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Abstract

The Gauss-Newton regression (GNR) is widely used to compute Lagrange multiplier

statistics. A regression described by Milliken and Graybill yields an exact F test in

a certain class of nonlinear models which are linear under the null. This paper shows

that the Milliken-Graybill regression is a GNR. Hence one interpretation of Milliken-

Graybill is that they identified a class of nonlinear models for which the GNR yields

an exact test.
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1 Introduction

Artificial regressions provide a convenient means of computing Lagrange multiplier (LM)

statistics. The large literature developing the relevant econometric theory has been defini-

tively unified and consolidated by MacKinnon (1992) and Davidson and MacKinnon (1990,

1993). Since LM statistics are based on the estimation of the restricted form of the model

they tend to be particularly heavily used for misspecification testing, where the restricted

model is well defined and often linear. Hence, as emphasized by MacKinnon (1992), the

artificial regressions approach to computing LM tests provides a means of unifying much

of the methodology of misspecification testing.

The distribution theory associated with LM tests is, of course, asymptotic, and the

nature of many types of misspecification is such that this is the best that can be hoped for.

In a few instances, however, test statistics having a known finite-sample distribution have

been derived. As one would expect, these obtain under classical circumstances of normality,

nonstochastic regressors, and a model linear in its coefficients.

The trivial example is the case of a regression

y = X1β1 + X2β2 + u, u ∼ NID(0, σ2I),

in which the role of the variables X2 is in question. The null H0 : β2 = 0 is the hypothesis

that the simpler model y = X1β1 + u is correctly specified; the alternative is that it is

misspecified.

To cite a particular application, consider the problem of testing for structural change.

The null hypothesis is of parameter constancy, the alternative that a structural change has

taken place. In this case X2 consists of appropriately defined dummy variable terms, β2 has

the interpretation as a vector of “shift coefficients,” and the restriction β2 = 0 corresponds

to the hypothesis of an absence of misspecification.

Although one could compute the LM test of this restriction, by an artificial regression

or some other means, this is obviously neither the simplest nor the preferred procedure. The

natural choice is instead an F statistic which, in the context of this testing problem, takes

the form

y′M1X2(X ′
2M1X2)−1X ′

2M1y

y′MM1X2M1y
· n − k

r
∼ Fr,n−k. (1)

The notation is M1 ≡ I − X1(X ′
1X1)−1X ′

1 and similarly for MM1X2 in terms of M1X2; n
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is the sample size, k is the number of coefficients in the unrestricted model, and r is the

number of restrictions (in this case, the number of coefficients in the vector β2). In the

context of the structural change application the statistic (1) is, of course, the well known

Chow test statistic.

More interesting examples of exact distributional results applying to misspecification

tests include the Ramsey-Schmidt (1976) version of the RESET test, the JA test for non-

nested models proposed by Fisher and McAleer (1981),1 and the Andrews (1971) test for

linear versus loglinear regression models;2 McAleer (1987) usefully summarizes the under-

lying statistical basis for an exact distributional result applying to the latter two. All turn

out to be applications of Milliken and Graybill (1970), who showed that an exact F test

applies to a particular set of zero-restrictions in a certain class of nonlinear regression mod-

els. The Milliken-Graybill F statistic is obtained from a regression which is here termed the

Milliken-Graybill regression (MGR), and which is described in Section 4 below.

This paper considers the best-known artificial regression—the Gauss-Newton regression

(GNR)—and investigates the availability of exact tests as an alternative to the LM tests

that would normally be yielded by it. It is shown that, in terms of the test statistic gener-

ated, the Milliken-Graybill regression effectively is a Gauss-Newton regression. Hence the

circumstances under which the MGR applies are those in which an exact test is available

as an alternative to the LR test that would normally be computed from the GNR. Indeed,

one interpretation of the Milliken-Graybill result is that they identified a class of models for

which the GNR yields an exact test, rather than one having only an asymptotic justification.

Although, as these introductory remarks have suggested, misspecification testing is a

particularly fruitful area of application and so serves to motivate the discussion, the results

are not limited to this context. The original Milliken-Graybill work was illustrated with

applications to testing interaction terms in analysis of variance models, and to nonlinear

regression.
1See also Fisher (1983), Godfrey (1983), and McAleer (1983).
2Related papers are Godfrey and Wickens (1981), Bera and McAleer (1983), and Godfrey, McAleer, and

McKenzie (1988).
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2 The Gauss-Newton Regression

In developing the Gauss-Newton regression it is convenient to adopt the notation of Davidson

and MacKinnon (1993), who specify the nonlinear regression model as

y = x(β) + u. (2)

The most common approach to testing restrictions on β is to apply one of the three classical

test citeria: the Wald, likelihood ratio, and Lagrange multiplier principles.

Focusing on the latter, the calculation of the LM statistic is facilitated with an artifical

regression. The Gauss-Newton regression is of the form

y − x(β∗) = X(β∗)b + disturbance,

where X(β) ≡ Dx(β) denotes the matrix of derivatives of x(β) with respect to β, and β∗

denotes the parameter vector at which the GNR is evaluated. Although the GNR may be

used for a variety of purposes, depending on the choice of β∗, our interest lies in the compu-

tation of LM test statistics. Without loss of generality, the model may be reparameterized

so that arbitrary restrictions on β may be expressed as zero restrictions on a subvector β2.

That is, the model (2) becomes

y = x(β1, β2) + u. (3)

Let us denote the restricted nonlinear least squares estimator by β̃ ≡ [β̃1; 0]. Partitioning

the matrix of derivatives X(β) into X(β1) and X(β2) defined by

X(β1) =
∂x(β)
∂β1

(4a)

X(β2) =
∂x(β)
∂β2

, (4b)

the GNR evaluated at β̃ is

y − x̃ = X̃1b1 + X̃2b2 + disturbance. (5)

In terms of notation, the matrices of explanatory variables are, respectively, (4a) and (4b)

evaluated at β̃. Note that the dependent variable is the vector of residuals arising from the

estimation of (3) under the null. This GNR gives rise to a family of LM statistics described

by Davidson and MacKinnon (1993, sec. 6.4). To paraphrase MacKinnon (1992, p. 109),

“The fundamental result for tests based on the GNR is that any asymptotically valid test

of b2 = 0 in (5) also provides an asymptotically valid test of β2 = 0 in (3).”
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In terms of the small sample behavior of alternative statistics arising from the GNR,

Davidson and MacKinnon recommend as an alternative to an LM statistic the closely related

F statistic for b2 = 0 in (5).3 Applying (1), the formula for this statistic is

(y − x̃)′M̃1X̃2(X̃ ′
2M̃1X̃2)−1X̃ ′

2M̃1(y − x̃)
(y − x̃)′M̃M̃1X̃2

M̃1(y − x̃)
· n − k

r
, (6)

where M̃1 ≡ I − X̃1(X̃ ′
1X̃1)−1X̃ ′

1 and similarly for M̃M̃1X̃2
in terms of M̃1X̃2. The available

small sample evidence suggests, then, that the distribution of this statistic is well approxi-

mated by Fr,n−k.

3 Application to the Milliken-Graybill Model

The above F statistic is a version of the LM test—one which appears to have appealing

small-sample behavior—for arbitrary restrictions on the general nonlinear model (2). As an

illustration of its application, let us consider a particular class of nonlinear models studied

by Milliken and Graybill (1970). This class is of the form

y = Xβ1 + F (Xβ1)β2 + u. (7)

The matrix F (Xβ1) is some nonlinear function of Xβ1; this is the sole source of nonlinearity

in the coefficients. The restriction of interest is β2 = 0. Since under this null the model is

linear, the LM test afforded by the GNR (5) is of natural interest. In terms of notation the

matrices of derivatives (4) are

X(β1) =
∂[Xβ1 + F (Xβ1)β2]

∂β1
= X +

∂F (Xβ1)β2

∂β1

X(β2) =
∂[Xβ1 + F (Xβ1)β2]

∂β2
= F (Xβ1)

Evaluating at the restricted estimates β̃ = [β̃1; 0], these are

X̃1 = X X̃2 = F (Xβ̃1),

yielding the GNR

y − Xβ̃1 = Xb1 + F̃ b2 + disturbance, (8)

3Papers considering aspects of the small-sample behavior of alternate versions of the LM test in various
contexts include Davidson and MacKinnon (1983), Kiviet (1986), and Bera and McKenzie (1986). In
assessing this evidence Davidson and MacKinnon (1993, p. 190) conclude: “Based partly on theory and
evidence, then, and partly on the convenience of using the same form of test for Gauss-Newton regressions
as would normally be used with genuine regressions, we therefore recommend using the F test . . . ”
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where F̃ ≡ F (Xβ̃1). The restricted estimates are, of course, simply

β̃1 = (X ′X)−1X ′y, (9)

and the dependent variable is the associated OLS residual vector

y − Xβ̃1 = y − X(X ′X)−1X ′y = [I − X(X ′X)−1X ′]y = MXy. (10)

Applying (6), the preferred test statistic is

(y − Xβ̃1)′MX F̃ (F̃ ′MX F̃ )−1F̃ ′MX(y − Xβ̃1)
(y − Xβ̃1)′M̃MX F̃ MX(y − Xβ̃1)

· n − k

r
. (11)

As indicated by (10), in these expressions MX ≡ I −X(X ′X)−1X ′, and similarly for MMX F̃

in terms of MX F̃ .

4 The Milliken-Graybill Regression

Milliken-Graybill’s motivation for studying the class of models (7) was an interest in exam-

ining the scope for exact testing in nonlinear models. As a means of testing β2 = 0 they

proposed the following procedure.

Step 1 Estimate (7) under the null. This yields β̃1 given by (9).

Step 2 Computing F̃ ≡ F (Xβ̃1), estimate the original model (7), replacing F (Xβ1) with

F̃ . Let us denote this linear regression by

y = Xb1 + F̃ b2 + disturbance, (12)

which we term the Milliken-Graybill regression (MGR).

Milliken and Graybill’s contribution was to show that a standard F test of b2 = 0 in

the MGR is an exact test of β2 = 0 in the original model (7). That is, applying (1), the

statistic

y′MX F̃ (F̃ ′MX F̃ )−1F̃ ′MXy

y′M̃MX F̃ MXy
· n − k

r
(13)

is distributed as Fr,n−k in finite samples. Intuitively, the reason for this is that since

Xβ̃1 = X(X ′X)−1X ′y operates on y so as to project it onto the space spanned by the

columns of X, the columns of F̃ may be treated as fixed regressors; this is why it is essential

that β̃1 enter the argument of F (·) only via Xβ̃1.
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From the above development it is apparent that, although not previously recognized in

these terms—and certainly not motivated in this way by Milliken and Graybill—the MGR

(12) is tantalizingly similar to the GNR (8). The only difference is the dependent variable,

which in the GNR is OLS residual vector under the null, but in the MGR is the original

dependent variable. For the purpose of computing the test statistics (11) and (13), however,

this difference is irrelevant.

Result. The test statistics (11) and (13) are numerically identical.

Proof. Heuristically, the inclusion of X on the right hand side of the regressions means that

the use of the dependent variable y −Xβ̃1 = MXy in the GNR versus simply y in the MGR

has no effect on the F statistic for b2 = 0. More rigorously, using (10) the numerator of

(11) is, by the symmetry and idempotence of MX ,

y′M ′
XMX F̃ (F̃ ′MX F̃ )−1F̃ ′MXMXy = y′MX F̃ (F̃ ′MX F̃ )−1F̃ ′MXy,

which is the numerator of (13). Similarly the denominator is

y′M ′
XM̃MX F̃ MXMXy = y′M ′

X [I − MX F̃ (F̃ ′MX F̃ )−1F̃ ′MX ]MXy

= y′[MX − MX F̃ (F̃ ′MX F̃ )−1F̃ ′MX ]y

= y′M̃MX F̃ MXy.

�

5 Conclusion

This development establishes that one interpretation of Milliken and Graybill’s analysis—

perhaps the most useful interpretation—is that they identified a class of nonlinear models

for which the GNR yields an exact test. This provides, incidentally, an analytical foundation

for the empirical finding that the F version of the GNR LM test has the best small sample

properties: for a particular class of models—one that has had some prominence in applied

work—it is in fact exactly F distributed in finite samples. Finally, whereas the Milliken-

Graybill procedure has tended to be seen as something of an ad hoc curiosity, it is now

apparent that it is directly linked to the systematic methodology of artifical regressions.
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