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Abstract

This paper studies optimal investment in sunk assets for a ¯rm facing
uncertain future demand and costs. The investment problem is decomposed
into decisions over scale and timing which are in°uenced by convex adjust-
ment costs and the feasibility of delaying investment. The value of the re-
sulting real option to delay behaves as expected in response to increases in
demand and cost uncertainty but has new timing and scale interpretations.
The larger is the option value, the more capital would be installed if delay
were not pro¯table. The timing of investment, however, is controlled by the
expected trajectory of capital prices relative to the ¯rm's discount rate. The
analysis also suggests an empirical model for aggregate investment which ex-
plains 96% of the variation in real annual investment for Canada over the
period (1981-94) using regressors formed from only three variables: business
con¯dence, capital prices and real bond rates.
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1 Introduction

The microeconomic analysis of investment remains an active research area,
despite the very considerable progress that has been made over the last few
decades. Much of the recent work is conducted within the "real options"
paradigm, where the joint impact of uncertainty and the sunk nature of
capital investment is explicitly modeled. Uncertainty is thought to have two
distinct e®ects which work in opposition to each other. Consequently, the
net e®ect of uncertainty on investment is regarded as ambiguous.
The ¯rst e®ect of uncertainty was established by Hartman (1972) and

Abel (1983) and arises from the fact that pro¯t functions are convex in prices
and operating costs. By a direct application of Jensen's inequality (Jensen
(1906)), the introduction of uncertainty into prices or operating costs will
therefore increase expected pro¯ts, raising the rate of return and increasing
the value of investment. This is a pure uncertainty e®ect arising from the
ability of the ¯rm to optimise over output levels in response to short-run
°uctuations in the strength of demand.
The second e®ect focuses on the irreversibility of investment, and has a

lineage that dates back to Arrow (1968). The link between irreversibility
and uncertainty was made by McDonald and Siegel (1986) and is extensively
covered by Dixit and Pindyck (1994). This line of work shows that the ability
to delay investment confers on the ¯rm a call option over the future income
stream from the proposed real asset. A rational ¯rm will therefore delay
investment until the expected return compensates for the cost of capital plus
the opportunity cost of "killing" the delay option.
The relationship between these two e®ects has been studied in an option

value framework by Abel et al (1996). Their model highlights the in°uence
of two di®erent real options: the option to delay further investment, and the
option to reverse previous investment. Since the value of both of these options
increases with uncertainty, but they have opposing e®ects on investment, the
impact of uncertainty is again found to be ambiguous.
Our analysis also treats both types of uncertainty in a single model, but

does so with a di®erent purpose than Abel et al (1996). The aim here is to
separately identify and analyse the timing and scale decisions that jointly
determine the optimal rate of investment. This distinction is important for
at least two reasons. First, it closely approximates reality in the sense that
decisions about ¯xed investment are usually made periodically rather than
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continuously. Secondly, it admits the possibility that quite di®erent invest-
ment pro¯les can give rise to the same rate of investment. At one extreme
a ¯rm may add large amounts of capacity very infrequently, so that excess
capacity or congestion occur frequently. An alternative strategy of adding
capacity in line with expected demand each period could produce the same
rate of investment but look very di®erent to analysts, consumers and port-
folio investors. By decomposing the optimal rate of investment into its scale
and timing dimensions, this paper shows how the uncertainty over future
parameters a®ects these distinct decisions.
The model is a very simple blend of the key ideas from the adjustments

costs and real options branches of the investment literature. The adjustment
costs approach of Hartman (1972) and Abel (1983) is well suited to studying
the scale aspects of investment, but it needs to be modi¯ed to admit the
timing issues highlighted in the real options literature. Conversely, the real
options approach is very useful in analysing timing but tends to abstract
from issues of scale. Within this latter tradition, the models of incremental
investment by Pindyck (1988) and Dixit and Pindyck (1994, chapter 11) are
most similar to this paper but are not readily adapted to looking at the
question of optimal scale.
Indeed, the whole class of continuous time models, such as those that

follow naturally from the geometric Brownian motion demand processes used
in most of the real options literature, are ill-suited to our purpose. An
explicit and non-trivial periodicity is necessary to separate the timing and
scale aspects of the investment decision. Consequently, we follow Abel et al
(1996) in using a simple discrete time model, but one which is su±ciently
°exible to represent the important option value e®ects.
Two innovative features are embedded in the model, both of which relate

to the ¯rm's choice between investing in the current period and delaying.
The focus on investment scale leads us to depart from the implicit assump-
tion in the real options literature that next period's project is the same as
this period's. Instead, the ¯rm forms an expectation about the size of the
project that would be installed in the next period, in the event that it delays
investment. Secondly, in comparing the value to the ¯rm of current versus
future investment, we apply an expected rate of economic depreciation rather
than an exogenously speci¯ed rate.
These assumptions, combined with the simplicity of the basic model,

enable us to derive a new expression for the value of the delay option (hence-
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forth referred to as either the real option or the option value). Consistent
with the previous literature, the real option is greater, the more uncertain
is future demand. Unlike existing work, however, we do not interpret larger
option values as reducing the "incentive to invest". If anything, the reverse is
true. Larger option values arise because the anticipated scale of investment
is growing, so the incentive to invest is getting stronger. Investment remains
withheld, however, until the expected growth rate in capital prices exceeds
the ¯rms discount rate. Thus, large option values indicate the potential for a
lot of investment, which can occur suddenly if ¯rms change their view about
the expected time path of capital prices. The new interpretation our model
gives to the real option value is one of the main contributions of the paper.
An additional advantage of this analysis is that the model also suggests

a new empirical approach to explaining the level of real investment at the
industry and national levels of aggregation. Speci¯cally, the model predicts
that investment is determined by three variables: business con¯dence, the
price of capital goods, and a dummy variable that is zero when the option
value is positive and one otherwise. The real option dummy is formed using
current and expected future capital prices, and a measure of the discount rate.
Thus, the three underlying explanatory variables are business con¯dence,
capital prices and real interest rates. A linear regression based solely on the
speci¯cation suggested by this model explains 96% of the variation in real
investment in Canada over the period 1981-1994.
The outline of the remainder of the paper is as follows. The next section

explains the basic set-up, in which the ¯rm determines its optimal period
t investment level by trading o® convex adjustment costs against expected
returns. The main theoretical results of the paper are in Section 3. This is
followed in Section 4 by a brief analysis of the way that economic regulation
a®ects the ¯rm's investment decisions. The model is empirically implemented
in Section 5 using aggregate investment for Canada, and some concluding
comments are o®ered in Section 6.

2 The Model

We specify a production function for period t which relates output Qt to
inputs of capital Kt and labor Lt as follows:

Qt = F (Kt; Lt)
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where F (:) is homogeneous1 of degree one in Kt, and concave and non-
decreasing in each input. At the beginning of each period the ¯rm selects
its preferred level of labor and installs additional capital equal to It with the
result that the capital stock evolves according to

Kt+1 = (1¡ ±t)Kt + It

where ±t is the rate of economic depreciation over period t. By installing
capital the ¯rm incurs an investment cost equal to C(It; qt) = qtC(It) where
qt is the price of capital goods at time t. We assume that C(It) is increasing,
that the ¯rst and second partial derivatives C 0(I) and C 00(I) exists for all
possible I, that C 00(I) = k > 0, a constant known to the ¯rm, and that
C(0) = 0. Apart from the restriction that C 00(I) = k, which assists us to
derive clean results below, these assumption are standard in the adjustment
cost literature.
At the beginning of each period the ¯rm selects It and Lt with the objec-

tive of maximising the following expected sum of discounted cash °ows

Et
1X

t=1

rt¡1(ptQt ¡ wtLt ¡ qtC(It))

where the expectation Et is formed using the period t information set,
which includes all t dated magnitudes. In this equation, r is the ¯rm's real
discount rate, and pt = p(Qt) and wt are the price and wage rates at time
t respectively. We assume that future values of Qt; wt and qt have random
components, possibly in addition to some deterministic trends. Our use of
Qt as the measure of demand strength is not standard in the investment
literature. This choice is convenient for our discussion of regulated ¯rms
below and switching to a random pt would not a®ect any of our results.
Using the homogeneity of the production function, the maximum pro¯t

attainable in period t can be written as

h(Kt; Qt; wt) = Ktg(Qt; wt)

1This assumption was used by Hartman (1972) in deriving the ¯rst uncertainty result
within the adjustment costs paradigm. Although slightly restrictive, its impact is modi¯ed
by two other features of the model. First, adjustment costs are convex so there is some
decline in the marginal productivity of new capital. Second, the real option derivation only
requires comparison of two levels of investment with the result that homogeneity behaves
like a linear approximation to the production function between these levels.
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where g(:) is convex in both arguments as a consequence of the ¯rm ad-
justing the variable input (labour) to maximise period t pro¯ts given current
demand and cost information. The current value of the ¯rm at any time
t depends on the installed capital base and expectations about the future
evolution of the random variables as follows:

Et(Vt) = KtEt
1X

t=1

rt¡1(1¡ ±)t¡1g(Qt; wt): (1)

We are primarily interested in how the ¯rm's investment decisions depend
on uncertainty in its future environment. Several preliminary observations
will assist the exposition below. First, we will consider the e®ect of increas-
ing the variance of the underlying random variables without changing their
expected values; i.e. by introducing a mean preserving spread into the vari-
able. This will increase the expected value of a convex function of the random
variable, by Jensen's inequality. We can use (1) to illustrate this idea: un-
certainty about future values of Qt or wt increases the expected value of the
¯rm since g(Qt; wt) is convex. Secondly, since the only way that Qt and wt
enter the ¯rm's decision making in the remainder of this paper, and since
uncertainty in each of them has the same e®ect, we can conveniently restrict
attention to uncertainty in Qt and interpret this as "operational uncertain-
ty" which could equally arise through variation in wt. Finally, for notational
convenience we de¯ne the following variables

R1 = g(Qt; wt) (2)

R2 = Et
1X

t=2

rt¡1(1¡ ±)t¡1g(Qt; wt) (3)

and observe that R1 is not random, while R2 is a convex function of the
random operational variable Qt.
The ¯nal preliminary needed before we address the investment decision

is the rate of depreciation of capital over the current period. Depreciation
in periods beyond the current one are not relevant when the ¯rm decides
whether to invest now or wait one period. Consequently, the manner in which
the ¯rm establishes the ± in (3) does not concern us. Period t depreciation
is important however, and we consider this now.
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2.1 Economic Depreciation

It is well known that the economic depreciation of capital arises from the
erosion of two stocks: total willingness to pay for the services of the asset,
and total service life of the asset. Reductions in either or both of these stocks
reduce the value of the ¯rm holding the asset, and we can therefore de¯ne the
rate of depreciation of capital over period t reference to the expected value
of the net cash°ows.

±t = Et
Vt ¡ Vt+1
Vt

which can be rewritten by substituting (2) and (3) into (1) as follows

±t =
Kt(R1 +R2)¡KtR2

Kt(R1 +R2)

=
R1

R1 +R2
(4)

This shows the relationship between economic depreciation over the pe-
riod and the share of total lifetime discounted net cash-°ows that the asset
delivers over the period. The use of economic depreciation is important here
because it has direct links to the value of the ¯rm. Furthermore, it is ap-
parent from (4) that ±t is itself a random variable, since it depends on R2.
For future reference we note that ±t is a decreasing convex function of R2
which is itself an increasing convex function of Qt. Hence operational uncer-
tainty, which has the e®ect of increasing the expected value of R2 will reduce
the expected rate of economic depreciation ±t. Furthermore, since lower de-
preciation rates increase R2, as can be seen in (3), the e®ect of operational
uncertainty on the value of the ¯rm is unambiguously positive.

3 The Scale and Timing of Investment

Having observed the random variables qt and Qt at the beginning of period
t, the ¯rm selects the level of investment to maximise the expected value of
the ¯rm. The result of this periodic capacity optimisation problem can be
written as

Et(V
¤
t ) = max

It
(Kt + It)(R1 +R2)¡ qtC(It) (5)
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and the solution is obtained by selecting the optimal level of investment
I¤t for which

C 0(I¤t ) =
R1 +R2
qt

where it should be noted that qt has been observed and hence is not
random. The optimal scale for investment at time t is therefore given by

I¤t = C
0¡1

Ã
R1 +R2
qt

!
(6)

Now, using the curvature of C(:), and the convexity of R2 we can derive
the impact of uncertainty on I¤t . Using Jensen's inequality, it is apparent
that uncertainty in the form of a mean preserving spread in future values of
Qt will increase R2. This will increase the scale of investment because C(I)
is convex, a result ¯rst observed by Hartman (1972). Uncertainty in future
capital prices has no e®ect on I¤t because only (known) current prices enter
(6).
Our assumptions on C(I) allow some convenient re¯nement of (6). Since

C 00 = k > 0, we have C 0(x) = kx and C 0¡1(x) = x
k
so that:

I¤t =
R1 +R2
kqt

(7)

Having characterised the level of investment that would be chosen if the
¯rm were to invest at time t, we now need to consider whether this action is
optimal, given the irreversibility of investment and the feasibility of delaying
it. To address this we need to compare Et(V

¤
t ) with the maximum value

of the ¯rm when it delays investment by one period, denoted Et(V
¤
t+1) to

indicate that the expectation is formed one period ahead of the date at
which investment would occur.
In evaluating Et(V

¤
t+1) it is important to recognise that the size of invest-

ment which would be optimal at time t may di®er from that which the ¯rm
would expect to install in the event that it delays investment to period (t+1).
If demand is growing quickly, for example, the optimal strategy may involve
a choice between adding more capacity to an existing facility, or waiting until
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next period and building an entirely new facility with some spare capacity2.
Consequently, we express the expected value from delaying investment by
one period as

Et(V
¤
t+1) = Kt(R1 +R2) + max

It+1
It+1

R2
(1¡ ±t)

¡ rqt+1C(It+1) (8)

where the expectation operator has been suppressed for qt+1. Note that
R2 is adjusted upwards by the factor (1¡ ±t)¡1 to account for the fact that
capital installed in period (t+ 1) will start depreciating one year later than
capital installed in period t. Using (4), however, we can deduce that when
economic depreciation is used R2

(1¡±t) = (R1 + R2) which will henceforth be

used in evaluating (8). The ¯rst term on the RHS of (8) is the known pro¯t
that will accrue over the current period and has no impact on the investment
decision. Using the remaining terms, we can see that the level of investment
that is expected to be optimal at time (t+ 1) is de¯ned as

I¤t+1 = C 0¡1
Ã
R1 +R2
rqt+1

!

=
R1 +R2
krqt+1

(9)

By the same arguments used above in respect of (6), we can deduce that
operational uncertainty increases (decreases) the scale of I¤t+1 because of the
convexity of C(I). In the case of anticipated investment in the next period,
however, qt+1 is an additional source of uncertainty. Using the fact that (9)
is convex in qt+1, we can see that uncertainty over future capital prices will
act in the same direction as the operational uncertainty, increasing I¤t+1.
Before turning to the question of timing, we de¯ne the "optimal scale

gap" by ¢I¤t = (I
¤
t+1 ¡ I¤t _) and note that, from (7) and (9), this is given by:

¢I¤t =
R1 +R2
k

Ã
qt
rqt+1

¡ 1
!
: (10)

2In addition, the decision between current and future investment may well involve a
choice between di®erent vintages of technology. While serious examination of this issue
is beyond the scope of this paper, the model used here would appear to be well suited to
studying technological choice in competitive industries.
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It is important for what follows to determine the curvature properties
of (10) with respect to the random operational variable Q and capital price
variable qt+1. It is clear that ¢I

¤
t is convex is qt+1 since this term enters

through the demoninator of (9). This means that the expected size of the
optimal scale gap increases with uncertainty in future capital prices. The
situation is more complicated for operational uncertainty, however. To see
this, note that the impact of changes in future values of Q is felt through R2,
so we can write

@2¢I¤t
@Q

=
@2R2
@Q2

Ã
qt
rqt+1

¡ 1
!
k¡1

We know that R2 is convex in Q but this property only carries through
to ¢I¤t if the bracketted term is positive. We summarise the situation as
follows.

Lemma 1 The optimal scale gap ¢I¤t is increased by operational uncertainty
if qt > rEtqt+1 and conversely.

Having determined the optimal investment strategies for periods t and
(t+1), and the way that uncertainty a®ects these strategies, we are now ready
to examine the timing issue. As emphasised by the real options literature, the
choice between investing and delaying involves a forward looking evaluation
of the pro¯tability of each choice. Assuming that Et(V

¤
t ) > 0, the ¯rm will

nevertheless only invest at time t if Et(V
¤
t ) ¸ Et(V

¤
t+1), in which case the

expected value of the ¯rm is not increased by deferring investment for one
period. To analyse the in°uences on this timing decision, we subtract (5)
from (8), evaluating each at the optimal scale, and rearrange as follows

¢V ¤t = Et(V
¤
t+1)¡Et(V ¤t+1)

= I¤t+1(R1 +R2)¡ rqt+1C(I¤t+1)¡ I¤t (R1 +R2) + qtC(I¤t )
= ¢I¤t (R1 +R2)¡ rqt+1C(I¤t+1) + qtC(I¤t ) (11)

We want to study the conditions under which the real option value ¢V ¤t
is negative (positive) implying that immediate investment of I¤t will (will not)



The Timing and Scale of Investment Under Uncertainty 11

occur. To analyse this, we use the derivation presented in the Appendix to
rewrite (11) as follows.

¢V ¤t =
(R1 +R2)

2

2k

Ã
qt
qt+1

¡ r
!

(12)

Consider ¯rst the e®ect of uncertainty in future demand and capital costs
on the size of the option value ¢V ¤t . For a given structure of capital prices
such that qt

qt+1
> r, operational uncertainty increases the expected value

of R2, increasing ¢V
¤
t and reinforcing the incentive to delay. Apart from

the qualifying capital price condition, this result is consistent with previous
literature in the real options tradition: greater operational uncertainty leads
to higher option values through the convexity of R2. Uncertainty over future
capital prices increases the expected value of qt

qt+1
which also leads to higher

option values. This ¯nding is consistent with the results of Dixit and Pindyck
(1994) who modeled uncertainty over capital prices and demand jointly, but
without any explicit scale decision.
The most unusual aspect of (12) however, is the interpretation it gives to

the roles of expectations about capital costs and demand. Ceteris paribus,
the larger is expected revenue (R1 + R2), the larger is the option value and
the optimal level of investment I¤t . So, growth in current and expected future
demand increases both I¤t and ¢V

¤
t with the result that excess demand in-

creases and existing capacity gets more congested. Equation (12), however,
says that while strong demand is a necessary condition for investment; it
is not su±cient. Until the expected future capital prices get high enough
relative to the current price of capital, the option value will not drop to zero,
and investment will be withheld.
What information is therefore conveyed by the size of the option value?

From (12) and (7) it is clear that the size of the option value is postively cor-
related with the amount of capital that would be invested if waiting was not
a better strategy. It does not provide any information about how soon invest-
ment will occur however. The timing of investment is completely controlled
by the expected trajectory of capital prices.
This is relevant for a standard claim in the existing real options literature

in which the size of the option value is interpreted as being related to the
incentive to invest. A typical statement of this is: "an increase in the vari-
ance of future returns...increases the value of the call option, which decreases
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the incentive to invest" (Abel et al (1996)). Our results suggest that this
is not an accurate characterisation, because the desired scale of investment
increases with the real option value, albeit conditional on the timing deci-
sion. So, investment becomes more and more pro¯table as the real option
increases, and (unless demand expectations turn sour) this greater invest-
ment will eventually occur as soon as the outlook for capital prices improves
su±ciently.
Consideration of the other side of the investment goods market reinforces

the view that higher option values herald more investment. Increases in
the real option value signal greater potential demand for capital goods and
stronger incentives for suppliers of capital to cut prices. Thus, under plausible
conditions we would expect sustained increases in real option values to be
followed by almost instantaneous falls to zero as the outlook for capital prices
changes and investment occurs.
An important advantage of characterising optimal investment through

the pair of simple equations (7) and (12) is that it facilitates several further
lines of inquiry. We now o®er a brief discussion of two extensions.

4 The Impact of Regulation

The above analysis has assumed that the ¯rm is able to operate without
reference to any o±cial constraints. In this section we brie°y consider the
implications of economic regulation designed to prevent the ¯rm from exer-
cising any market power that it may otherwise have. Regulators typically ¯x
the price (or equivalently the rate of return) and require that the ¯rm serve
all resulting demand, often imposing ¯nancial penalties for failing to do so.
The maximum pro¯t function for a regulated ¯rm can therefore be written
as follows:

h(Kt; Qt; wt) = max
Lt
[ptF (Kt; Lt)¡ wtLt ¡ f(Qt ¡ F (Kt; Lt)]

where f(x) is the ¯nancial penalty imposed by the regulator for failing to
provide x units of service when x > 0, and f(x) = 0 otherwise. When f(Qt¡
F (Kt; Lt) is large enough, the ¯rm will always choose to set F (Kt; Lt) = Qt
and the short run pro¯t function reduces to

h(Kt; Qt; wt) = ptF (Kt; L
¤
t )¡ wtL¤t = Ktg(Qt; wt)
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where L¤t is chosen to ensure that F (Kt; L
¤
t ) = Qt and that wt = ptFL.

The ¯rm's objective in period t is to maximise the expected discounted
stream of such future contributions, and to invest in the way that supports
this objective. The critical di®erence between the environment faced by the
regulated ¯rm and our previous analysis of an unregulated ¯rm is that the
former cannot optimise its output in each period. This has important impli-
cations for investment.
Given the regulated price pt, the revenue component of h(:) is simply a

linear function of Qt for regulated ¯rms, while the cost component is increas-
ing and convex in Qt given our assumptions on F (:). Thus, since g(:) is the
di®erence between these functions, it is concave in Qt, and also in wt by
identical reasoning. Since the maximum pro¯t a regulated ¯rm can achieve
in any period is concave in Qt and wt, uncertainty in these variables reduces
the expected value of g(:).
This is in stark contrast to the pro¯t function of an unregulated ¯rm

which is convex in input prices and demand. Thus, by changing the shape
of g(:), economic regulation reverses the impact of operational uncertainty
on the pro¯tability of the ¯rm. Assuming that investment by the regulated
¯rm remains voluntary, and that economic depreciation is used, all of the
optimal scale results derived above carry over to the regulated case, as does
the option value de¯nition. The interpretation of these expressions is altered,
however, by the fact that R2 is concave in future demand (and labour prices)
for regulated ¯rms.
Inspecting (7) and (12) with this in mind, we can see that operational

uncertainty reduces both I¤t and ¢V
¤
t rather than increasing them as it does

for unregulated ¯rms. Regulation therefore unambiguously reduces both the
scale of investment and the size of the option value. This does not necessarily
a®ect the frequency of investment, however, because that is controlled by the
expected time path of capital prices.

5 Macroeconomic Application

One of the most useful aspects of the approach taken here is the fact that
it yields a testable prediction about the determinants of real investment.
From (7) we see that changes in desired investment (in the absence of timing
constraints) are related to changes in expected future revenues (R1 + R2),
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current capital prices qt and the cost of adjustment parameter k. The best
available measures of changes in expected future revenues are indices of busi-
ness con¯dence (which could also be thought of as indexing Keynes' famous
"animal spirits"), and these are available for most developed economies. Cap-
ital prices are similarly readily available, so an estimable form of (7) can be
written as

ln(It) = ®+ ¯1 ln(Ct) + ¯2 ln(qt) + "t (13)

where e® = k and "t~N(0; ¾
2). This speci¯cation will only hold when the

real option (12) is non-positive, however, suggesting the need to construct a
dummy variable de¯ned by:

Dt =

(
1 when qt

qt+1
< rt

0 when qt
qt+1

¸ rt
(14)

For ¯rm level investment, Dt will be a strict control on investment with
the implication that each of the variables in regressions explaining ¯rm level
investment would be premultiplied by Dt. Since none of the variables in
(13) and (14) are necessarily ¯rm speci¯c, however, this model could be
readily estimated at an industry level. Indeed, notwithstanding the e®ects
of aggregation, it may well have explanatory power for aggregate national
investment. In these more general settings, however, a strict application
of (14) would be inappropriate. This is because ¯rms will vary in their
expectations about whether Dt takes the value one or zero. Consequently,
while interaction of Dt with the other variables in (13) would be a sensible
addition to the model for aggregated data, the existing variables should be
retained to account for heterogeneous expectations about capital prices.
Based on these ideas, we will estimate the following model:

ln(It) = ®+ ¯1 ln(Ct) + ¯2 ln(qt) + ¯4Dt ln(Ct) + ¯5Dt ln(qt) + "t (15)

It remains to consider the de¯nition of Dt where the main issue is how
to model ¯rms' expectations about future capital prices. For the purpose
of illustrating the model, we have used the actual values of qt+1 which is
equivalent to assuming that ¯rms correctly predict this variable3. We allow

3Very similar results were obtained by using a backward looking measure qt¡1=qt. This
is equivalent to assuming that ¯rms use the most recently observed capital price ratio as
their estimate of the next ratio.
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for slight errors in this prediction by weakening the condition under which
Dt = 1 to include cases in which the discount rate is up to 1% below the
expected capital price ratio.
The data for this application were all drawn from the CANSIM database.

We use real annual GDP expenditure ¯xed investment (series D14456), the
business conditions survey of Canadian manufacturers (series D262728) av-
eraged over the quarters of each year, a chained price index of gross ¯xed
capital formation (series D15621) averaged over the quarters of each year.
The real discount rate rt was formed by subtracting annual Canadian CPI
in°ation (formed using series D15614) from the USA long term bond rate
(series B54403) averaged over the months of each year.
The following results were obtained using OLS estimation in the SHAZAM

(1997) software:

ln(bIt)
=

4:47

(8:00)

¡0:32 ln(Ct)
(¡3:14)

+1:78 ln(qt)

(15:07)

+0:94Dt ln(Ct)

(5:65)

¡0:67Dt ln(qt)
(¡5:56)

where the ¯gures in parentheses are t ratios with 9 degrees of freedom.
The R2 from this model is 0.96, the DW statistic is 1.49 which allieviates
any concerns about a possibly spurious regression. There is no evidence of
heteroscedasticity based on several standard LM tests. An F test on the joint
signi¯cance of the terms involvingDt emphatically rejects the hypothesis that
these have no e®ect. Figure 1 plots the actual and ¯tted values from this
model and displays a remarkably good ¯t, especially considering the absence
of any lagged variables in the estimated equation.
Based on these regression results, the investment equation derived from

this model has signi¯cant explanatory power even well beyond the level of
the ¯rm. Given the persistent di±culties that economists have had over
the speci¯cation of investment equations, further investigation of this op-
tion based approach to explaining aggregate investment would appear to be
warranted. Apart from applications to other economies, our implementation
could be readily improved on with more attention to the precise timing of
the variables, and more sophisticated econometrics particularly in respect of
the treatment of the dummy variable. In addition it may also be useful is to
consider a full model of the capital goods sector with (15) being the demand
side of this market.
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6 Conclusion

This paper has developed a simple new model of investment which combines
adjustment costs and delay options in a discrete time framework. The model
focusses on analysing the distinct decisions over the scale and timing of in-
vestment which jointly determine the investment rate. The real option value
derived from this model highlights the importance of expected changes in
the price of capital for investment, and leads to a new interpretation of large
option values. These have previously be thought of as signalling a reduced
incentive to invest, but the analysis here suggests that if anything the re-
verse is true. If option values are large and growing, investment is getting
more pro¯table and more funds will eventually be committed as long as de-
mand remains strong. The trigger which causes ¯rms to commit arises from
a change in the outlook for capital prices.
This approach also yields an estimable investment equation in which the

option value is represented by a dummy variable formed by relating capital
prices to discount rates. Using this approach, a linear regression on data
formed from only three variables (business con¯dence, capital prices and
bond rates) is able to explain 96% of the variation in real investment in
Canada over the period 1981-1994.
Further work along both theoretical and empirical lines seems warranted.

The model could be extended to include strategic interactions between com-
petitors in which both capital investment period speci¯c pricing contribute to
the value of the ¯rm. An additional theoretical task, which was only brie°y
considered here, is to derive the implications of real options for regulated
industries. This is rather urgent given the fact that regulators routinely set
the operating environments in which ¯rms either invest, or do not. There
would also appear to be considerable scope for further useful empirical work
based on this model, including applications to other data sets, re¯nement of
the econometric methodology and the inclusion of option-based investment
equations in macroeconometric models.
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8 Appendix

From (11), the de¯nition of the option value is given by

¢V ¤t = ¢I
¤
t (R1 +R2)¡ rqt+1C(I¤t+1) + qtC(I¤t ) (16)

and we know from (10) that

¢I¤t =
R1 +R2
k

(qt ¡ rqt+1)
rqtqt+1

=
R1 +R2
k

Ã
qt
rqt+1

¡ 1
!
: (17)

Observe the following consequences of the restrictions imposed on the
adjustment cost function, namely that C 00(I) = k 6= 0.

C 0(I) = kI (18)

C(I) =
k

2
I2 (19)

where the second result uses C(0) = 0 to eliminate the constant of inte-
gration. Now we can use (7) and (9) in combination with (19) to obtain the
following results

C(I¤t ) =
k

2

Ã
R1 +R2
kqt

!2
(20)

C(I¤t+1) =
k

2

Ã
R1 +R2
rkqt+1

!2
(21)

Now substitute (17), (20), and (21) into (16) to get

¢V ¤t =
(R1 +R2)

2

k

Ã
qt
rqt+1

¡ 1
!

¡ rqt+1
k

2

Ã
R1 +R2
rkqt+1

!2
+ qt

k

2

Ã
R1 +R2
kqt

!2

=
(R1 +R2)

2

k

Ã
qt
rqt+1

¡ 1
!

¡ (R1 + R2)
2

2rkqt+1
+
(R1 +R2)

2

2kqt
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=
(R1 +R2)

2

k

Ã
qt
rqt+1

¡ 1
!

¡ (R1 + R2)
2

2k

Ã
qt
rqt+1

¡ 1
!

=
(R1 +R2)

2

2k

Ã
qt
rqt+1

¡ 1
!

=
(R1 +R2)

2

2k

Ã
qt
qt+1

¡ r
!

This establishes the result cited in (12).
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Figure 1

Fixed Investment in Canada 1981-1994
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