ2
v , λ is assigned values 0, 1, 2 and

3 where 0 denotes homoskedastic unit-specific error, while the degree of heteroskedasticity

increases as the value becomes larger. For a fixed σ2
v , we obtain a value of ω̄ and using

the different values of λ, we get the values for α for each λ value using the additive

heteroskedasticity specification above. Then we obtain the values of ωi for each σ2
v under

the four different λ values. For the estimation part, the kernel used is the normal kernel6

since it is well-known in the nonparametric literature that the choice of the kernel function

is not crucial as long as it satisfies certain regulatory conditions and the sample size is

not small7. The choice of the smoothing parameter, h, however, is not as straightforward.

One can use the cross-validation approach or the plug-in approach or a “quick and simple”

approach8; see Wand and Jones (1995) for reference. There are no theoretical results in

the literature that clearly indicate the superiority of any one of these approaches in finite

samples. The first two approaches are computationally quite intensive and even though

they may be desirable asymptotically, their finite sample performances are often not very

good. As a result, many researchers have tended to report estimates using different degrees

of smoothing by choosing different values of h. For instance, Rilstone (1991) follows this

approach of choosing h and reports his results for h = 0.5, h =1 and h = 1.5. Unlike Li and

Stengos (1994), he finds results that are sensitive to the choice of h. We also report results

6This may be written as:

K(ψit) =
1√
2π

exp
(

−ψ2
it

2

)

where ψit = (x− xit)/h.
7This result is also reflected in Rilstone’s (1991) study where the performances of the estimators were

not sensitive to the choice of the kernel function.
8An example of a “quick and simple” approach is to choose the smoothing parameter according to the

following formula
h = csxn

−0.2

where sx is the sample standard deviation of the regressor, n is the sample size and c is a constant. For
example, Li and Stengos (1994) computed h using c = 0.8, c = 1, and c = 1.2.
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for h = 0.5, 1 and 1.5 respectively. Our experiments involve 1,000 replications, though we

have tried 2,000 replications for some cases and found similar results. We use the following

sample sizes:

(I) N = 50, T = 3; i.e., N*T = 150.

(II) N=100, T = 3; i.e., N*T = 300.

We report the relative efficiency9 of the following estimators:

(a) The proposed EGLS estimator (EGLS).

(b) The iterative EGLS estimator proposed by Baltagi and Griffin (1988) (EGLSB).

(c) The standard GLS estimator for a one-way error components model; that is, the

assumption is one of homoskedastic error components (GLSH).

(d) The within or fixed effects estimator which is obtained by sweeping out the unit-

specific errors through a transformation (WITHIN). See Baltagi (1995) for details.

(e) The OLS estimator (OLS).

Table 1 gives the relative efficiency of the different estimators for the case where the

regressor is generated from a uniform distribution (DGP1), with a sample size of 150,

formed with N=50 and T=3. It should be noted that the attractiveness of nonparametric

estimators come from their asymptotic properties and this sample size is not very large.

The second column of the table reports the relative efficiency of the different estimators

when both the error components are homoskedastic. So a priori we expect the standard

GLS estimator (GLSH) for a one-way error component model to perform better than any

of the other estimators. The results from table 1 shows that this is indeed true, but our

proposed EGLS estimator also performs well for all σ2
v values. This is not so for the other

three estimators. The WITHIN estimator performs somewhat similar to the GLSB with

a decrease in relative efficiency as σ2
v increases. The OLS estimator performs poorly, and

suffers an efficiency loss for smaller values of σ2
v (larger values of ω̄) since this estimator

does not take into account the unit-specific effect.

(TABLE 1 GOES HERE)

9Relative efficiency is defined here as the ratio of the mean square error of the estimator under consid-
eration to the mean square error of the true GLS estimator.
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For the cases of heteroskedasticity (λ = 1 to λ = 3), the EGLS outperforms all of the

other estimators except when λ = 2 and λ = 3 under σ2
v = 2; then the GLSB and both

the GLSB and the WITHIN estimators are preferable respectively. This may be arising

from the fact that the sample size is not very large and the nonparametric estimators are

known to be biased in small samples. So we expect that as the sample size increases, the

estimator’s performance would improve. It is interesting to note that while the perfor-

mances of the EGLS, the GLSH and the OLS are slipping as we move to higher degrees of

heteroskedasticity, from λ = 1 to λ = 3, the performance of the EGLSB and the WITHIN

actually improve slightly. Overall our results suggest that the performance of the EGLS

does not seem too sensitive to the degree of heteroskedasticity, though we do find some

sensitivity to the choice of the smoothing parameter. For example, for the homoskedastic-

ity case, under σ2
v = 6, depending on h, the relative efficiency of the EGLS ranges from

1.021 to 1.063. It is interesting to note that even though the EGLSB and the WITHIN

perform very well when σ2
v = 2 and λ = 3,their relative efficiencies slip considerably when

σ2
v = 6. In other words, when the degree of heteroskedasticity is high and the share the

variance of the unit-specific error in the expected total variance is quite high compared to

that of the unit and time specific error, the EGLSB and the WITHIN perform well but

not so, when that share is quite low; the EGLS or the GLSH estimators do not show such

sensitivity. These results suggest from an applied point of view that when one does not

have information on the degree of heteroskedasticity and the share of the different variances

of the error terms in the total variance, which would indeed be the case with real data, it

might be better to use either the EGLS or the GLSH estimator.

(TABLE 2 GOES HERE)

Table 2 gives the relative efficiency of the different estimators under DGP1 as in Table 1

except that the sample size is now 300 (N=100 and T=3). The results in this table are very

similar to that in Table 1, though as expected, the performance of the EGLS has mostly

improved with the increase in the sample size. The EGLS performs quite adequately under

all cases, which is not the case with the EGLSB, especially when the share of the expected

variance of the unit-specific error term in the total expected variance is relatively small;
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i.e., σ2
v = 6. The EGLS is again somewhat sensitive to the choice of the window-width.

(TABLE 3 GOES HERE)

Tables 3 and 4 present the relative efficiency of the different estimators when the re-

gressor is generated from a lognormal distribution (DGP2) with sample sizes equal to 150

and 300 respectively. We find results similar to those under DGP1; that is, the EGLS10

performs reasonably well under the different cases, while the EGLSB does not perform well

for higher σ2
v values particularly for σ2

v = 6. The simulations also show that the relative

efficiency of the GLSH is not too far behind that of the EGLS. Further, as found for DGP1,

the EGLS results are sensitive to the choice of window-width, h. For example, in Table 4,

when σ2
v = 6 and λ = 3, the relative efficiency of the EGLS for h = 0.5 is 1.023 while that

of the EGLS for h = 1.5 is 1.040, which is the same as the relative efficiency of the GLSH.

(TABLE 4 GOES HERE)

Efficiency of estimators is not our only concern when estimating models. We are also

interested in the performance of hypothesis tests regarding the coefficients. To illustrate

the impact of using different estimators in a one-way error-component model on hypothesis

testing, we consider a test of H0 : β1 = 0.5 against Ha : β1 �= 0.5. Tables 5 and 6 report

the empirical size performance of a t-test for the above mentioned hypothesis for DGP111;

that is, the tables report the percentage of times the absolute value of the t-ratio is greater

than the critical values of a standard normal variable corresponding to the nominal levels

of significance of 1%, 5% and 10%. The results show that all of the estimators we consider

for an error-component model perform similarly with a tendency to overreject (especially

at the 10% level)12. As expected, the size distortion is smaller for the larger sample. Our

results, on the basis of this Monte Carlo exercise, suggest that we cannot recommend any

one of the estimators over the others in terms of their empirical size for the hypothesis test

of H0 : β1 = 0.5 against Ha : β1 �= 0.5.
10We have used a trimmed version of the estimator with the trimming constant being equal to 0.001, to

avoid the problem of getting distorted results from the values of x which are in the tails of the distribution.
11The results for DGP2 are similar and are available from the author on request.
12We have selected a few entries in Table 5 and report the standard errors associated with them. For

example, the standard error associated with the entry 0.054 in Table 5 is 0.007 while that associated with
0.163 is 0.011.
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(TABLE 5 and 6 GO HERE)

4 Application:

In this section, we estimate a simple bivariate relationship between calorie intake and

income for two different panel data sets using the estimators we examined above. Our

purpose is to determine if there is a gain in applying the more computationally intensive

estimator proposed in Section 2. It should be noted that according to the discussion in

Section 1, we cannot use the estimator proposed by Baltagi and Griffin (1988) for the

examples here since both the data sets are short panels with T = 2. We are aware of

the fact that there are other variables such as age, household size etc. which influence

individual calorie intake as well, but we choose to use income as the only regressor since it

is undoubtedly the most influential factor in an individual’s consumption decision. Some

authors in the calorie-income literature have also done the same; e.g., Subramanian and

Deaton (1996). As we have chosen this application for illustrative purposes only, and are

not trying to add to the debate on what is the correct magnitude of the income/expenditure

elasticity of calorie intake, our modelling assumption is reasonable. The two data sets differ

in their sample sizes, one being relatively smaller than the other; details follow.

4.1 Data Descriptions:

The first data set is from the International Crops Research Institute for the Semi-Arid

Tropics’ (ICRISAT) Village Level Studies which covers over 240 households in six carefully

selected representative villages in three districts representing three different agroclimatic

and soils regions of India. In each village a random sample of 10 households was selected

from the agricultural labor and nonland holding households and another 30 households

were a stratified sample of the cultivating households. We use individual calorie intake

data13 and real per capita income data for the years 1976 and 1977. The results are based
13Four rounds of nutrition survey were undertaken for the 1976-77 and 1977-78 agricultural years. Data

were collected on individual nutrition intakes in the past 24 hours. For details on ICRISAT VLS data, see
Binswanger and Jodha (1978), Ryan et al. (1984) and Walker and Ryan (1989). Since the income data is
annual, the daily calorie intake data used here are obtained by averaging the rounds observations within
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on 730 observations; that is, 365 individuals, each observed over 2 years.

The second data set is a subset from the China Health and Nutrition Survey (CHNS),

jointly undertaken by the Carolina Population Center at the University of North Carolina

at Chapel Hill, the Institute of Nutrition and Food Hygiene and the Chinese Academy of

Preventive Medicine. The data were collected using a multistage, random cluster sampling

process to draw a sample of about 3800 households in eight diverse provinces. This paper

uses data on individual calorie intake and deflated per capita income for 2975 males14 for

the years 1989 and 1991 giving us a total of 5950 observations.

4.2 Results:

For the ICRISAT data, the null hypothesis of homoskedasticity is tested using White’s

(1980) test, first for the individual years separately and then for the pooled data. Under

the null hypothesis, White’s test statistic is distributed χ2 with k - 1 degrees of freedom.

The observed values of the test statistic are 4.760, 8.965 and 12.863 with p-values of

approximately 0.0291, 0.0028 and 0.0003 for 1976, 1977 and the pooled data respectively.

The results reject homoskedasticity for this data set. The next test undertaken is the

Hausman (1978) specification test which returns a p -value of 0.3095, thereby failing to

reject the null hypothesis of no correlation between the regressor and the error term15.

Under this scenario, we use the different estimators considered in Section 3 (except the

EGLSB) and report the results in Table 7. For EGLS, the kernel used is the normal kernel

and h, the window-width is equal to csxN
−0.2, where sx is the sample standard deviation

of the variable x, N = 365 and c is set equal to 0.8, 1 and 1.2 respectively. We find

similar estimates of the standard errors and the t-ratios for the statistical significance of

the slope parameter from the different estimators, which suggests that there is no gain in

using the proposed heteroskedasticity consistent estimator. One reason for this could be

each year.
14The Hausman test applied to the complete data and also to the data on only females rejects the null

hypothesis of no correlation between the regressor and the error term, making the use of the random effects
model inappropriate.

15If there exists a correlation between the regressor and the error term, then the GLSH will be an
inconsistent estimator.
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that the heteroskedasticity is in the unit-time specific error component and not the unit-

specific error component. Unfortunately the currently available heteroskedasticity tests

cannot distinguish between the sources of the heteroskedasticity as they are based on the

combined error term, uit.

For the CHNS data, the results are very similar to that for the ICRISAT data (see Table

7); that is, even when White’s test strongly rejects the homoskedasticity hypothesis16, there

seems to be no gain in using the proposed heteroskedasticity consistent estimator. Again,

it could be the case that the heteroskedasticity is not coming from the unit-specific error

term.

(TABLE 7 GOES HERE)

5 Conclusion:

Given that various studies in the econometrics literature have shown that adaptive estima-

tors work well in the presence of heteroskedasticity even in moderately sized samples for

both panel data17 and standard cases, this paper first derives an adaptive estimator using

nonparametric methods when the the heteroskedasticity is present in the unit-specific er-

ror in a one-way error component model. A Monte Carlo exercise is then undertaken to

compare the finite sample performances of various estimators including the proposed one.

We then use the different estimators in two empirical applications to examine whether they

result in practical differences.

The Monte Carlo results show that the relative efficiency of the proposed estimator is

adequate, but it is somewhat sensitive to the choice of the window-width. However, in terms

of the size performance, all the estimators considered behave in a similar fashion; that is,

none of them overreject or underreject substantially. So on the basis of the size performance,

we cannot claim the superiority of our proposed estimator over the other ones. This result is

quite unlike that of Li and Stengos (1994) who find that their proposed adaptive estimator

in the presence of conditional heteroskedasticity of unknown form in the unit-time specific
16The observed value of the test statistic is 7.85 with a p-value of 0.005.
17This is the case when the variance of the unit-time specific error component is heteroskedastic.
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error term is the only one which has the correct size under heteroskedasticity, while the

others overreject to a large extent. Also, unlike them, our size performance results are also

sensitive to the choice of the window-width.

We use two data sets of quite different sample sizes to estimate a simple bivariate rela-

tion between calorie intake and income to illustrate the usefulness of using one estimator

over another in the presence of heteroskedasticity. Even though the hypothesis of ho-

moskedasticity is soundly rejected in both cases, all the estimators give very similar results

in terms of the coefficient estimates and the standard errors. One inference we can draw

is that if the heteroskedasticity is present in the unit-specific term, then one can still use

the standard GLS estimator for an error component model. Practically, this means that

one has to first distinguish between the source of heteroskedasticity; that is, whether it is

from the unit-specific error term or from the unit-time specific error term before deciding

on the correct estimator. This suggests another way to view our results; the heteroskedas-

ticity in the two examples considered in this paper are indeed coming from the unit-time

specific error term and hence an estimator which takes into account heteroskedasticity in

the other error component may not make a difference. This suggests a need for a test

for heteroskedasticity that will distinguish between heteroskedasticity coming in from the

unit-specific error component and that from the unit-time specific error component. This

is beyond the scope of this paper and is the subject of current research.
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Table 1
Relative Efficiency: DGP1, N=50, T=3.

σ2
v = 2

λ = 0 1 2 3
EGLS (h = 0.5) 1.027 1.081 1.103 1.108
EGLS (h = 1) 1.020 1.072 1.099 1.105
EGLS (h = 1.5) 1.017 1.076 1.107 1.117
EGLSB 1.082 1.095 1.076 1.076
GLSH 1.013 1.117 1.130 1.135
WITHIN 1.101 1.119 1.091 1.084
OLS 2.843 4.871 5.696 5.962

σ2
v = 4

EGLS (h = 0.5) 1.048 1.099 1.136 1.149
EGLS (h = 1) 1.028 1.087 1.126 1.140
EGLS (h = 1.5) 1.022 1.095 1.138 1.154
EGLSB 1.189 1.189 1.162 1.158
GLSH 1.016 1.158 1.177 1.186
WITHIN 1.266 1.264 1.210 1.198
OLS 1.483 2.227 2.480 2.565

σ2
v = 6

EGLS (h = 0.5) 1.063 1.083 1.105 1.115
EGLS (h = 1) 1.035 1.067 1.093 1.104
EGLS (h = 1.5) 1.021 1.071 1.098 1.110
EGLSB 1.349 1.321 1.285 1.274
GLSH 1.014 1.120 1.135 1.142
WITHIN 1.545 1.487 1.416 1.399
OLS 1.091 1.344 1.414 1.439
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Table 2
Relative Efficiency: DGP1, N=100, T=3.

σ2
v = 2

λ = 0 1 2 3
EGLS (h = 0.5) 1.000 1.071 1.052 1.048
EGLS (h = 1) 1.000 1.074 1.065 1.062
EGLS (h = 1.5) 1.000 1.083 1.084 1.084
EGLSB 1.102 1.097 1.083 1.077
GLSH 1.000 1.123 1.118 1.116
WITHIN 1.135 1.130 1.098 1.093
OLS 2.948 5.245 6.052 6.309

σ2
v = 4

EGLS (h = 0.5) 1.006 1.085 1.089 1.092
EGLS (h = 1) 1.002 1.088 1.101 1.105
EGLS (h = 1.5) 1.000 1.100 1.125 1.134
EGLSB 1.225 1.199 1.174 1.171
GLSH 0.998 1.162 1.175 1.181
WITHIN 1.317 1.272 1.232 1.226
OLS 1.545 2.387 2.650 2.736

σ2
v = 6

EGLS (h = 0.5) 1.015 1.073 1.095 1.103
EGLS (h = 1) 1.005 1.069 1.096 1.105
EGLS (h = 1.5) 1.001 1.078 1.112 1.123
EGLSB 1.379 1.305 1.301 1.296
GLSH 0.997 1.123 1.150 1.157
WITHIN 1.603 1.484 1.454 1.449
OLS 1.128 1.413 1.505 1.532
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Table 3
Relative Efficiency: DGP2, N=50, T=3.

σ2
v = 2

λ = 0 1 2 3
EGLS (h = 0.5) 1.005 1.009 1.010 1.020
EGLS (h = 1) 1.005 1.013 1.015 1.016
EGLS (h = 1.5) 1.005 1.015 1.017 1.018
EGLSB 1.089 1.060 1.051 1.046
GLSH 1.004 1.017 1.020 1.021
WITHIN 1.108 1.081 1.071 1.066
OLS 3.048 4.254 5.019 5.500

σ2
v = 4

EGLS (h = 0.5) 1.016 1.020 1.022 1.022
EGLS (h = 1) 1.013 1.026 1.031 1.032
EGLS (h = 1.5) 1.012 1.028 1.034 1.037
EGLSB 1.204 1.162 1.146 1.137
GLSH 1.011 1.031 1.038 1.041
WITHIN 1.272 1.209 1.185 1.173
OLS 1.553 1.952 2.207 2.368

σ2
v = 6

EGLS (h = 0.5) 1.024 1.028 1.031 1.032
EGLS (h = 1) 1.016 1.028 1.035 1.039
EGLS (h = 1.5) 1.014 1.030 1.038 1.042
EGLSB 1.344 1.308 1.289 1.275
GLSH 1.014 1.032 1.042 1.047
WITHIN 1.543 1.445 1.404 1.382
OLS 1.115 1.233 1.312 1.363
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Table 4
Relative Efficiency: DGP2, N=100, T=3.

σ2
v = 2

λ = 0 1 2 3
EGLS (h = 0.5) 0.998 1.011 1.014 1.016
EGLS (h = 1) 0.999 1.074 1.020 1.022
EGLS (h = 1.5) 0.999 1.083 1.023 1.025
EGLSB 1.089 1.077 1.071 1.068
GLSH 0.999 1.020 1.025 1.027
WITHIN 1.119 1.093 1.083 1.078
OLS 2.994 4.258 5.043 5.535

σ2
v = 4

EGLS (h = 0.5) 1.000 1.014 1.019 1.021
EGLS (h = 1) 1.001 1.021 1.029 1.032
EGLS (h = 1.5) 1.001 1.024 1.033 1.037
EGLSB 1.202 1.165 1.148 1.139
GLSH 1.001 1.026 1.037 1.041
WITHIN 1.294 1.229 1.204 1.192
OLS 1.543 1.961 2.225 2.391

σ2
v = 6

EGLS (h = 0.5) 1.009 1.018 1.022 1.023
EGLS (h = 1) 1.006 1.019 1.027 1.032
EGLS (h = 1.5) 1.006 1.022 1.031 1.040
EGLSB 1.370 1.315 1.289 1.275
GLSH 1.006 1.024 1.034 1.040
WITHIN 1.587 1.482 1.439 1.416
OLS 1.113 1.235 1.318 1.372
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Table 5
Empirical Size: DGP1, N=50, T=3.

σ2
v = 2 σ2

v = 4 σ2
v = 6

Nominal
Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

λ = 0
EGLS (h = 0.5) 1.6 5.4 12.0 1.6 6.4 12.6 1.3 7.2 13.2
EGLS (h = 1) 1.4 5.6 11.8 1.5 5.5 12.5 1.2 7.1 12.3
EGLS (h = 1.5) 1.4 5.5 11.9 1.5 5.0 12.4 1.1 6.7 12.3
EGLSB 2.0 7.3 13.6 2.0 7.4 13.1 2.1 7.6 12.5
GLSH 1.3 5.7 11.8 1.2 4.9 12.3 0.9 5.6 11.9

λ = 1
EGLS (h = 0.5) 1.7 6.3 13.6 1.8 7.9 15.0 1.8 7.9 13.9
EGLS (h = 1) 1.7 6.2 13.1 2.0 7.3 14.7 1.7 8.2 13.7
EGLS (h = 1.5) 1.7 6.3 12.7 2.1 7.3 14.3 1.6 7.6 13.6
EGLSB 2.0 7.0 13.9 1.9 8.1 13.6 2.1 7.8 14.0
GLSH 1.7 7.0 12.9 2.2 7.8 14.5 2.2 8.6 13.8

λ = 2
EGLS (h = 0.5) 1.8 6.9 14.2 2.5 7.9 16.3 2.3 9.5 15.1
EGLS (h = 1) 1.8 6.5 14.3 2.3 8.0 15.4 2.3 8.9 14.5
EGLS (h = 1.5) 2.0 6.5 14.3 2.4 8.0 15.5 2.3 9.1 14.8
EGLSB 2.0 6.5 14.0 2.1 7.5 13.7 2.0 7.5 13.6
GLSH 1.9 6.9 14.1 2.5 9.2 15.7 2.6 8.8 15.4

λ = 3
EGLS (h = 0.5) 2.1 6.9 14.3 2.6 8.0 16.3 2.7 9.7 15.5
EGLS (h = 1) 2.0 6.7 14.3 2.7 8.0 15.4 2.7 9.2 14.6
EGLS (h = 1.5) 1.9 6.8 14.5 2.6 8.5 16.3 2.5 9.4 14.9
EGLSB 2.0 6.4 13.7 2.3 7.9 13.6 2.1 7.5 13.0
GLSH 2.1 7.1 14.8 2.7 9.3 16.2 2.8 9.1 15.6
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Table 6
Empirical Size: DGP1, N=100, T=3.

σ2
v = 2 σ2

v = 4 σ2
v = 6

Nominal
Significance level 1% 5% 10% 1% 5% 10% 1% 5% 10%

λ = 0
EGLS (h = 0.5) 0.7 4.6 8.6 0.6 4.3 8.8 0.6 4.9 11.0
EGLS (h = 1) 0.7 4.6 8.5 0.4 4.3 8.6 0.5 4.8 10.4
EGLS (h = 1.5) 0.7 4.6 8.6 0.3 4.3 8.7 0.6 4.8 10.1
EGLSB 1.5 5.9 11.8 1.9 6.7 12.2 1.9 5.8 11.2
GLSH 0.8 4.5 8.7 0.3 4.5 9.0 0.7 4.8 10.1

λ = 1
EGLS (h = 0.5) 1.0 5.4 10.8 1.0 6.1 11.8 1.1 6.3 12.1
EGLS (h = 1) 1.1 5.4 10.6 0.9 5.8 11.4 1.1 6.3 12.2
EGLS (h = 1.5) 1.2 5.2 10.7 1.3 5.4 12.0 1.1 6.4 12.1
EGLSB 1.4 6.3 12.2 1.8 6.2 12.6 2.1 5.9 11.3
GLSH 1.5 5.9 10.5 1.9 6.3 12.1 1.4 6.8 11.8

λ = 2
EGLS (h = 0.5) 1.1 5.7 11.1 1.3 6.4 11.4 1.2 7.5 13.5
EGLS (h = 1) 1.2 5.8 10.8 1.7 6.8 12.6 1.1 7.1 13.6
EGLS (h = 1.5) 1.4 5.5 11.1 2.1 6.7 13.1 1.5 6.9 13.7
EGLSB 1.7 6.5 12.1 1.4 7.1 11.9 1.9 6.0 11.6
GLSH 1.5 5.8 11.4 2.3 6.7 12.9 1.8 7.4 13.8

λ = 3
EGLS (h = 0.5) 1.2 5.7 10.5 1.5 6.5 12.0 1.2 7.6 13.4
EGLS (h = 1) 1.5 5.8 10.9 1.9 6.7 12.7 1.4 7.0 13.9
EGLS (h = 1.5) 1.6 5.9 11.0 2.2 7.1 13.4 1.7 6.9 14.5
EGLSB 1.7 6.2 11.5 1.5 7.1 12.0 1.9 5.8 11.0
GLSH 1.7 6.5 11.5 2.3 7.4 13.8 1.7 7.1 14.4
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Table 7
Estimates of the income elasticity of calorie intake

in the presence of heteroskedasticity
Estimator Coefficient estimate standard error t- ratio

ICRISAT
EGLS (c = 0.8) 0.119 0.018 6.513
EGLS (c = 1) 0.120 0.018 6.503
EGLS (c = 1.2) 0.120 0.019 6.498
GLSH 0.126 0.019 6.664
WITHIN 0.109 0.026 4.255
OLS 0.138 0.019 7.104

CHNS
EGLS (c = 0.8) 0.007 0.006 1.190
EGLS (c = 1) 0.007 0.006 1.182
EGLS (c = 1.2) 0.007 0.006 1.174
GLSH 0.006 0.006 1.075
WITHIN 0.007 0.007 0.966
OLS 0.005 0.007 0.876
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