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Abstract

We consider the problem of testing for unit roots at the zero and seasonal frequencies in time-

series data which are recorded semi-annually. The proposed methodology follows that of

Hylleberg et al. (1990) and Beaulieu and Miron (1993) for quarterly and monthly data

respectively. The non-standard asymptotic distributions for the single and joint tests are derived,

and various percentiles of the finite-sample distributions are tabulated. Monte Carlo simulation is

used to investigate the powers of the tests, and we illustrate their application to several semi-

annual economic time-series.

JEL classifications: C12, C22

Keywords: Unit roots; non-stationary data; seasonality; semi-annual data

* Corresponding author. E-mail:  dgiles@uvic.ca ;  FAX:  250-721-6214 ; Voice:  250-721-8540



2

1. Introduction

There is now a well-established literature relating to the problem of testing for non-stationarity in

seasonal economic time-series data. For example, some of the earlier literature on this topic can

be found in Hylleberg (1992), and a more recent overview is given by Franses (1997). This issue

is of considerable importance as the distinction needs to be drawn between unit roots at the zero

frequency, and unit roots at some or all of the seasonal frequencies in the case of non-annual data.

An incorrect identification of the nature of such unit roots would lead to inappropriate filtering of

the series prior to its use in regression analysis, say, as well as inadequate testing for possible

cointegration between one such series and another.

A seasonal series is one which has a spectrum with distinct peaks at the seasonal frequencies, θ =

(2πj/s), j = 1, 2, ....., s-1, where s is the number of seasons in the year. The frequencies of interest

with quarterly data, for example, are at 0, ¼, ½, and ¾ cycles, or θ = 0, π/2, π, and 3π/2. An

integrated series is one that has an infinite mass in its spectrum at some frequency, θ. In contrast,

the spectrum of a stationary series is finite, but non-zero, at all frequencies. If a seasonal series

has a unit root at all of its frequencies, it is said to be “seasonally integrated”, or SI(s), and it

needs to be s-differenced to make it stationary. Early contributions (e.g., Dickey et al., 1984) to

the problem of testing for non-stationarity in seasonal time-series considered only a null of SI(s),

and an alternative hypothesis of stationarity. That is, they did not consider the possibility of unit

roots at only the seasonal (non-zero) frequencies, and neither did they allow for unit roots at a

sub-set of the seasonal frequencies.  The more recent test proposed by Kunst (1997) also falls into

this category. In the case of quarterly data, this shortcoming was rectified partially by Osborne et

al. (1988), and more fully with the tests proposed by Hylleberg et al. (1990) (hereafter “HEGY”)

and Ghysels et al. (1994). Franses (1991) and Beaulieu and Miron (1993) provided a similar

testing framework for monthly data1.

Economic time-series data recorded only on a semi-annual basis are quite common. For example,

many companies report their financial statements on this basis, at least on a provisional basis. The

purpose of this paper is to investigate the properties of a HEGY testing framework in the case of

semi-annual data, and to compare it with conventional Dickey-Fuller (1981) testing for unit roots

at the zero frequency in such time-series. In the next section we describe the testing procedure,

and section 3 discusses the asymptotic distributions of our test statistics. Section 4 deals with the

finite-sample percentiles for these tests, and reports some small-sample power results. The
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application of the semi-annual HEGY tests is illustrated in section 5, and some concluding

remarks and recommendations appear in section 6.

2. A testing framework

2.1 Background

In this section the framework for applying HEGY-type unit root tests is outlined for the case of

semi-annual data. Recall the autoregressive model for a stochastic seasonal process, xt:

Ψ(B)xt  = εt, (2.1)

where εt ~ iid(0, σ2), Ψ(B) is a polynomial in the backshift operator, B, and the roots of Ψ(B)=0

determine whether or not the series is stationary.  For the purposes of the following derivation the

data generating process of xt is assumed to be free of any deterministic components.  Following

HEGY (1990) and Beaulieu and Miron (1993), Ψ(B) can be expressed in terms of elementary

polynomials and a remainder:
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and Ψ*(B) is a remainder with roots outside the unit circle

The θk’s are the unit roots. In the case of semi-annual data we have θ1 = 1 and θ2= -1, and so

δ1(B) = (1-B), δ2(B) = (1+B), and ∆(B) = (1-B2).  Substituting these into equation (2.2) yields:

( ) ( ) )(*)1()1()1()( 2
21 BBBBBBB Ψ−+−−++=Ψ λλ . (2.3)

Next, let π1 = -λ1 and π2 = -λ2 , and substitute the right hand side of (2.3) into the autoregression

equation Ψ(B)xt = εt, so we have:
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21  .
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This can be rewritten in the form of a regression equation on which the tests can be based:

tttt zzzB εππ ++=Ψ −− 1221113)(* , (2.4)

where:  11 )1( −+=+= tttt xxxBz

)()1( 12 −−−=−−= tttt xxxBz (2.5)

2
2

3 )1( −−=−= tttt xxxBz       

(t = 1, 2, 3, ......,n).

2.2 Implementation of the tests

To apply the unit root tests with semi-annual data, equation (2.4) is estimated by Ordinary Least

Squares (OLS). Using a ‘t-test’, the null hypothesis of a unit root at the zero frequency (π1 = 0) is

tested against the one-sided alternative hypothesis π1 < 0, which is equivalent to testing Ψ(1) = 0

versus the alternative of stationarity, Ψ(1) > 0. Similarly, the hypothesis of a unit root at the π

frequency (π2 = 0) is tested against the alternative π2 < 0.   In addition, the ‘F-statistic’ for π1 = π2

= 0 may be used to test if unit roots exist at both frequencies simultaneously: that is, if the series

is “seasonally integrated”. The asymptotic and finite-sample percentiles of these non-standard ‘t’

and ‘F’ statistics are considered below, and various critical values are given in Table 2.

These tests are evaluated under the assumption that Ψ*(B) = 1.  However, as Beaulieu and Miron

(1993) point out, if Ψ(B) is of order greater than S, then Ψ*(B) ≠1 and the fitted model must be

“augmented” with lagged values of the dependent variable as extra regressors in order to whiten

the errors.  This follows from the findings of Said and Dickey (1984) in the context of the

familiar (augmented) Dickey-Fuller (ADF) tests for unit roots at the zero frequency.  These

augmentations will introduce a finite-sample distortions in the null distributions of the ‘t’ and ‘F’

tests that will die out asymptotically, provided the correct number of lags is added.  In particular,

the number of such augmentation terms, q, must be allowed to increase as the sample size

increases.  Beaulieu and Miron (1990) investigated these finite-sample distortions in the case of

monthly data, and found that the true sizes (significance levels) of the individual unit root ‘t’ tests

were no higher than those implied by the asymptotic critical values.  They therefore suggest that

this distortion may cause under rejection of the unit root hypotheses in small samples with such

data.
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3. Asymptotic null distributions

3.1 HEGY-type tests for semi-annual data

This section presents the asymptotic null distributions for the half-yearly data tests under

consideration in this paper.  Fuller (1976) proves that when ρ = -1, the limiting null distributions

of ρ̂  and the associated test statistics in a simple random walk model, a random walk with drift,

and a random walk with drift and trend, are simply the mirror image of the limiting distributions

when ρ = 1 (Dickey and Fuller, 1979).  Moreover, HEGY (1990) show that the analysis of Chan

and Wei (1988) can be used to extract the asymptotic distribution theory for the HEGY ‘t’ tests

from the results of Dickey and Fuller (1979) and Fuller (1976).

The asymptotic null distributions for our two ‘t’ statistics follow directly from the analyses3 of

HEGY (1990) and of Beaulieu and Miron (1993). The latter provide the derivation of the

asymptotic distributions under the assumption that εt is a martingale difference2 sequence with

constant variance.  A sequence of random scalars, {εt,}t=1
∞, is a martingale difference sequence if

E(εt) = 0 for all t and E(εt εt-1,…, ε1) = 0 for t = 2, 3,…...,n. (Hamilton, 1994, p.189).

When the unit root tests are applied in the context of a regression model without any deterministic

terms the statistic t1 has the same limiting null distribution as the familiar Dickey-Fuller (DF) ‘t-

test’ statistic:
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where W(r) denotes a standard Brownian motion and ∫
1

0

is a stochastic integral (Ghysels et al.,

1994; Hamilton, 1994).  Further, the asymptotic null distribution of t2 is the mirror image of the

usual DF distribution; that is, the negative of the t2 has the asymptotic distribution in (3.1).

Essentially, these results follow from the fact that z1t and z2t in equation (2.5) are asymptotically

uncorrelated.

Ghysels, et al.(1994) show that this relationship with the usual DF ‘t-tests’ also holds in finite

samples. By the same arguments, this will also be true for semi-annual data. Further, from the

results of Engle, Granger, Hylleberg and Lee (1993), they prove that for quarterly seasonal data
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the asymptotic null distributions for ‘F’ statistics for testing either (i) that the series is seasonally

integrated; or (ii) that there are unit roots at all seasonal frequencies; are the same as the limiting

distributions of the sum of the appropriate squared ‘t-statistics’. Similarly, the asymptotic null

distribution of our F12 statistic, for seasonally integrated half-yearly data, follows directly from

the limiting distributions of the sum of the squares of t1 and t2.  So, in the case of no drift, no

trend, and no seasonal dummy variable in the fitted regression we have:
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where Wi(r) for i = 1,2 denote independent standard Brownian motions (Ghysels, et al., 1994).

Next, consider the asymptotic null distributions of the tests when deterministic terms are added to

the fitted regression equation, (2.4).  The general effects of the various deterministic terms are

discussed and then the actual distributions are presented following the notation of Beaulieu and

Miron (1993). The addition of drift or trend terms affects the asymptotic null distribution of t1

because these components have their spectral mass at the zero frequency (HEGY, 1990).

However, the asymptotic distribution of t2 is independent of the drift and trend terms as z2t is

asymptotically orthogonal to terms that are not periodic (Beaulieu and Miron, 1993).  Recall that

the asymptotic distribution of the F12 statistic is related to those of the squared t1 and squared t2

statistics.  Thus, the asymptotic null distribution of the F12 statistic will also change with the

addition of deterministic terms, as the distribution of t1 changes when a drift and/or trend is added

to the fitted regression.

In the case of the ‘t’ statistics, the effect of adding a seasonal dummy variable into the “HEGY

regression” is the reverse of that of adding constant and trend components.  Once a constant term

is included in the regression, the addition of a seasonal dummy variable does not affect the

asymptotic null distribution of t1 any further.  The subsequent addition of a seasonal dummy

variable does, however, change the asymptotic null distribution of t2, and so the asymptotic

properties of F12 also change in this case. Again, this all follows for reasons analogous to those in

the case of quarterly data. Some further insights into these, and other relationships between the

tests, in case of quarterly data are given by Smith and Taylor (1998).
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The forms of the various asymptotic distributions can now be summarized.  Let the distributions

of t1 and t2 when deterministic terms are excluded from the regression equation be denoted as:

t1 0
1

0
1

D

NL→     ; t2 0
2

0
2

D

NL→  . (3.3)

Following the notation of Beaulieu and Miron (1993) N1
x and N2

x represent the part of the

numerator that differs from that in the above t1 and t2 distributions, respectively.  Similarly D1
x

and D2
x represent the part of the denominator that differs.  The four variations of deterministic

terms in the fitted regression model are represented by x = µ, τ, ξ, and ξτ, corresponding to

regressions with a constant, a constant and trend, a constant and seasonal dummy, and finally a

constant, trend and seasonal dummy.  Thus, the general form of the limiting null distributions for

the ‘t-statistics’ can be written as:
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The five possible asymptotic null distributions for each of the test statistics are summarized in

Table 1.  Only the parts of the numerator and denominator that differ from the no-drift, no-trend

model, are given for the ‘t’ statistics.  This is done to provide visual representation of the

distributions that are the same.  The full asymptotic null distribution of the F12 statistic is given in

terms of these components.

[Table 1 About Here]

3.2 Dickey-Fuller tests and semi-annual data

Several properties of the Dickey-Fuller ‘t-test’ have been analyzed in the context of seasonal data.

For example, HEGY (1990) showed it to have asymptotic equivalence to their t1 statistic in the

“no drift/no trend” case. Ghysels, et al. (1994) demonstrated that when unit roots exist at seasonal

frequencies the Dickey-Fuller ‘t-test’ is still a valid test for unit roots at the zero frequency,

provided the usual DF regression is appropriately “augmented” with l ≥ s-1 lagged values of the
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differenced series. They use Monte Carlo simulations to see how the existence of seasonal unit

roots influences the finite-sample size and power of the test.  Their results show that, in the case

of quarterly data, when l < s-1 the size of the DF test is severely distorted.  When l ≥ s-1 the size

is close to its nominal size, provided the data generating process is free of negative moving

average components.

Although we have not explicitly explored these characteristics of the DF ‘t-test’ in the context of

semi-annual data here, intuitively it is clear that corresponding results to those above will hold

(with s = 2).

3.3 Moving-average errors

Although the HEGY test provides for identification of roots at different frequencies, it has been

found to suffer from size distortions from negative MA components in the data generating

process.  In particular, for the data generating process:

Yt = αdYt-d + ut ,  (3.5)

where   ut = εt + θ1εt-1 + θ4εt-4 , and θ1 = -0.9, the near cancellation of (1 - B) in the autoregressive

component of ut makes the unit root at the zero frequency difficult to detect.  This also explains

why the Dickey-Fuller test suffers from size distortions with negative MA components, because it

has the same distribution as the HEGY t1 test when l ≥ s-1.   This is not a trivial problem as such

situations arise frequently in practice.

A large bias in size or very low power was also found to occur when seasonal dummies are in the

data generating process, but are not included in the regression.  This provides justification for

including deterministic terms or additional lags even though they may be irrelevant and thus may

reduce the power of the test.

4. Finite-sample results

4.1  Critical Values

We have investigated the small-sample distributions of our three semi-annual unit root tests under

both the null and alternative hypotheses using Monte Carlo simulations. All of these simulations
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were implemented using SHAZAM (1997) on a DEC Alpha 3000 workstation.  The data

generating process used was xt = xt-2 + εt, where the εt values were generated by the normal

random number generator in SHAZAM.  Five different variations of the basic HEGY auxiliary

regression were fitted to the generated data: drift, seasonal dummy variable, and trend (D,S,T);

drift, seasonal dummy, and no trend (D,S,NT); drift, no seasonal dummy variable, and trend

(D,NS,T); drift, no seasonal dummy variable, and no trend (D,NS,NT); and no drift, no seasonal

dummy variable, and no trend (ND, NS, NT).

The initial value for yt was set to zero and then the first 200 observations were dropped to “wash

out” the effect of this initial value.  All simulations were based on 20,000 repetitions. Critical

values associated with the 1st, 5th and 10th percentiles of the underlying distributions were

generated for the ‘t1 test’ of H0: π1 = 0 and for the ‘t2 test’ of H0: π2 = 0.  Corresponding critical

values were calculated for the ‘F12 test’ of H0: π1 = π2 = 0 by determining the 90th, 95th, and 99th

percentiles of the empirical distributions. These results are presented in Table 2.

[Table 2 About Here]

There is no discernable change in the t2 critical values when a drift and/or trend are added to the

fitted regressions, as was indicated by the asymptotic distribution theory in the previous section.

In contrast, the critical values for t1 change when either a drift or trend is added to the fitted

model on which the tests are based. The subsequent addition of a seasonal dummy variable does

not then change the finite sample distribution of t1, but it does change that of t2.  As predicted by

the asymptotic distribution theory, the ‘F12 statistic’ critical values change with each variation to

the deterministic components in the fitted regression, as its distribution is the same as the

distribution of the sum of the squares of t1 and t2.

It is also worth noting the very close accordance between the no-drift, no-trend values for t1 in

Table 2, the corresponding Dickey-Fuller (DF) critical values of MacKinnon (1991), and the

HEGY (1990) π1 values.  For example, with a 10% significance level and n = 200, the critical

values are -1.6163 in Table 2, -1.6165 from MacKinnon, and -1.62 from HEGY.  The critical

values for t2 (i.e., for testing H0: π2  = 0) in Table 2 can be compared with the HEGY (1990)

critical values for the fitted model with no deterministic terms. For the 10% level and n = 200 the

two statistics are –1.6112 and –1.61 respectively.
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The results in Table 2 are based on a data generating process (d.g.p.) of xt  = xt-2 + εt.  That is, unit

roots are present at both the zero and π frequencies – the semi-annual series is “seasonally

integrated”.  An alternative approach is to consider a data generating process that has a unit root

at only one of these frequencies, but then still base the unit roots tests on the HEGY-type

integrating regression as in equation (2.4).  Critical values were also generated for these tests. In

the test for a unit root only at the zero frequency, a simple random walk was used as the d.g.p.; in

the second case the d.g.p. had a unit root at the π frequency but not at the zero frequency. For

completeness, these results appear in Table 3.

[Table 3 About Here]

4.2 Powers of the tests

The Monte Carlo experiment was also used to simulate the size-adjusted powers of the test

statistics developed in this paper, for the following three fitted regressions: drift, seasonal dummy

variable, and trend (D, S, T); drift, seasonal dummy variable, and no trend (D, S, NT); drift, no

seasonal dummy, with trend (D, NS, T).

Using the d.g.p. of Table 2, namely xt = ρ xt-2 + εt, the size-adjusted powers of the tests of π1 = 0,

π2 = 0 and π1 = π2 = 0, were simulated for ρ = [0.0(0.1)1.0] and various sample sizes (n). Each

power curve was generated using 20,000 repetitions.  The results of these empirical power

simulations for the t1, t2, and F12 tests are given in Tables 4-6, for the case where the d.g.p. is as in

Table 2; and in Tables 7 and 8 for the case where the d.g.p. is as in Table 3. Illustrative plots

appear in Figures 1-3 and Figures 4 and 5 respectively.

[Tables 4 to 8 About Here]

These results show that the power curves for large sample sizes have the basic expected shape.

That is, they move towards 100% as ρ moves away from 1.  There is reasonable power when n =

100, but very low size-adjusted power when the sample size is small. This is no surprise given

other results for similar such unit root tests.  The patterns in the results as the sample size is

increased reflect the consistency of the tests. Changing the significance level of the test yields the

usual tradeoff between the size and power.  As expected, the tests based on auxiliary regressions
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without a drift or trend have more power than their counterparts with deterministic terms, because

the data generating process does not include deterministic terms.

[Figures 1 to 5 About Here]

5. Some applications

The application of the testing procedures discussed in this paper is illustrated here for four quite

different semi-annual economic time-series. In each case, we compare the results obtained when

the possibility of seasonal unit roots is entertained, with those obtained when the ADF tests are

used to test for unit roots only at the zero frequency.  The series are published only in semi-

annual form, and are:

(i) New Zealand total knitted fabric sales (tonnes), June 1965 to December 1997, series

SEPH.SATTD (Statistics New Zealand, 1998);

(ii) Canadian pre-cast concrete price index, (1981=100), 1977 to 1992, matrix 421 (Statistics

Canada, 1998);

(iii) Canadian production of marketable gas  (millions of cubic meters, oil-equivalent), June

1979 to December 1989 (Petroleum Monitoring Agency Canada, various years);

(iv) U.S.A. six-monthly increase in number of cellular phone subscribers, December 1984 to

December 1995 (Waterman, 1998).

These series are shown7 in Figure 6, and Table 9 presents the results of testing for a unit root only

at the zero frequency, using the ADF tests. We allowed for drift and/or trend in the ADF

regressions, and used the strategy of Dolado et al. (1990) to determine their final inclusion4. The

“augmentation level”, q, for the regressions was chosen as the minimum required to obtain

“clean” autocorrelation and partial autocorrelation functions for the associated residuals5; and a

seasonal dummy variable was included with any drift term6. As can be seen, the ADF tests

suggest in each case that the series are I(1).  Accordingly, one would infer that the series can be

made stationary via simple first-differencing.

In Table 10 we show the results of applying the semi-annual HEGY tests outlined in this paper. In

the cases (i), (iii) and (iv) we find that in fact the series are SI(1) – that is, they each have unit

roots at both the zero and π frequencies. So, in fact two-period differencing is the appropriate

filter needed to make these series stationary.  The earlier conclusion that series (ii) has a unit root
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(only) at the zero frequency is upheld in Table 10, but these examples certainly illustrate the need

for care when applying standard ADF tests to semi-annual data.

[Figure 6 About Here]

[Tables 9 and 10 About Here]

6. Conclusions

In this paper we have discussed a framework for testing for unit roots in time-series data that are

reported at a maximum frequency of twice a year.  In such cases, the possibility of unit roots at

the zero and/or π frequencies arises, and the testing strategies developed by Hylleberg et al.

(1990) and Beaulieu and Miron (1993) provide a natural framework to exploit. The asymptotic

null distributions of the tests we propose are derived, discussed and summarized, and in certain

cases they can be linked to existing results associated with the well-known tests of Dickey and

Fuller (1979, 1981).  Simulated percentiles for the finite-sample null distributions of the test

statistics are tabulated for various sample sizes and combinations of deterministic terms in the

fitted regressions.  The powers of the tests are simulated under a similar range of situations, and

their application is illustrated with several actual semi-annual time-series.

The analysis in this paper may be extended in several directions.  The obvious one is to

investigate the properties of corresponding tests for cointegration.  Other topics of interest include

the size-robustness of the tests to autocorrelation in the data-generating process; to the method

used to select an appropriate “augmentation level”; and to structural breaks in the data.  These

remain matters for future research.
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Table 1

Effects of deterministic terms on asymptotic distributions of semi-annual unit root tests
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Table 2

Critical values for the HEGY-type unit root tests. d.g.p.: (1 – B2)xt = εt

Model ππ1 = 0 ππ2 = 0 ππ1=ππ2=0

n 1% 5% 10% 1% 5% 10% 99% 95% 90%
D, S, T

20 -4.3597 -3.5654 -3.1873 -3.7030 -2.9599 -2.5935 14.9449 9.8711 7.9402
50 -4.1381 -3.4776 -3.1532 -3.5644 -2.8922 -2.5810 11.6604 8.6479 7.3220

100 -4.0264 -3.4291 -3.1358 -3.4967 -2.8749 -2.5732 11.2051 8.3778 7.1243
200 -4.0109 -3.4256 -3.1286 -3.4846 -2.9005 -2.5823 10.8262 8.2567 7.0817
5000 -4.0210 -3.4664 -3.1760 -3.4046 -2.8280 -2.5373 10.4656 8.1290 7.0575

10000 -4.0463 -3.4625 -3.1837 -3.3761 -2.8242 -2.5255 10.6561 8.2164 7.0964
D, S, NT

20 -3.6986 -2.9087 -2.5561 -3.7253 -2.9347 -2.5807 11.5547 7.7163 6.1039
50 -3.5143 -2.8779 -2.5713 -3.5388 -2.8887 -2.5741 9.5589 6.9001 5.7132

100 -3.4461 -2.8687 -2.5585 -3.4909 -2.8738 -2.5714 9.2908 6.7591 5.6672
200 -3.4391 -2.8578 -2.5643 -3.4787 -2.9034 -2.5850 9.0919 6.7064 5.5854
5000 -3.4903 -2.9109 -2.5926 -3.4038 -2.8276 -2.5375 8.6661 6.5033 5.5156

10000 -3.4773 -2.8959 -2.6009 -3.3763 -2.8243 -2.5256 8.7691 6.5342 5.5520
D, NS, T

20 -4.2762 -3.4796 -3.1092 -2.5974 -1.7879 -1.4403 11.5195 7.5930 6.0760
50 -4.1008 -3.4568 -3.1371 -2.5615 -1.8881 -1.5436 9.6565 6.8921 5.7726

100 -4.0231 -3.4295 -3.1281 -2.5731 -1.9098 -1.5720 9.2573 6.8333 5.7206
200 -3.9998 -3.4220 -3.1246 -2.5131 -1.9334 -1.6107 8.8741 6.7787 5.6860
5000 -4.0211 -3.4659 -3.1765 -2.4668 -1.8768 -1.5657 8.8779 6.8213 5.8105

10000 -4.0463 -3.4628 -3.1838 -2.5147 -1.8792 -1.5568 9.0445 6.8076 5.8415
D, NS, NT

20 -3.6524 -2.8802 -2.5381 -2.6349 -1.8600 -1.4787 8.7567 5.6446 4.4119
50 -3.5091 -2.8748 -2.5667 -2.5841 -1.9209 -1.5578 7.3945 5.2131 4.2230

100 -3.4477 -2.8775 -2.5592 -2.5794 -1.9143 -1.5798 7.3461 5.1094 4.1850
200 -3.4490 -2.8577 -2.5624 -2.5216 -1.9385 -1.6111 7.2181 5.1364 4.1707
5000 -3.4906 -2.9113 -2.5927 -2.4656 -1.8770 -1.5657 6.9546 5.0897 4.1968

10000 -3.4772 -2.8956 -2.6007 -2.5147 -1.8791 -1.5567 7.0410 5.0871 4.1873
ND, NS, NT

20 -2.7309 -1.9283 -1.5399 -2.7428 -1.9265 -1.5310 6.0730 3.6772 2.7541
50 -2.6158 -1.9105 -1.5636 -2.6117 -1.9351 -1.5661 5.3603 3.3859 2.5819

100 -2.6042 -1.9164 -1.5943 -2.5846 -1.9196 -1.5866 5.0504 3.2839 2.5656
200 -2.5915 -1.9499 -1.6163 -2.5291 -1.9404 -1.6112 6.0312 3.6146 2.7172
5000 -2.6200 -1.9774 -1.6621 -2.4661 -1.8767 -1.5657 4.9073 3.2119 2.5234

10000 -2.6273 -1.9975 -1.6690 -2.5145 -1.8792 -1.5567 4.8699 3.2301 2.5243
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Table 3

Critical values for the individual seasonal unit root tests

d.g.p.: (1 - B)xt = εt d.g.p.: (1 + B)xt = εt

Model ππ1 = 0 ππ2 = 0

N 1% 5% 10% 1% 5% 10%

D, S, T

20 -4.5573 -3.6889 -3.2840 -3.7952 -2.9836 -2.6175
50 -4.1575 -3.5107 -3.1967 -3.5812 -2.8933 -2.5852
100 -4.0394 -3.4492 -3.1518 -3.5009 -2.8949 -2.5741
200 -4.0077 -3.4346 -3.1314 -3.5119 -2.9053 -2.5844

5000 -4.0074 -3.4647 -3.1744 -3.4046 -2.8304 -2.5388
10000 -4.0408 -3.4647 -3.1822 -3.3689 -2.8246 -2.5250

D, S, NT

20 -3.7920 -2.9720 -2.6209 -3.7809 -3.0182 -2.6364
50 -3.5273 -2.9010 -2.5920 -3.5849 -2.9001 -2.5903
100 -3.4967 -2.8749 -2.5696 -3.5092 -2.8979 -2.5790
200 -3.4686 -2.8608 -2.5611 -3.5123 -2.9051 -2.5885

5000 -3.4745 -2.9079 -2.5920 -3.4036 -2.8308 -2.5390
10000 -3.4758 -2.8964 -2.6018 -3.3691 -2.8247 -2.5252

D, NS, T

20 -4.5285 -3.6806 -3.2892 -2.6241 -1.8378 -1.4749
50 -4.1618 -3.5155 -3.2006 -2.5660 -1.9044 -1.5534
100 -4.0525 -3.4448 -3.1542 -2.5878 -1.9164 -1.5787
200 -4.0103 -3.4370 -3.1307 -2.5088 -1.9405 -1.6174

5000 -4.0074 -3.4642 -3.1746 -2.4541 -1.8796 -1.5657
10000 -4.0411 -3.4643 -3.1821 -2.5170 -1.8804 -1.5566

D, NS, NT

20 -3.7839 -2.9961 -2.6377 -2.7150 -1.8909 -1.5147
50 -3.5449 -2.9164 -2.6002 -2.5933 -1.9269 -1.5708
100 -3.4896 -2.8807 -2.5719 -2.6030 -1.9253 -1.5859
200 -3.4728 -2.8623 -2.5638 -2.5151 -1.9440 -1.6178

5000 -3.4745 -2.9074 -2.5918 -2.4543 -1.8797 -1.5656
10000 -3.4757 -2.8967 -2.6014 -2.5171 -1.8805 -1.5566

ND, NS, NT

20 -2.7678 -1.9597 -1.5652 -2.7994 -1.9621 -1.5620
50 -2.6501 -1.9284 -1.5774 -2.6260 -1.9524 -1.5868
100 -2.6190 -1.9283 -1.6007 -2.6156 -1.9335 -1.5918
200 -2.6011 -1.9519 -1.6247 -2.5143 -1.9463 -1.6194

5000 -2.6332 -1.9771 -1.6620 -2.4545 -1.8796 -1.5656
10000 -2.6241 -1.9972 -1.6697 -2.5169 -1.8806 -1.5567
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Table 4

Power of the t1 test. d.g.p.: (1 – B2)xt = εt

ρρ 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

D, S, T
1%

n=20 1.00 1.44 1.46 1.86 2.43 2.84 3.99 5.80 8.28 11.71 18.17

n=50 1.00 1.28 2.05 3.61 7.09 12.93 24.56 41.94 61.44 79.63 92.04

n=100 1.00 1.96 5.88 17.41 41.18 71.77 91.67 99.07 99.91 100.00 100.00

5%
n=20 5.00 5.83 6.63 7.42 9.31 11.73 14.72 19.55 26.65 33.98 44.89

n=50 5.00 6.26 8.92 15.43 26.00 40.87 59.31 77.72 90.12 96.65 99.27

n=100 5.00 9.06 22.27 48.32 78.19 94.92 99.51 99.99 100.00 100.00 100.00

10%

n=20 10.00 11.31 12.44 14.01 17.14 21.09 25.60 32.84 41.72 50.93 61.79

n=50 10.00 12.38 17.38 27.48 42.57 59.78 76.74 90.27 96.61 99.15 99.89

n=100 10.00 16.83 36.61 66.88 90.83 98.68 99.90 100.00 100.00 100.00 100.00

D, S, NT
1%

n=20 1.00 1.45 1.69 2.07 3.23 4.36 6.38 10.15 15.33 21.65 32.44

n=50 1.00 1.71 3.32 7.00 15.20 28.10 47.50 68.91 85.55 94.78 98.79

n=100 1.00 3.13 12.40 35.15 68.80 91.97 99.03 99.98 100.00 100.00 100.00

5%
n=20 5.00 6.52 7.85 10.09 14.02 18.75 24.53 34.09 44.27 55.76 68.28

n=50 5.00 8.13 14.63 26.70 44.85 65.44 82.71 94.22 98.39 99.61 99.95

n=100 5.00 13.15 37.73 72.53 94.80 99.41 99.97 100.00 100.00 100.00 100.00

10%

n=20 10.00 12.45 15.14 18.54 24.78 31.69 40.04 51.44 62.87 73.09 82.97

n=50 10.00 15.39 25.85 42.71 63.87 82.32 93.21 98.36 99.60 99.93 99.99

n=100 10.01 24.78 58.10 88.19 98.89 99.91 100.00 100.00 100.00 100.00 100.00

D, NS, T

1%

n=20 1.00 1.44 1.62 1.88 2.61 3.28 4.24 6.57 9.07 13.06 19.97

n=50 1.00 1.34 2.25 3.87 7.52 13.80 26.04 43.96 63.38 80.99 92.87

n=100 1.00 1.93 5.97 17.46 41.32 71.93 91.84 99.12 99.91 100.00 100.00

5%

n=20 5.01 6.50 7.53 8.20 10.29 13.13 16.31 21.92 29.45 37.68 48.91

n=50 5.00 6.57 9.42 15.81 26.92 41.85 60.21 78.69 90.78 97.00 99.34

n=100 5.00 8.91 22.19 48.19 78.16 94.89 99.50 99.99 100.00 100.00 100.00

10%
n=20 10.00 12.41 13.81 15.52 19.00 23.60 28.20 36.01 45.03 54.95 65.92

n=50 10.00 12.85 18.01 28.12 43.38 60.57 77.43 90.85 96.80 99.22 99.90

n=100 10.00 16.95 36.92 67.22 91.00 98.73 99.93 100.00 100.00 100.00 100.00
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Table 5

Power of the t2 test. d.g.p.: (1 – B2)xt = εt

       ρ       ρ 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

D, S, T

1%

n=20 1.00 1.22 1.62 2.28 3.15 4.44 6.81 10.04 15.06 22.33 32.01

n=50 1.00 1.48 2.81 6.67 13.39 25.50 44.65 66.16 83.26 93.75 98.45

n=100 1.00 3.06 10.89 32.64 65.30 90.60 98.60 99.95 100.00 100.00 100.00

5%

n=20 5.00 5.89 7.43 9.48 12.87 17.46 23.38 31.23 41.57 52.30 64.86

n=50 5.00 7.85 13.94 25.95 43.72 64.57 82.26 93.80 98.32 99.68 99.96

n=100 5.00 14.04 38.52 70.91 93.85 99.45 99.97 100.00 100.00 100.00 100.00

10%
n=20 10.00 11.50 14.57 18.13 23.20 30.16 38.55 48.95 60.08 70.59 80.85

n=50 10.00 15.08 25.43 42.34 63.43 81.61 93.11 98.33 99.65 99.96 100.00

n=100 10.00 24.91 58.06 87.90 98.70 99.94 100.00 100.00 100.00 100.00 100.00

D, S, NT

1%
n=20 1.00 1.20 1.56 2.08 2.93 4.12 6.13 9.39 14.33 21.43 31.31

n=50 1.00 1.53 3.08 7.02 14.08 26.59 46.06 67.71 84.40 94.36 98.64

n=100 1.00 3.07 10.91 32.18 64.86 90.33 98.64 99.95 100.00 100.00 100.00

5%

n=20 5.00 6.13 7.54 9.83 13.34 18.00 23.94 32.32 43.15 54.39 66.91

n=50 5.01 7.91 13.94 26.05 43.74 64.70 82.48 93.87 98.32 99.68 99.96

n=100 5.00 14.08 38.57 70.66 93.80 99.43 99.98 100.00 100.00 100.00 100.00

10%
n=20 10.00 11.87 14.57 18.31 23.90 30.98 39.56 50.11 61.53 71.88 82.17

n=50 9.99 15.15 25.45 42.58 63.89 81.94 93.35 98.42 99.67 99.97 100.00

n=100 10.00 25.01 58.28 87.59 98.65 99.91 100.00 100.00 100.00 100.00 100.00

D, NS, T

1%
n=20 1.00 2.45 4.14 6.76 11.06 17.20 25.07 36.50 48.87 62.21 74.77

n=50 1.00 4.77 12.31 27.43 51.28 74.27 90.17 97.39 99.46 99.92 100.00

n=100 1.00 11.21 42.15 80.00 97.39 99.87 100.00 100.00 100.00 100.00 100.00

5%

n=20 5.00 13.57 20.93 30.92 43.56 56.70 69.29 80.78 89.25 94.13 97.39

n=50 5.00 20.52 44.15 70.51 89.79 97.65 99.56 99.95 100.00 100.00 100.00

n=100 5.00 40.84 85.60 98.85 99.96 100.00 100.00 100.00 100.00 100.00 100.00

10%

n=20 10.00 25.45 37.51 50.40 65.41 78.03 86.74 93.30 96.60 98.50 99.37

n=50 10.00 37.39 67.40 89.11 97.87 99.67 99.95 100.00 100.00 100.00 100.00

n=100 10.00 64.16 96.48 99.88 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 6

Power of the F12 test. d.g.p.: (1 – B2)xt = εt

ρρ 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
D, S, T

1%

n=20 1.00 1.02 1.21 1.70 2.44 3.61 5.40 8.16 12.72 19.63 28.75

n=50 1.00 1.63 3.94 8.77 19.48 38.81 62.66 82.36 94.00 98.67 99.73

n=100 1.00 3.39 16.29 50.37 85.82 98.49 99.94 100.00 100.00 100.00 100.00

5%

n=20 5.01 5.64 6.94 8.43 11.49 15.71 21.19 28.96 38.73 50.80 62.72

n=50 5.01 8.19 14.97 29.53 49.65 72.64 89.47 97.06 99.36 99.92 99.99

n=100 5.00 14.56 46.47 84.52 98.55 99.92 100.00 100.00 100.00 100.00 100.00

10%
n=20 10.01 11.49 13.43 16.81 21.46 27.39 35.68 45.41 56.94 68.39 78.11

n=50 10.01 15.43 26.17 45.91 67.68 86.15 96.03 99.11 99.91 100.00 100.00

n=100 10.00 26.16 65.41 94.11 99.73 100.00 100.00 100.00 100.00 100.00 100.00

D, S, NT

1%
n=20 1.01 1.18 1.69 2.48 3.83 5.92 9.38 14.36 22.05 33.15 45.66

n=50 1.01 2.19 5.49 13.84 30.43 54.96 78.79 92.67 98.16 99.72 99.97

n=100 1.00 4.76 25.44 67.57 94.70 99.70 100.00 100.00 100.00 100.00 100.00

5%

n=20 5.00 6.13 7.85 10.81 15.15 21.43 29.93 40.56 53.30 66.27 77.14

n=50 5.00 9.64 20.79 41.22 65.62 86.09 96.32 99.26 99.92 100.00 100.00

n=100 5.01 19.44 61.33 93.79 99.78 100.00 100.00 100.00 100.00 100.00 100.00

10%
n=20 10.00 12.16 15.45 20.72 27.39 36.39 47.89 59.82 72.00 81.90 89.15

n=50 10.00 18.35 35.10 59.53 81.81 94.72 99.02 99.81 99.98 100.00 100.00

n=100 10.01 33.09 78.42 98.36 99.96 100.00 100.00 100.00 100.00 100.00 100.00

D, NS, T

1%
n=20 1.01 1.37 1.82 2.77 4.04 6.16 9.90 14.79 22.98 33.89 45.70

n=50 1.00 2.27 5.71 13.97 30.22 54.30 78.31 92.33 98.02 99.71 99.94

n=100 1.00 5.33 26.62 68.92 94.98 99.72 100.00 100.00 100.00 100.00 100.00

5%

n=20 5.01 6.63 8.88 12.03 16.54 23.05 31.73 42.99 55.22 68.18 78.25

n=50 5.01 10.59 22.10 42.16 66.56 86.34 96.44 99.25 99.91 100.00 100.00

n=100 5.01 20.11 61.40 93.68 99.70 100.00 100.00 100.00 100.00 100.00 100.00

10%

n=20 10.00 13.12 16.67 22.01 28.39 38.30 48.80 60.92 72.59 82.47 89.20

n=50 10.01 19.14 35.90 59.88 81.56 94.57 98.91 99.81 99.99 100.00 100.00

n=100 10.00 34.16 78.64 98.25 99.95 100.00 100.00 100.00 100.00 100.00 100.00



19

Table 7

Power of the t1 test. d.g.p.: (1 – B)xt = εt

ρρ 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
D, S, T

1%

n=20 1.00 1.13 1.38 2.03 2.58 3.82 5.19 6.49 8.65 11.15 13.99

n=50 1.00 1.91 4.05 10.49 20.56 34.37 49.95 65.13 75.84 85.13 91.46

n=100 1.00 4.69 23.67 58.87 86.32 97.21 99.51 99.94 100.00 100.00 100.00

5%

n=20 5.00 5.60 6.83 9.01 11.56 15.53 19.58 24.24 28.59 34.57 39.58

n=50 5.00 8.22 16.78 33.01 51.80 69.10 82.38 90.67 94.97 97.96 99.01

n=100 5.00 18.46 56.69 88.89 98.34 99.81 99.99 100.00 100.00 100.00 100.00

10%
n=20 10.00 11.10 13.44 17.14 21.75 27.02 33.49 38.91 44.95 52.21 57.85

n=50 10.00 15.48 29.41 50.08 69.36 83.11 92.20 96.58 98.35 99.47 99.78

n=100 10.01 31.40 75.05 96.06 99.65 99.97 100.00 100.00 100.00 100.00 100.00

D, S, NT

1%
n=20 1.00 1.58 2.03 3.51 5.19 7.92 10.86 14.88 18.34 23.80 28.44

n=50 1.00 3.16 8.77 22.26 41.03 60.13 76.25 86.96 93.07 97.08 98.63

n=100 1.00 8.69 42.70 81.94 96.97 99.64 99.96 100.00 100.00 100.00 100.00

5%

n=20 5.00 7.39 10.32 15.72 21.38 28.45 35.98 44.13 50.76 58.72 65.34

n=50 5.00 12.92 30.76 55.31 76.85 89.11 95.74 98.53 99.35 99.80 99.95

n=100 5.00 31.44 81.52 98.14 99.91 99.99 100.00 100.00 100.00 100.00 100.00

10%
n=20 10.00 14.12 19.21 27.02 35.45 44.44 53.27 61.87 68.62 75.14 80.36

n=50 10.00 23.15 48.71 73.44 89.41 96.17 98.83 99.67 99.85 99.98 100.00

n=100 10.00 49.72 92.97 99.65 99.97 100.00 100.00 100.00 100.00 100.00 100.00

D, NS, T

1%
n=20 1.00 1.11 1.37 2.08 2.62 3.71 5.00 6.73 8.88 11.49 14.22

n=50 1.00 1.82 3.98 10.36 20.40 34.16 49.88 64.93 75.91 85.14 91.43

n=100 1.00 4.53 23.14 58.13 85.80 97.05 99.48 99.93 100.00 100.00 100.00

5%

n=20 5.00 5.67 6.88 8.98 11.72 15.64 19.60 24.31 29.05 34.75 39.66

n=50 5.00 8.18 16.78 32.80 51.80 68.99 82.35 90.70 94.97 97.93 99.03

n=100 5.00 18.69 57.03 89.08 98.43 99.80 99.99 100.00 100.00 100.00 100.00

10%

n=20 10.00 11.15 13.32 16.91 21.67 26.73 33.05 39.03 45.08 52.21 58.04

n=50 10.00 15.46 29.16 49.85 69.23 83.01 92.34 96.61 98.35 99.44 99.79

n=100 9.99 31.37 74.83 96.07 99.63 99.97 100.00 100.00 100.00 100.00 100.00



20

Table 8

Power of the t2 test.  d.g.p.: (1 + B)xt = εt

ρρ 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00
D, S, T

1%

n=20 1.00 1.39 2.25 3.60 5.17 7.83 11.18 14.44 18.40 23.65 28.53

n=50 1.00 2.56 8.09 20.29 38.09 56.83 73.85 85.13 91.66 96.24 98.12

n=100 1.00 9.20 43.94 82.53 97.13 99.65 99.96 100.00 100.00 100.00 100.00

5%

n=20 5.00 7.25 10.43 15.15 20.46 27.74 35.75 42.92 49.79 57.83 63.68

n=50 5.00 12.79 31.65 55.87 77.19 89.49 96.01 98.46 99.44 99.90 99.97

n=100 4.99 31.76 80.57 98.04 99.88 99.99 100.00 100.00 100.00 100.00 100.00

10%
n=20 10.00 13.78 19.59 26.87 34.56 44.31 53.33 61.31 68.04 75.08 79.90

n=50 10.00 23.48 48.87 74.27 89.88 96.25 98.94 99.56 99.90 99.99 99.99

n=100 10.00 50.86 92.92 99.71 100.00 100.00 100.00 100.00 100.00 100.00 100.00

D, S, NT

1%
n=20 1.00 1.49 2.24 3.55 5.29 7.77 11.15 14.57 18.71 24.07 29.04

n=50 1.00 2.54 8.08 20.08 37.72 56.65 73.77 85.09 91.65 96.34 98.14

n=100 1.00 8.94 43.40 82.03 97.07 99.63 99.96 100.00 100.00 100.00 100.00

5%

n=20 4.99 6.91 9.70 14.46 19.69 26.45 34.44 41.39 48.43 56.47 62.64

n=50 5.00 12.59 31.30 55.61 76.85 89.34 95.97 98.45 99.44 99.88 99.97

n=100 4.99 31.51 80.40 98.03 99.88 99.99 100.00 100.00 100.00 100.00 100.00

10%
n=20 10.00 13.60 19.13 26.41 34.19 43.78 52.74 60.94 67.69 74.99 79.71

n=50 10.00 23.42 48.55 73.96 89.77 96.17 98.94 99.54 99.90 99.99 99.99

n=100 10.00 50.48 92.79 99.68 100.00 100.00 100.00 100.00 100.00 100.00 100.00

D, NS, T

1%
n=20 1.00 3.88 8.28 14.50 22.22 31.02 41.14 50.60 59.17 67.26 73.66

n=50 1.00 10.96 35.38 64.81 85.81 94.66 98.47 99.48 99.83 99.99 99.99

n=100 1.00 34.25 88.16 99.40 99.99 100.00 100.00 100.00 100.00 100.00 100.00

5%

n=20 5.00 18.69 33.27 48.71 62.80 73.75 82.46 88.24 91.70 95.19 96.64

n=50 5.00 38.34 76.65 94.59 98.88 99.77 99.95 99.99 100.00 100.00 100.00

n=100 5.00 78.08 99.43 99.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10%

n=20 10.00 34.42 54.40 70.50 82.34 89.37 93.99 96.44 97.75 98.83 99.28

n=50 10.00 61.55 92.01 98.79 99.80 99.96 100.00 100.00 100.00 100.00 100.00

n=100 10.00 93.04 99.94 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 9

Results of ADF tests

Series
(i)

Series
 (ii)

Series
 (iii)

Series
(iv)

Fitted
Model Test Statistic Outcome Statistic Outcome Statistic Outcome Statistic Outcome

n (q) 66 (1) 32 (3) 22 (3) 22(1)

D, S, T tdt -0.473 -0.439 -0.930 1.712 I(1)

Fut 1.824 2.281 2.009 10.194

D, S, NT td -1.946 -1.900 I(1) 0.989 n.a.

Fud 3.226 4.571 1.971 n.a.

ND, NS, NT t 1.837 I(1) n.a. 1.848 I(1) n.a.

Notes: “n” is the sample size; “q” is the “augmentation level” for the tests; “D, S, T” denotes “drift,
seasonal dummy, trend”; “D, S, NT” denotes “drift, seasonal dummy, no trend”; “ND, NS, NT”
denotes “no drift, no seasonal dummy, no trend”. The other notation is defined in the text.
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Table 10

Results of seasonal unit root tests

Series
 (i)

Series
 (ii)

Series
(iii)

Series
(iv)

Fitted
Model Test Statistic Outcome Statistic Outcome Statistic Outcome Statistic Outcome

D, S, T
(q) (2) (2) (1) (1)

t1 -0.439
Zero root

-0.473
Zero root

-1.075
Zero root

-0.382
Zero root

t2 -2.369
π root

-5.072 -2.303 π root 0.054
π root

F12 2.887
SI(1)

13.113 4.561
SI(1)

0.120
SI(1)

D, S, NT
(q) (2) (2) (1) (1)

t1 -1.900
Zero root

-1.946
Zero root

0.219
Zero root

0.963
Zero root

t2 -2.419
π root

-5.376 -2.569
π root

-0.355
π root

F12 4.896
SI(1)

20.866 3.405
SI(1)

0.626
SI(1)

D, NS, T
(q) (2) (0) (1) (1)

t1 -0.405
Zero root

-0.464
Zero root

-1.661
Zero root

-0.516
Zero root

t2 -1.103
π root

-5.152 -1.253
π root

0.494
π root

F12 0.685
SI(1)

13.530 2.434 SI(1) 0.149 SI(1)

D, NS, NT
(q) (2) (0) (2) (1)

t1 -1.896
Zero root

-2.003
Zero root

1.420
Zero root

0.837
Zero root

t2 -1.145
π root

-5.458 -0.510
π root

0.055
π root

F12 2.518
SI(1)

21.551 1.332 SI(1) 0.967 SI(1)

ND, NS, NT
(q) (2) (0) (2) (1)

t1 0.434
Zero root

1.837
Zero root

1.752
Zero root

1.276
Zero root

t2 -1.181
π root

-6.440 -0.748
π root

-0.130
π root

F12 0.799
SI(1)

38.202 1.935 SI(1) 1.718 SI(1)
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Figure 1

Power of the t1 test. Drift, seasonal dummy and trend in regression. 10% size.

(d.g.p.: (1 – B2)xt = εt )

Figure 2

Power of the t2 test. Drift, seasonal dummy and trend in regression. 10% size.

(d.g.p.: (1 – B2)xt = εt )
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Figure 3

Power of the F12 test. Drift, seasonal dummy and trend in regression. 10% size.

(d.g.p.: (1 – B2)xt = εt )

Figure 4

Power of the t1 test. Drift, seasonal dummy and trend in regression. 10% size.

(d.g.p.: (1 – B)xt = εt )
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Figure 5

Power of the t2 test. Drift, seasonal dummy and trend in regression. 10% size.

(d.g.p.: (1 + B)xt = εt )
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Figure 6b:  Canadian Precast Concrete Price Index 
(1981=100) 

0

20

40

60

80

100

120

140

160

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

Date

P
ric

e 
In

de
x

Figure 6a:  New Zealand Knitted Fabric Sales

0

500

1000

1500

2000

2500

3000

3500

4000

4500
19

64

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

Date

T
o

n
n

es

Figure 6c: Canadian Gas Production
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Figure 6d: Numberof U.S. Cell Phones
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Footnotes

1. See also Franses and Hobijn (1997). Smith and Taylor (1998) provide a recent elegant

discussion of the HEGY tests for quarterly data.

2. The assumption of a martingale difference sequence is stronger than that of serially

uncorrelated errors, but weaker than independence (Hamilton, 1994, p.190).

3. See also Phillips (1987) and Stock (1988).

4. In Table 9, tdt denotes the ADF unit root “t-test” with drift and trend terms included in the

fitted regression; Fut  is the corresponding ADF “F-test” for a unit root and zero trend; td is

the unit root “t-test” with a drift but no trend in the fitted regression; Fud is the

corresponding “F-test” for a unit root and a zero drift; and t is the ADF unit root test

when the fitted regression has no drift or trend term included. Finite-sample critical

values for our “t-tests” and  “F-tests” come from MacKinnon (1991), and from Dickey

and Fuller (1979, 1981), respectively.

5. The simulation results of Dods and Giles (1995) favour this approach, in terms of low

pre-test size distortion, for sample sizes such as ours. In fact the results are not sensitive

to the method used to choose this augmentation level.

6. The need to include this dummy variable follows from the results of Ghysels et al.

(1994).  There was no evidence that any of the series other than (iv) may be I(2).

7. In the case of series (iv) the plotted series is for the number of cell phones, rather than the

six-monthly increase in this number.  The latter series is the one that is analyzed.


