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Abstract

Standard approaches to estimating the cost of capital are vulnerable
to two errors when applied to sunk assets subject to economic regulation.
First, investors in sunk assets usually have a valuable ability to delay com-
mitment which is therefore an opportunity cost of investment. Second,
economic regulation alters the distribution of returns to capital, and may
do so in a way that eliminates pro..t potential but leaves some risk of losses.
This paper studies the impact of, and the interaction between, these ezects.
A fundamental connection is established between the value of the real op-
tion to delay investment, the risk of losses under regulation and the rate of
economic depreciation. A practical bene..t of this analysis is that existing
empirical methods for estimating real options can now be used to estimate
the size of the “’investment incentive margin” that regulated ..rms should
be allowed.
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1. Introduction

This paper is concerned with the way that market risk and uncertainty interact
with economic regulation, and the impact this has on the regulated ..rm. Reg-
ulators carry a heavy burden of responsibility for current and future outcomes
in the markets under their control. As the interface between public policy, con-
sumer interests and ..rms with market power, they are routinely required to make
decisions with far reaching ecects. Furthermore, in many jurisdictions it seems
that regulatory activity is an increasing function of the number of deregulated
markets opened to competition. This apparent paradox arises from the fact that
the terms of access to bottleneck facilities is a crucial determinant of pro...tabil-
ity for both entrants and incumbents in traditionally regulated industries such as
telecommunications and electricity.

As the number of ..rms with an interest in regulatory decisions increases,
there is a corresponding increase in the diversity and complexity of the arguments
put to regulators. Two such arguments provide the primary motivation for this
paper. Considerable attention has recently been focussed on the implications
for regulation of the modern ’real options” theory of investment, with views as
to the relevance of this concept being sharply divided. In addition, ..rms have
expressed concerns over the one-sided nature of their risk under regulation. By
removing all of the ”upside”, the argument goes, regulation leaves the ..rm playing
an unwinnable game.

Both of these arguments can be reduced to questions about how the opportu-
nity cost of the capital employed by the regulated ..rm is acected by a particular
one-sided random variable. The value of the real option to delay varies with
the parameters of the ..rm’s operating environment but can never be negative.
Similarly, many common forms of regulation aim to prevent ..rms from securing
economic rents but do not provide insurance against losses.

The primary goal of this paper is to study the connections between the delay
option value and the expected cost of losses under regulation. Intuition suggests
that these variables may share more than just the fact that they are both one-
sided. As a trivial example, suppose that the ..rm expects that if it invests now,
it will incur losses over the forthcoming period, but by waiting one period it will
avoid such losses and break even for ever. In this case, the value of the real option
to delay investment is exactly equal to the losses expected. It turns out that this
relationship between real options and regulatory losses also holds in more general
settings.



The ideas behind real options theory of investment can be traced back at least
to Arrow (1968) but the theory itself is usually dated from McDonald and Siegel
(1986). Pindyck (1991) oxers an early survey, and Dixit and Pindyck (1994) pro-
vide a comprehensive and rigorous exposition of most aspects of the theory. More
recently Abel et al (1996) have developed the linkages between this theory and
earlier work on adjustment cost models. Despite the considerable breadth of the
real options literature, there is very little work that considers the implications
for regulated industries. The notable exceptions are Teisberg (1993) who studies
the impact of regulatory risk on the size of investment projects undertaken, and
Dixit and Pindyck (1994, chapter 9) who show how regulatory constraints can be
embedded into a continuous time model of real option values. An interesting fea-
ture of this latter work is that it shows how regulation can be self-justifying. This
occurs because the regulatory constraint reduces investment, thereby congesting
the existing capacity, increasing the probability that the constraint will bind, and
increasing the long-run average price to consumers.

While the issues studied here do not appear to have been considered previously,
there are nevertheless some links to previous papers. Perhaps the most obvious
connection is to the well known work of Averch and Johnson (1962). In that paper,
the ..rmis assumed to be permitted a rate of return that exceeds its cost of capital,
with the result that the ..rm makes excessive investment in unproductive assets.
By re..ning the de..nition of the cost of capital for a regulated ..rm, our work
could be interpreted as suggesting that the additional margin assumed by Averch
and Johnson is not necessary. Provided that costs are de..ned correctly, all that
is required is for the regulator to reimburse these costs.

This paper could also be thought of as part of a more general re-evaluation
of the nature of risk and uncertainty. Pratt and Zeckhauser (1996), for exam-
ple, cite ”an explosion of literature addressing the severe errors society makes in
confronting risks”. Our analysis is consistent with this theme in the sense that
it shows how the very act of regulating changes the nature and value of the risks
faced by the regulated ..rm. Unless this endogeneity is recognised and accommo-
dated, current costs may be under-recovered and e¢cient investment deferred.

Notwithstanding these connections, it may be most helpful to view this re-
search as being a study of regulatory consistency. The regulatory process requires
a determination of both the value of the ..rm’s assets, and the cost of the cap-
ital invested in them. Assume that the ..rm’s stock is freely traded under the
expectation of normal (zero) pro..ts only. If the issues studied here are relevant
but neglected, then exect of regulation is to understate the cost of capital. This



disturbs the capital market equiulibrium, prompting investors to sell the stock
and reducing the value of the ..rm to a level that is consistent with the regulated
rate of return. In this case, there is a fundamental inconsistency between the
regulated asset value and the permitted rate of return. Our work shows how to
test for the existence of such an inconsistency, and to correct it if necessary.

The remainder of the paper is organised as follows. In section 2 we present a
very simple model of real options and regulatory losses. When capital lasts for
one period only, the option value and the one-sided costs of regulation are identi-
cal. While supportive of the intuition that motivated this work, section 2 leaves
unanswered the question of how sunk assets acect the result. This is addressed
in section 3 where we assume that capital is long-lived and that the regulator
applies economic depreciation. This work con..rms the results of the ..rst model,
showing that the real option to delay investment is identical to the expected cost
of losses over the forthcoming period. In addition, it shows that with appropriate
timing quali..cations, economic depreciation is identical to the option value, and
hence is also equal to the expected cost of losses. Option value models can there-
fore be used to estimate economic depreciation. Section 4 analyses the impact
of regulation on CAPM based estimates of the risk premium. This emphasises
the fact that the CAPM beta is in fact endogenous to the regulators decision and
shows how the zero-pro..t regulatory constraint can be derived in a way that is
consistent with this endogeneity. Section 5 presents some numerical simulations
of the size of the option value mark-up based on the model derived in section 3.
The paper closes with a summary of the results and their implications.

2. Options, Losses and Regulation

In this section we present a simple model of the impact of regulation on capital
costs. We assume that the regulated ..rm has a particular investment project in
mind but has not yet sunk any capital. The service life of capital invested is
one period only. We assume that the regulator (a) values the asset base and (b)
sets a maximum rate of return that can be earned on this base. The regulatory
constraint may be expressed as a price which declines over time as would occur
in price-cap regulation. Our results are readily extended to this case. The single
essential feature of the type of regulation assumed here is that it is one-sided: the
upside potential is limited but the downside is not.

We know from the real options literature that the ..rm will not invest unless
two conditions are met. First, the project must be expected to cover its costs;



this is the standard NPV criterion. Secondly, it must not be the case that the
..rm expects to pro..t from delaying the investment. The value of the option to
delay investment (henceforth refered to as just the option value) is the dicerence
between the expected value of the ..rm if it invests now, and the expected value
if it defers the investment decision until next period, which can be written as

‘9t = I<Rt+1 - Rt) ) t= 17 27 (21)

where R, is the expected value of holding the additional asset in period ¢,
expressed as a rate of return on capital invested. Similarly, R,,; is the expected
value of not holding the asset in period ¢ but being free to invest at ¢t + 1. The
expectations embodied in R, and R, are both formed at time ¢, and the indicator
function I(x) has the property that /(xz) =  when = > 0 and I(z) = 0 otherwise.

If R; > R;,1 then # = 0 and the fexibility to delay investment has no value. In
this case the ..rm will invest immediately provided R; exceeds the cost of capital.
Whenever 0, > 0, however, the ..rm does not invest because waiting until the
next period has a higher expected return than investing immediately. Thus, 6, is
a one-sided random variable which varies with random shocks the the operating
environment of the ..rm but can never be negative.

Observe that, since R; is a rate of return, it can be decomposed into a known
and constant risk adjusted cost of capital* » and an economic pro..t rate e; as:

Ri=r+e ; t=12.. (2.2)

Suppose that there is some probability that the project will not cover its costs.
We can represent the expected value of losses over period ¢ (also expressed as a
rate or fraction of capital invested) as

)\t:I(T—Rt) ) t = ]_,2,... (23)

where the indicator function emphasises the fact that \; is a one-sided ran-
dom variable. Notice that \; can be interpreted as the actuarially fair insurance
premium associated with the risk of losses over the forthcoming period. If we
now add R;,; to the RHS of (2.3) and subtract its decomposition from (2.2), we
obtain

1This is a naive measure of the cost of capital because it does not take into account the
regulated and sunk nature of the asset. It is the measure that would arise from standard
regulatory use of the CAPM combined with the relevant adjustments for taxes.



)\t = I(T—Rt+Rt+1 —T—et_H)
= I(Riy1 — Ry — er41) (2.4)

This shows how the expected cost of losses over the current period is related to
the investment timing decision and can be interpreted in several ways. To focus
on the investment timing issue, note that the larger is R, relative to R;, the
more likely it is that the current project will make a loss.

Now consider the impact of regulation aimed at removing economic rents. The
edect in (2.4) is to set e;;; = 0 with the result that, under regulation

At = I(Rt—H - Rt) = 0, (2-5)

We summarise this result in a proposition.

Proposition 2.1. When costs are known and constant and capital lasts for one
period, the real option value is also the actuarially fair insurance premium for the
risk of losses imposed by economic regulation.

The situation described above, while somewhat arti...cial, is nevertheless illus-
trative of an important point. The real option value signals information that can
alter the pro..tability of the ..rm. This alteration is usually interpreted as showing
how pro..ts can be increased above the break-even level by careful attention to
timing. The concept applies more generally, however, and could be used to value
the change in losses that would occur through delaying investment, despite the
fact that ..rms would not willingly invest at all if expected pro..ts were negative.

In a regulated environment, economic pro..ts are not available but losses can
occur. While the impact of relatively small losses may be di¢cult to discern, the
spectacular strandings of generation assets in the USA electricity industry lie at
the other extreme. Stranding is a discrete event which occurs when losses of the
type de..ned in (2.3) accumulate su¢ciently and the prospect of omsetting pro..ts
is negligible.

If capital were not already sunk, a ..rm considering entering a regulated indus-
try would evaluate its timing decision just as real options theory predicts. Given
the constraints of regulation, however, the option value would signal investment
at precisely the same time that the downside risk of losses was eliminated. Thus,



the option value and the loss-insurance premium are the same for regulated ..rms?,
as stated in the proposition.

2.1. Implications and Limitations

What does the above proposition imply for regulatory policy? The answer clearly
depends on the extent to which the assumptions underlying (2.5) are applicable
in any given situation, and we discuss this issue shortly. Some more fundamental
remarks are also required, however. First, the proposition highlights the fact that
decisions over new investment in regulated industries are subject to the same
forces that prevail elsewhere. Second, it is clear that regulatory regimes which
limit earnings to the risk adjusted cost of capital must also consider possibility
of the ..rm incurring losses. Since the ..rm has no alternative but to self-insure
against losses, the cost of this insurance is a genuine opportunity cost of capital.
Finally, the real option to delay investment can provide a basis for valuing the
actuarially fair premium for this insurance, at least in this simple context.

There are two main limitations of the approach underlying (2.5). First, while
it is clear that future investment will not be forthcoming unless the allowed rate
of return is adjusted to (r+ \;) = (r+6;), this does not necessarily mean that the
regulated rate of return on previously sunk capital should also include an option
premium”. Secondly, the ercect of relaxing the rather extreme assumption that
capital lasts for one period is as yet unexplored. These limitations are addressed
in the next section.

3. A More General Model

In this section we relax the assumption that capital lasts for only one period.
Further, although we will discuss investment as if the ..rm retains the opportunity
to delay its commitment, this is merely a convenient ..ction that allows us to
derive the real option value. In fact, the assets are already sunk and our task is
to calculate the opportunity cost of the capital so employed. Consequently, there
are no scale issues to consider here; the size of the plant is already determined.
Finally, while the regulator continues to limit upside returns as previously, she
must now also consider the treatment of depreciation.

2Insurance against losses is largely redundant in the absence of regulation because ..rms can
orset these agains the rents earned during pro..table trading periods.



We specify a production function for period ¢ which relates output @; to inputs
of capital K; and labor L; as follows:

Q= F(Ky, Ly)

where F(.) is homogeneous® of degree one in K, and concave and non-decreasing
in each input. At the beginning of each period the ..rm selects its preferred level
of labor and installs additional capital equal to I; with the result that the capital
stock evolves according to

Kt+1 - (1 - (St>Kt + It

where ¢, is the rate of economic depreciation over period ¢. At the beginning
of each period the ..rm selects I; and L; with the objective of maximising the
following expected sum of discounted cash fows

E, Z"’til(tht —wi Ly — C(Lt))
t=1

where the expectation F; is formed using the period ¢ information set, which
includes all magnitudes dated ¢—1 and earlier. In this equation, r is the ..rm’s cost
of capital (de..ned as in section 2), p; = p(Q,) and w, are the price and wage rates
at time ¢ respectively, and C(1;) is the cost of installing new capital. Future values
of Q;,w; and ¢; are assumed to have random components, possibly in addition
to some deterministic trends. Using the homogeneity of the production function,
the maximum pro..t attainable in period ¢ can be written as

h(Ky, Qi wi) = Ki(g: — 1) = Ki(9(Qr, we) — 1)

so that g, can be interpreted as the greatest rate of operating pro..t obtain-
able at time ¢ from the installed capital base K;. Note that the total maximum
economic pro..t rate is the dicerence between the operating pro..t rate g and the
cost of capital, r. It is clear that ¢ will vary randomly over time with shocks to
demand and input prices; we assume however that since r is derived with speci..c
reference to market risk, it does not vary with normal business conditions.

3This assumption is convenient rather than critical. It allows us to readily separate the
quantity of capital invested from the cost of this capital.



For analytical convenience*, we assume that the g¢,’s are independent draws
from a normal distribution given by

gi ~ NID(p,0°) (3.1)

We will shortly impose the regulatory constraint on the ..rm by altering this
distribution, but for now consider the value of this ..rm in the absence of regula-
tion, which is given by

oo

Vi=K,Yy dH(1—6)" g — ). 3.2)

t=1
where d = (1—r) is the ..rm’s discount rate. Using standard results on in..nite
geometric sums and the normal distribution, (3.2) can be rewritten as

Vi ~ N(Vtagg)

where
Ki(p—r)
Vi m (3.3)
_ _op—r)?
"= T-@i—ep 54

The impact of the homogeneity assumption can be seen in (3.3), where the
mean value of the ..rm is linear in the capital base. While this would be an
unreasonable approach if we were considering large changes to K, it is largely
innocuous here since the capital base is already installed.

3.1. The Cost of Regulation

In this section we introduce the regulatory constraint by changing the distribution
of the per-period maximum operating pro..t rate g;. De..ne the regulated rate, g~
as:

R_ J Ot if ¢ <o

“1t is straightforward to derive our results under more general distributional assumptions,
including non-stationary elements such as a time dependent mean.

9



Thus, g? is a censored® random variable which depends on the underlying
latent variable g;, de..ned in (3.1). The regulated return variable ¢? takes the
value « during good trading periods (when economic pro..ts would have been
made in the absence of regulation) and g; in all other periods. The point « at
which the regulatory constraint binds is left unspeci..ed for now.

Using standard results on the mean of a censored normal distributions®, the
expected rate of operating pro..t E(g¥) can be written as

B(g") = u* = a = (a = )o(*—£) —oo(*—1) (36)

g
where ¢(.) and ®(.) denote the standard normal density function and CDF
respectively. This allows us to write the expected economic rate of return on
regulated capital as

E(g"—r)=p"—r (3.7)

As discussed further below, the variance of gf* also dirers from that of g;.
Concentrating on the means, however, observe that the dicerence between the
value of the regulated and unregulated ..rms can be found by substituting . for
w1 in (3.3) and subtracting the result from v, to get

R Kt(#—#R)
ATEV) = i)
- iy (D e nEEE -n) e

The mean dizerence as expressed in (3.8) follows directly from the speci..cation
of the censored distribution in (3.5).

When regulation is imposed, therefore, the value of the regulated ..rm is re-
duced by an amount that can be estimated using (3.8). Such a reduction is, of
course, merely a natural consequence of restraining the ..rm from exercising its
market power and is not, of itself, cause for concern. Since regulation removes the
upside earning power of the ..rm, however, there is a danger that the continued

SThere is a subtle but important dicerence between ”censoring” and truncating” a sample of
data. In the former case, all observations are present but the true values of some are incorrectly
reported as taking a limiting value. Truncation refers to a situation in which some values are
simply not reported.

6See, for example, Greene (1990) pp725-7.
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presence of downside risk may lead to economic losses on average. Note that the
expected economic loss that arises as a result of regulation can be found using
(3.7). As in section 2, we use \; to represent these losses, which can be expressed
as:

A =1I(r— gf) (3.9)
where the indicator function I(.) is as de..ned for (2.1) above.

3.2. The Real Option to Delay Investment

Having derived the expected cost of losses under regulation, we now consider the
option value in this model. Retaining the focus on sunk assets, we deliberately
adopt the ..ctitious assumption that these assets have not been sunk. \We consider,
therefore, the decision of a ..rm which is contemplating the investment of K, at
time ¢, and realises that delaying this investment may be valuable. The ..rm
depicted here is regulated but it should be clear that the analysis is exactly the
same for an unregulated ..rm except that the operating pro..ts would be denoted
g; rather than g7 in this case.

It will be convenient to split the economic pro..ts in (3.2) into those earned in
period ¢, which we denote R; and those from all subsequent periods, as follows

R, = Ei(gf—r) (3.10)
Ry = Ey ' '(1-8) g —1) 3.11)
t=2

The timing decision of the ..rm depends heavily on the value of current period
cashtows which are only available if the investment occurs at time ¢. For future
reference, note R, is just the same as the expression given in (3.7).

3.2.1. Economic Depreciation

Depreciation is also an important aspect of the ..rm’s timing decision. However,
depreciation in periods beyond ¢ are not relevant when the ..rm decides whether
to invest now or wait one period; it is peroid ¢ depreciation that matters for this
decision. It is well known that the economic depreciation of capital arises from
the erosion of two stocks: total willingness to pay for the services of the asset, and
total service life of the asset. Reductions in either or both of these stocks reduce

11



the value of the ..rm holding the asset, and we can therefore de..ne the expected
rate of depreciation of capital over period ¢ reference to the expected value of the
net cashtows.

%_‘/;erl

6t:Et V
t

which can be rewritten by substituting (3.10) and (3.11) into (3.2) as follows

KR, + R.) — K\R,
Ki(R; + Ry)
R,

S - 3.12
R+ Rur (3.12)

This shows the relationship between economic depreciation over the period
and the share of total lifetime discounted net cash-fows that the asset delivers
over the period. The use of economic depreciation is important here because, like
the real option value it is a one-sided random variable that depends on the value
of the ..rm in successive time periods.

Note, however, that ¢, is a forward looking measure of depreciation that has not
yet occurred. In what follows we assume that the regulator correctly anticipates
0, and uses this measure when calculating the cost of capital.

3.2.2. The Option Value Calculation

We now derive the value of the option to delay investment. In doing so, we
assume that the scale of the project would not change as a result of delay. The
value of the unregulated ..rm when investment occurs at time t is given by (3.2)
and substituting g for g, in this expression gives the corresponding value for the
regulated ..rm. If, on the other hand, investment is delayed until period ¢+ 1, the
value of the ..rm is anticipated (at the beginning of period ¢) to be

K &, .
E(Vip1) = 1_t6tZdt H1—-0) gl
t=2

K

12



where it will be observed that the capital stock is adjusted upwards to account
for the lack of depreciation over period ¢ when investment is delayed until period
t + 1. Using (3.12) we can rewrite this as

R+ R
E(Vt+1) = KttTjLHRH

- Kt(Rt + Rt+>

We can now derive the real option value as the dicerence between the expected
value of the ..rm from investing in the current and future periods.

Kt‘gt = I(E(V;f+1) - E(V;f))
= I(Ki[Ri+ Riy — (R + Riy)])
=0

Thus, when future economic depreciation is correctly estimated, there is no
real option value. Firms are indicerent between investing now and delaying one
period because economic depreciation refunds any loss in value that occurs as a
consequence of investing too early.

Furthermore, if no allowance is made for deprecation, then the option value
is identical to the expected cost of losses, as was the case in the simple model of
section 2. To see this, note that with no allowance for depreciation, (3.13) would
become

ENoDep(W+1) - Kth+

in which case the option value would be

Ktﬁt - I(—Rt)
= I(r—g/).

the right hand side of which is identical to that of equation (3.9). We sum-
marise these results as follows.

Proposition 3.1. The expected cost of losses for a regulated ..rm is the same
as the real option value that would apply if the assets were not sunk. This is
also equal to the rate of economic depreciation that is expected to occur over the
forthcoming period.

13



This result con..rms the intuition developed in the simple model presented at
the start of this paper. There is a fundamental duality between the one-sided risk
of making a loss on sunk and regulated capital and the value of the real option
to delay investment in this capital. Indeed, these are seen to be simply opposite
sides of the same gamble.

3.3. Interpretation

This analysis has some important practical implications and can be interpreted
in several ways. First, the connection between option values and expected losses
helps to clarify the true opportunity cost of capital sunk in regulated assets.
Unless downside insurance is provided in some way, the elimination of economic
pro..ts will erode the value of the ..rm below the level assumed by the regulator.
The issue can therefore be interpreted as concerning the internal consistency of
the rate setting process. It is easy enough to set the expected value of pro..ts to
zero, but unless the expected cost of losses is also zero, the regulator has used an
inconsistent model to set the rate of return on capital.

Secondly, if economic depreciation is correctly applied, the expected cost of
these losses is zero.

Thirdly, the real option to delay investment in the sunk assets, which would be
directly relevant if investment had not already occurred, is identical to the rate of
economic depreciation. This opens up the possibility of using the well established
real options empirical methodology to derives estimates of economic depreciation.
Since real options models typically impose exogenous depreciation rates, it appears
that any remaining option values arise from the dicerence between the assumed
exogenous rate of depreciation and the expected rate of economic depreciation.
A further bene..t of this connection is that a test of the hypothesis that the real
option is zero can be interpreted as a test of the consistency of the rate setting
model.

Finally, the derivation of real options for regulated ..rms leads to a clear answer
the question of how much pro..t” a regulated ..rm should be permitted in order
to provide an incentive to make e€cient investments. Our analysis suggests that
eCcient investment will occur in regulated ..rms provided that costs are measured
carefully, although there is reason to believe that regulated ..rms will invest less
than unregulated ..rms (Small, (1999)).

14



4. Regulation and the CAPM

In this section we consider the same problem from a dicerent perspective. As in
the previous section, we assume that demand is random but the price (or rate of
return) is ..xed by the regulator at a level that is consistent with zero expected
economic pro...ts over the lifetime of the asset being regulated. The price includes
an allowance for economic depreciation and a risk premium estimated by the
CAPM.

It is well known that a CAPM based risk premium only rewards investors for
so-called systematic risk, which increases the risk of the market portfolio. When
regulators use the CAPM as a basis for estimating the cost of capital, the resulting
risk adjusted rate of return depends on the covariance of ..rm returns with the
return on the market portfolio (c;1/03%,), the market risk premium (r,, —r;) and
the risk free rate of return r; as follows:

ri =1p+ (ra —15)B; (4.1)
where
o;
B; === (4.2)
OMm

Assume that both r; and r,, are random variables and consider the impact
on G, of censoring the distribution of r; in a manner that mimics the ecect of
regulation. To model this, we use the speci..cation de..ned in the previous section
and assume that the censored return series r;; and the original return series r; are
related as

i When’f’ig(l/
Tit =
o whenr;, >«

This speci..cation has the ezect of censoring the distribution of r; such that
any returns above a speci..ed level « are restricted to a. The following proposition
describes the relationship between the covariance of r; with r,, and the covariance
of r;; with rj,.

Proposition 4.1. If ..rm ¢ is small relative to the market, censoring of the right-

hand tail of r; reduces the absolute value of o5, and the size of the reduction is
given by

15



oam — oive = E(rar — pyy) (/00(7’7; —a)f(r)dr — I(r; — a)) (4.3)

«

where f.(r) is the density of the unrestricted returns distribution and I is an
indicator variable that takes the value 1 when r; > « and zero otherwise.

The proof of this result is presented in the appendix. Note, however, that the
..nal bracketted term in (4.3) is the dicerence between two terms that dicer only
in respect of the weighting applied to them. Since the weights on the ..rst must
be less than unity and the second term is unweighted, this dicerence is negative
and o, < o;. Thus, regulation reduces the numerator for the regulated ..rm’s
CAPM derived beta.

4.1. The Implications of Censoring

If the regulated ..rm comprises a large part of the market portfolio, then regulation
will also reduce o3,. For most practical cases, however, it seems reasonable to as-
sume that the actual and mean returns on the market portfolio, and the variance
of these, does not change as a result of ..rm 7 being regulated. In this case, reg-
ulation has two erects on the CAPM. First, regulation reduces the risk premium
that would be predicted by valid application of the CAPM. This is clearly evident
from (4.3) and the discussion following it and highlights a further justi..cation for
the relevance of the issues studied here. Since the ..rm’s beta is endogenous to
the regulator’s decision making process, failure to recognise this will (except by
sheer chance) result in an inconsistent estimate of the cost of capital

Secondly, regulation makes a valid application of the CAPM more diCcult.
In particular, it invalidates the standard practice of estimating the CAPM beta
using least squares regression because the dependent variable in the regression
is censored’. This ecect can be quite signi..cant and is likely to become more
important, the more frequently the regulatory constraint binds. Interestingly,
however, this bias increases the estimated size of beta and therefore tends to
over-compensate the ..rm for systematic risk.

"1t is well known in the econometrics literature that OLS regression estimates of the slope
parameter are biased and inconsistent when the dependent variable is censored; see Davidson
and MacKinnon (1993), for example, or any other good econometrics text.

16



4.1.1. Simulation Evidence on Beta Bias

To investigate the empirical signi..cance of bias in OLS estimates of beta this ezect,
a small simulation experiment conducted using the SHAZAM (1993) software.
The experiment used a sample size of 100 and the number of replications for
each case was 1000. The cases dicered by the true (unregulated) value of beta
and the percentage of observations that were censored, which we interpret as the
percentage of time periods in which the regulatory constrain is binding. The
same random numbers were used for each case, so the only dicerences are those
attributable to the parameters reported.

Since valid estimates are obtained using a Tobit model, our experiment fo-
cussed on the dicerence between tobit and OLS estimates of beta. In table 1, we
report the mean dicerence across the 1000 replications®, expressed as 3, — ﬁo LS
The predominately negative numbers in this Table show that OLS overstates beta
for regulated ..rms in general.

Table 1: Bias in OLS Estimates of Beta for Regulated Firms
Censoring% (=05 /=10 =15

0 -0.004  -0.035 -0.100
10 -0.050 -0.129  -0.259
20 -0.043  -0.067  -0.097
30 -0.038 -0.032  0.001

40 -0.051  -0.063  -0.039
50 -0.094  -0.156  -0.204
60 -0.151  -0.292  -0.458
70 -0.225 -0.474  -0.759
80 -0.330 -0.709 -1.123
90 -0.477  -1.043  -1.600

This small simulation experiment demonstrates the importance of regulatory
censoring on the cost of capital. Since the size of the bias that applies in any
given case cannot be known a priori, it is important the estimates of beta for
regulated ..rms are obtained using statistically methods. Furthermore, despite
the fact that the bias in OLS estimation of regulatory betas tends to ozset the
impact of censoring on the risk of losses, the only way to know which of these
ecects dominates is to calculate each in a consistent manner.

8\We speci..ed the market risk premium as being equal to 5 plus the sine of the observation
number ¢ = 1,...,100. The ..rm return was formed by summing a risk free rate (also 5), the
market risk premium multiplied by the unregulated beta, and a standard normal error term.
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4.2. Adjusting the Regulated Rate of Return for Diversi..able Risk

Since beta is endogenous, the solution to the regulator’s rate setting problem must
be solved with reference to the underlying variables. A convenient way to think
of the task at hand is to ask the following question. What « should be selected
if the aim of the regulator is to reduce the expected nominal rate of return to a
level just consistent with the risk borne by investors? If we can ..nd such a value
for o then the regulator can (at least in theory) prevent the ..rm from earning
economic rents without imposing losses, on average.

This problem is solved by ..nding the o which results in x4, = 0. Using equation
(8.1) from the appendix, the relevant condition can be written as

i — /oo rifr(r)dr + /:o fr(r)dr =0

«

from which we can deduce that the appropriate truncation point is given by

. — S rife(r)dr
¢TI0 % fr(r)dr
This expression can be interpreted as showing what the limit on the regulated
..rm’s returns should be if the ..rm is to make zero economic pro..ts overall. Thus,
one way to estimate the regulated rate of return is to substitute (4.4) and (4.3) into
(4.2) to derive the correct measure of diversi..able risk and then set the regulated
rate with reference to this, taking account of taxes and other ecects in the usual
manner. By embedding the exect of regulation into the rate setting process, this
approach results in an internally consistent solution to the regulator’s problem. It
is, however, a di¢cult and complicated solution relative to the option value mark-
up proposed in the previous section. Moreover, since this method is designed to
solve the same problem as that addressed in section 3, the end results of these
two approaches should be identical.

(4.9)

5. The Size of Option Value Adjustments

Given the dicculties of setting the regulated rate through the adjustments de-
..ned in section 4, it seems preferable to use the option value approach described
in section 3. This method begins with a valid estimate of the regulated ..rm’s
CAPM beta, which is combined with the usual adjustments for taxes to form
what is frequently referred to in regulatory circles as the ”weighted average cost
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of capital”, or WACC. This rate can then be adjusted upwards by an amount
equal to the expected cost of losses under regulation. The size of the adjustment
is exactly equal to the real option value associated with delaying investment in the
currently sunk assets for one period, and can be estimated by whatever method
is relevant, given the nature of the business concerned.

If unregulated market returns for the business under study can reasonably be
represented by a normal distribution, then the parametric models of section 3
can be used to estimate the size of the adjustment required. We can de..ne the
adjustment as follows:

A= (a—r1)|,r

where « is the ..nal (adjusted) regulated rate of return, r is the WACC, and
u® is de..ned by (3.6). Now, by substituting in the conditioning event pf = r,
the mark-up that is required over r can be written as

A=a-— IUR|;LR:7"
from which it can be seen that

o — oa— [

A = |(a = ®(=—F) + o9(

o > ‘uR:r-

Given the parameters . and o of the unregulated distribution of returns, the
size of an estimate of A can be readily computed for any «. This estimate can be
re..ned sequentially by making small changes to o until the condition p® = r is
satis..ed. Figure 1 presents the results of a number of such processes in graphical
form. It shows that as the mean value of the unregulated distribution of returns
(1) increases, the size of the adjustment (A) required to account of censoring
this distribution through regulation, falls. This makes intuitive sense: the more
inherently pro..table is the ..rm, the larger is ;1 and the smaller is the probability
of it even not covering its costs; consequently, the regulated rate of return only
has to exceed r by a small amount.

Figure 1 also shows that the more risky are the ..rm’s pro...ts, the greater is the
adjustment required, other things being equal. This is further corroboration of
the link between real options (which are known to be increasing with the variance
of returns) and the risk of losses under regulation.

The size of the adjustment required is an empirical matter to be assessed on
a case by case basis. Particular care needs to be taken to specify the industry
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model carefully. Dixit and Pindyck (1994) present several prototype models which
permit oo the shelf” methods to be used in many cases, particularly those in
which demand can be reasonably represented as a geometric Brownian motion.
This approach will generally require the estimation of key demand parameters
(the growth rate and its variability) which are used to construct the real option
value®.

6. Conclusion

This paper was motivated by the problems currently faced by regulators in as-
sessing the merits of two particular arguments used in the rate setting process.
It is certainly conceivable that regulated ..rms could incur losses as a result of
regulation. Similarly, there is little doubt that ..rms behave as if the real option
theory of investment were correct. There is, however, a natural scepticism about
such arguments since they are quite new (this is particularly true of the option
value approach) and would have the egect of increasing the permitted rate of re-
turn if they were to be accepted. Also, in respect of the option value argument,
it is frequently asserted that this exect is adequately captured by using economic
depreciation rather than some arbitrary rule.

Our analysis shows that there is a fundamental connection between the ex-
pected cost of losses arising from the one-sided nature of economic regulation, and
the real option to delay investment. Indeed, if no allowances are made for depre-
ciation, these are in fact the same thing. If the assets were not already sunk, the
regulated ..rm would only choose to hold them until the next period if no losses
were anticipated during this time. Otherwise, the ..rm would rationally prefer to
delay the investment decision for one period. The value of the option to delay
investment is just the dicerence between the value of these alternatives. Hence,
if losses are expected over the current period, the real option to delay investment
is exactly equal to the value of these losses.

We have also shown, however, that the amount of economic depreciation ex-
pected over then forthcoming period is identical to the value of the real option to
delay investment over this period. Consequently, empirical models for estimating

°In unpublished work, the authors have applied this approach to regulated industries in
Australia. Our estimates correspond to an estimate for A of around twenty percent of the
cost of capital () for both telecommunications and rail transport. Note that the option values
from Brownian motion models are applied multiplicatively to r, rather than additively as in the
formulations presented in this paper.
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real options can be used to estimate economic depreciation on a forward looking
basis. If regulated rates of return are adjusted using real option values, the ex-
pected value of the risk of losses is zero and ..rms have an adequate incentive to
invest.
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8. Appendix

Proof of Proposition 3
Let x; and p,~ denote the mean of the unrestricted and restricted distributions
of returns respectively. The relationship between these is

i = /iorifr(r)drvLoz/C!oofT(r)dr
= [ by = [ - a)fr)dr

o0

— = [ =) f)dr ®.)

«

Note that since r; > « everywhere in the censored section of the distribution,
Wy < ;- Now observe that the censored return series r;; can be written as

ric=r;—I(r, —a)

where I = 1 when r; > o« and I = 0 otherwise. Combining the last two
equations, we have

o= i =ri—p+ [ (= a)f,(r)dr = I(r; — )

«

from which, using the assumption that ..rm 7 is small and hence trucation does
not acect the market outcome, we deduce that

oicmM = E(TM - NM)(Ti(J - Nic)

= Bl =) =)+ [ (i= ) (r)dr = (i = )
= o+ Blr = pay) | [ (i = ) (0)dr = 1 — )

e

This establishes the validity of the expression in the Proposition. To infer that
the absolute value of o)/ is less than that of o;;; we observe that

[ i = ) f(r)dr < 10 = )

[

since these are essentially the same term apart from the density weights which
reduce the size of the left hand side. Thus, the expected value of their dicerence
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is always negative. If r; covaries positively with r,, then observations in the right-
hand tail of r; will occur at the same time as observations in the right-hand tail
of rar. In this case (ry; — p,,) IS postive and ;o < - If 7; cOvaries negatively
with r,, then observations in the right-hand tail of r; will occur at the same time
as observations in the left-hand tail of r,,. In this case, both o;,, and (ry; — py,)
are negative, but ;¢ is less negative than o;;,. g.e.d.
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Mark-up

Figure 1

Mark-up as a Function of Mean of Unregulated Mean
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