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Abstract The availability of data for the size of the “Underground Economy” is important for
macroeconomic policy.  We use fuzzy set theory and fuzzy logic to construct an annual time-series for the
(unobservable) New Zealand underground economy over the period 1968 to 1994.  Two input variables are
used – the effective tax rate and an index of the degree of regulation.  The resulting underground economy
time-series is compared with one previously constructed by the second author using a structural “Multiple
Indicators, Multiple Causes” (MIMIC) model.  The two approaches each yield sensible, but somewhat
different, pictures of the New Zealand underground economy over this period.  The fuzzy logic approach to
this measurement problem involves several subjective judgements, but our results are quite robust to these
choices.

1. INTRODUCTION

There is renewed interest internationally in the
problem of the “underground economy” and its
implications for the “tax-gap”, the effectiveness of
fiscal and monetary policy, economic growth, and
for income distribution.  The underground
economy involves activities and transactions which
may themselves be legal or illegal, but which are
not measured because they go unreported.  The
lack of reporting is generally to evade tax
liabilities.  Examples of these activities include
unreported “cash” payments, extortion,
smuggling, prostitution, narcotics sales, etc..

By its very nature, the “underground economy”
(UE) is not directly observable.  However, many
different methods have been used, by various
authors, to obtain measures of the UE in different
countries.  For example, see Giles [1999] for a
recent survey and some new results, and Schneider
and Enste [1998] for extensive international
results.  The empirical evidence, now available for
many countries, is of varying quality.  In addition,
there are few countries for which historical time-
series data on the UE have been constructed on a
consistent basis.

However, the available quantitative measures of
the UE point to one important fact – the size of the
UE is growing in all countries for which data have
been constructed.  This appears to be the case, not

only in absolute (nominal) terms, but also in
relative terms when we consider the ratio of the
UE to the measured GDP of each country.

For example, Schneider and Enste [1998] provide
extensive international evidence to this effect, and
detailed such results for New Zealand and for
Canada are reported by Giles [1999] and by Giles
and Tedds [2000], respectively.  Accordingly,
there is an urgent need for new and improved
methods for measuring the size of the
unobservable UE.  In this paper we address this
need by illustrating how the tools of fuzzy set
theory and fuzzy logic can be used to generate a
time-series measure of the UE.  This illustration
takes the form of a rather limited, but very
promising, application with New Zealand data.

Section 2 discusses some basic principles
associated with fuzzy sets, and outlines our overall
methodology.  The step-by-step details of this
methodology are provided in Section 3; and the
results based on the New Zealand data are
described in Section 4.  The last section provides
our conclusions, and a discussion of prospects for
further research on this topic.

2.  BACKGROUND PRINCIPLES
2.1 Historical Context

Fuzzy set theory and the associated fuzzy logic
have found widespread application in many



disciplines since the seminal contributions of
Zadeh (1965, 1987) and his followers.  These
applications are extensive in computer science,
systems analysis, electrical and electronic
engineering, and related fields.  The construction
and application of  “expert systems” has touched
most aspects of modern life, often without our
knowledge.  Examples include their inclusion in
domestic appliances, vehicles, and the like.

While the use of fuzzy sets and logic has been
widespread in the physical sciences (although not
without criticism), the application of these tools in
the social sciences appears to have been limited
mainly to psychology.  Applications in economics
are few, some exceptions being  Dasgupta and Deb
[1996], Richardson [1998] and  Sengupta [1999],
and others in the field of social choice.

More specifically, the use of fuzzy set theory in
econometrics is virtually unknown.  To our
knowledge the only other such contributions are
those of Shepherd and Shi [1998] and Lindstrom
[1998].  The former authors use fuzzy sets in a
regression context to model non-linearities, while
Lindstrom uses fuzzy analysis to “predict” fixed
investment behaviour on the basis of interest rate
levels and changes.  Our own analysis here follows
his methodology quite closely.

2.2 Some Definitions

“Fuzzy sets” deal with “concepts” and “linguistic
variables”. For instance, “price” is a concept, and
“rather low price” is a linguistic variable. A “fuzzy
set” maps from a regular set to [0,1].  Membership
of a fuzzy set is not “crisp”.  An example of this
mapping would be: “the price of this personal
computer is $15,000. This is one of the most
expensive such computers I have ever seen, so I
rate its price at 0.98.”  The number “0.98” is the
“degree of membership”, and this value should not
be confused with a probability.  For instance,
degrees of membership need not sum to unity.

Examples of “fuzzy logic” are: “if the price is
high, then demand will be low”; or “if taxes are
high, then tax evasion will be high”.  The
application of the inductive premise to fuzzy
concepts poses some difficulties – not all of the
usual set-theoretic laws are satisfied.  In particular,
the “law of the excluded middle” is violated, so a
different group of operators must be adopted: for
instance, “union” is replaced by “max”,
“intersection” is replaced by “min”, and
“complement” is replaced by subtraction from
unity. Then the commutative, associative,
distributive, idempotency, absorption, excluded
middle, involution, and De Morgan’s laws are
satisfied. For example if U={a, b, c, d} and the

fuzzy sets A and B are defined as A={0.3/a, 0.6,c,
1/d} and B={0.1/a, 0.5/b, 0.7/c, 0.9/d}, where the
numbers are “degrees of membership”, then
A∪B={0.3/a, 0.5/b, 0.7/c, 1/d} and A∩B={0.1/a,
0/b, 0.6/c, 0.9/d}. Similiary, Bc={0.9/a, 0.5/b,
0.3/c, 0.1/d}.

The use of fuzzy sets and logic in econometrics is
an appealing possibility.  For example, often our
data are necessarily vague, we may have limited
knowledge of the nature of the relationships
between variables, and these relationships may be
intrinsically non-linear.

2.3 Overall Methodology

Our task is the “measure” the size of the New
Zealand underground economy, year by year.  The
following methodology is not inferential in the
usual sense, and it differs from a regression-based
approach using “indicators” and “causes”, as none
of the former variables are used.  For simplicity,
our application uses only two causal variables –
variables which, on the basis of both economic
theory and widespread international empirical
evidence, are widely believed to be primary
determinants of underground activity.  (For
example, see Caragata and Giles [1998],
Schneider and Enste [1998], Giles and Caragata
[1999], Giles and Johnson [1999] and Trandel and
Snow [1999] for numerous references.)

These variables are the effective tax rate (the ratio
of total tax revenue to GDP), TR, and an index of
the degree of regulation (REG) in New Zealand.
Our primary sample period is 1968 to 1994 to
match that of Giles [1999], who also provides data
sources. Somewhat earlier data on the causal
variables are available and are used in the
construction of certain moving averages in our
analysis.  The choice of these two input variables
is of course itself somewhat subjective, and work
in progress explores the implications of modifying
the input set.  In each case we expect a positive
association between the causal variable and the
size of the underground economy.  In fuzzy
parlance, “if taxes are high and if the degree of
regulation in the economy is high, then we would
expect the size of the underground economy to be
high”.

Not only is choice of causal variables subjective,
but so is the specification of the boundaries of the
fuzzy sets.  At what point do taxes change from
“average” to “high”; and at what level does the
degree of regulation change from being “low” to
“very low”, etc.  Accordingly, it is important to
conduct a range of sensitivity tests to determine the
robustness of our results to these and other choices.



It is important to note, however, that there is no
need to assume anything about the functional form
of the hypothesized relationship between taxes and
the degree of regulation on the one hand, and the
size of the underground economy on the other. The
basic approach we adopt, then, is to first define
fuzzy sets associated with the values of the two
causal variables.  Then for each variable in each
year, we assign association values with the
subjective levels; and then we use decision rules to
establish a level for the underground economy
indicator (or index), using the fuzzy operators.
The details of this procedure are presented in the
next section.

3. ANALYTICAL DETAILS
3.1 Data Break-Points

There are several possible ways to create
“benchmarks” to quantify what we mean by
“high”, “low”, etc. in the present context.  Here,
we use a moving average value for each of TR and
REG.  To take account of a possible electoral cycle
in the data, a minimum of six years’ data have
been incorporated into the moving averages. As we
wish to have a UE measure for the period 1968 to
1994, the process begins in 1963.  For each series,
and for each year, the average of the past history of
data gives us a “normal” value. So in 1994, this
value is the average of the data from 1963 to 1993
inclusive.

Once “normal” values have been established for
each of TR and REG in each year from 1968 to
1994, we then calculate quantitative associated
levels of magnitude.  This is done by taking one or
two sample standard deviations around the
“normal” value in each period:

TR: effective tax rate  = Taxes/GDP

Very Low     Low     Normal     High     Extreme
   (VL)           (L)          (N)         (H)         (EX)
-2 SD         -1 SD     Mean@   +1 SD    +2 SD
                                  time=t

REG: level of regulation  = an index

Very Low     Low     Normal     High     Extreme
    (VL)          (L)          (N)          (H)        (EX)
-2 SD     -1 SD     Mean@    +1 SD    +2 SD
                                  time=t

In this way two sets, each of five numbers,
corresponding to TR and REG, are generated for
each year in question.  These sets are termed
“break-points” in the subsequent discussion.  For
example, in 1968 the following break-points
emerge for TR: 0.2167912, 0.2277076, 0.2386240,
0.2495404, 0.2604568. The highlighted value of

0.2386240 is the mean of TR over the period 1963
through 1967.  Similarly, the value of 0.2167912 is
the above mean value minus two times the
standard deviation in this particular (moving)
sample.

3.2 Break-Points and Level Association

We then associate data values with categories of
magnitude.  Consider the above data for 1968.  The
actual data value for TR in that year is 0.2400330,
which places it somewhere between “normal” and
“high” in that year.  “Fuzzy” or “multi-valued”
logic uses non-crisp sets whose members are
defined by levels or degrees of association, rather
than by strict “all-or-nothing” membership status.
So, a particular value of TR or REG can be
associated with more than one set (or relative level
of magnitude in our case).

In the above example, the 1968 value of TR is both
“normal” and “high”, but how “normal” and how
“high” it is depends on its location relative to the
break-points in question.  In fuzzy logic the
establishment of levels of association is governed
by what are termed “membership functions”.
These can take various forms, according to one’s
prior beliefs, so another element of subjectivity
enters the analysis.  Here we use a simple linear or
distance measure to assign levels of association.

For example, the value of TR in 1968 is closer to
“normal” than to “high”, and a harmonic
assignation is used – that is, the weights are
inversely related to the distances:

   VL             L             N             H             EX
0.0000       0.0000     0.8709      0.1291    0.0000

A fuzzy logic membership function of the type
used here will associate observations with at most
two magnitude levels, the weights for which sum
to unity.  Extreme observations that fall below the
lowest break-point, or above the highest break-
point, are given an extreme association value equal
to the relevant “outer boundary” level.  A value of
unity associated with any particular level indicates
complete membership, while a zero value denotes
no membership at all.

3.3 Association Level and Decision Rules

Next, we create the decision rules that will
determine how particular levels of association for
each of TR and REG are combined to establish the
levels of association for UE itself.  These rules are
necessarily rather arbitrary, but the method by
which they are assigned may besen in the
following table:



Rule REGS TR  UE Degree

1 E E VB 1.0 
2 E H VB 0.8
3 E N S 1.0
4 E L S 0.8
5 E VL A 0.8
6 H E VB 1.0
7 H H B 1.0
8 H N B 0.8
9 H L A 1.0
10 H VL S 1.0
11 N E B 1.0
12 N H B 0.8
13 N N A 1.0
14 N L S 0.8
15 N VL S 1.0
16 L E B 1.0
17 L H A 1.0
18 L N S 0.8
19 L L S 1.0
20 L VL VS 1.0
21 VL E A 0.8
22 VL H S 0.8
23 VL N S 1.0
24 VL L VS 0.8
25 VL VL VS 1.0

E=Extreme, H=High, N=Normal, L=Low, VL=Very Low
VB=Very Big, B=Big, A=Average, S=Small, VS=Very Small

The above table is then interpreted using simple
“if-then” decision criteria.  For example, recall that
in 1968 TR is associate with “Normal” AND with
“High”, so using Rule 12 above, we say the UE is
“Big”.  The construction of the rules in the table is
rather arbitrary - the “benchmark” rules (1, 7, 13,
19, 25) are straightforward to assign, and we have
then followed Lindstrom [1998] in assigning the
others symmetrically.

The column labeled “Degree” in the above table
provides a quantified degree of association for the
UE series.  For instance, continuing with 1968 as
an example, Rule 12 associates UE with “Big” at a
degree of 0.8.  This indicates that UE is not
perfectly associated with× “Big” in that year, but
only associated to the extent of 8/10ths.  Again,
judgement is exercised in the assigning of these
degrees.

3.4 Derivation of the UE Series

The last stage of the analysis involves deriving the
numerical series for UE.  This is achieved by
attaching the values of 0.0, 0.25, 0.5, 0.75 and 1.0
to the levels “Very Small”, “Small”, “Average”,
“Big”, and “Very Big” for UE, weighted by the
relevant levels of association.  Recall that for each
observation on TR and REG there are at most two
association values, so there are at most (2×2) = 4
decision rules active for each UE value generated.
Here, the fuzzy “MIN”, “MAX” operators act in
place of the usual “AND”, “OR” operators.  So, in

1968, the associating values for the four different
levels of magnitude are:

 TR “Normal” “High”
0.8709 0.1291

REG “Low” “Normal”
.7339   .2661

For 1968, there are four levels of magnitude to
form four possible combinations with:

Rule    UE level             UE association
TR/REG         [MIN(TR,REG)]  [MAX value for

                                             each level]

1. N/ L    18 S:  0.8 × 0.7339 = 0.5871
2. N / N    13 A: 1.0 × 0.1291 = 0.1291  drop
3. H / L    17 A: 1.0 × 0.2661 = 0.2661
4. H / N    12 B: 0.8 × 0.1291 = 0.1033

From the previously listed decision rules each
combination of TR and REG level is associated
with a level of magnitude for UE, along with a
degree (VS: Very Small, S: Small, A: Average, B:
Big, VB: Very Big).  The first combination
considered in this example (1.) associates
“Normal” for TR AND “Low” for REG to produce
a level of “Small” with a degree of 0.8 for the UE
series. The “Normal” level for TR is 0.8709 and
the “Low” level for REG is 0.7339; using the AND
(MIN) operator results in choosing the smaller
value of 0.7339 to multiply against the degree
value for “Small” UE level (equal here to 0.8). The
third column under the heading UE degree / level
summarizes the calculations to this point.  It shows
that a level of “Small” (S) is associated for UE
with degree of 0.8, multiplying this degree by the
MIN of TR (Normal) or REG (Low) equal here to
0.7339.

The last column incorporates the use of the OR
(MAX) fuzzy operator. For 1968, decision rules 13
and 17 are activated, both resulting in a level of A
(“Average”), raising the question as to which
“Average” should be chosen, as they both cannot
be true simultaneously. The OR operator applied
here chooses the larger value of 0.2661 (and so we
drop the 0.1291 value).
The final task is to attach values for the UE levels.
Recall that these values have been set to 0.0, 0.25,
0.5, 0.75 and 1.0, associated respectively with the
levels “Very Small”, “Small”, “Average”, “Big”
and “Very Big” for UE.  We proceed as follows,
again using 1968 to illustrate:

Level Value Weight

S 0.5871 0.25
A 0.2661 0.50
B 0.1033 0.75



WTGU derivation

(0.5871 × 0.25) + (0.2661× 0.5) + (0.1033× 0.75)
    (0.5871 + 0.2661 + 0.1033)

= 0.3737 = UE index value in 1968.

For the index value for UE to lie in the interval
[0,1] the sum of the weights (i.e. the association
values) must equal 1.0, which is accomplished by
dividing by their sum.  The UE index value of
0.3737 indicates that for 1968 in New Zealand the
willingness of agents to “go underground” was less
than neutral. An average agent, on balance, would
tend towards working openly and above-board.

4. FINAL RESULTS

The resulting index values for each year have been
scaled so that the “Fuzzy UE” series is comparable
to that generated by Giles [1999] - he used MIMIC
model analysis, and leveled the resulting index by
using a currency-demand model.  The two
different time-series of the New Zealand
underground economy for 1968 to 1994 appear in
Figure 1.  We see there that although the two series
follow a similar upward trend over time, their
cyclical movements differ quite sharply.  Of
course, the true series of values for UE is
unknown, so which of these two measures is the
more accurate cannot be determined.

We have examined the robustness of our “Fuzzy
UE” series to changes in the various subjective
assumptions that have been made in its
construction.  We have found the results to be
quite insensitive to the choice of the decision-rule
“degrees”; to the use of the mean or the median as
the “benchmark” for the break-points; and to the
number of standard deviations used about these
“benchmarks”.  We have also constructed
corresponding “Fuzzy UE” series using other
causal variables that have been adopted in other
analyses of the underground economy.  For
instance, the use of the inflation rate in conjunction
with TR or REG yields strikingly similar results.

The most likely explanation for the different
cyclical patterns in the MIMIC and FUZZY series
is that the former is based on ten causal variables,
and not just two. Extending the above fuzzy logic
analysis to incorporate more than two causal
variables is not straightforward in terms of the
subjective judgements that need to be made.

As an approximation to a full such analysis we
have experimented with “hierarchical” structures

of two-variable models.  For instance, the resulting
series for the UE here can be taken as one new
“composite” causal variable.  A second such
composite causal variable can be obtained in an
analogous manner by using two quite different
basic causal variables to generate a separate time-
path for the UE.  Then, the methodology outlined
her for the two-variable case can be applied to
these composite inputs.  This assumes, of course,
an inherent “separability” of the effects of the two
pairs of basic input variables, and this may be
unrealistic.  Our work to date along these lines has
not yielded significantly different results to those
reported in Figure 1.

5. CONCLUSIONS

Clearly, much remains to be done to refine the
procedures outlined in this paper.  However, the
preliminary results reported here are extremely
encouraging, and do not appear to be especially
sensitive to the various subjective prior judgements
that have to be made in applying this methodology.

The size of the underground economy is
unobservable, but it is important for policy-makers
to have reliable measures of its magnitude, trend,
and cyclical characteristics.  The recent resurgence
of interest among policy-makers in Europe, the
U.S., Canada, the U.K. and New Zealand in this
topic makes it all the more timely to explore
alternative methods for measuring the underground
economy internationally.

Our use of fuzzy set theory and fuzzy logic in
novel in this context, and among other things it
provides useful cross-checks on other measures
that are available.  Work in progress is extending
this analysis in various ways, notably to
incorporate a more comprehensive array of causal
variables, and to consider alternative “membership
functions”.  Finally, this same type of analysis can
be used to measure other interesting, but
intrinsically unobservable, economic variables.
Examples include capacity utilization and price
(and other) expectations.
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Figure 1.  Two Measures of the New Zealand Underground Economy
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