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Summary 

Obtaining variances for the plug-in estimator of the Gini coefficient for inequality has 
preoccupied researchers for decades with proposed analytic formulae often cumbersome to 
apply, in addition to being obtained assuming an iid structure.  Bhattacharya (2007, Journal 

of Econometrics) provides an (asymptotic) variance when data arise from a complex survey, 
a sampling design common with data frequently used in inequality studies.  Under a 
complex survey sampling design, we prove that Bhattacharya’s variance estimator is 
equivalent to an asymptotic version of the estimator derived by Binder and Kovačević 
(1995, Survey Methodology) more than a decade earlier.  In addition, we show that 
Davidson’s (2009, Journal of Econometrics) derived variance, for the iid case, is a 
simplification of that provided by Binder and Kovačević.  These results are computationally 
useful, as the Binder and Kovačević variance estimator is straightforward to calculate in 
practice.  To aid applied researchers, we show how auxiliary regressions can be used to 
generate the plug-in Gini estimator and its asymptotic variance, irrespective of the sampling 
design.  Health data on the body mass index for Bangladeshi women is employed in an 
illustration.   
 
Keywords: Inequality; Asymptotic inference; Gini index; Complex survey 
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1. INTRODUCTION 

Arguably the best known and most widely employed measure of inequality, the Gini 

coefficient, proposed by Corrado Gini in 1914, has been the focus of many theoretical 

and empirical studies.  For instance, the Gini coefficient is reported extensively as a 

way to rank countries in terms of income inequality by, for example, the United 

Nations, the World Bank and the Central Intelligence Agency.  Two recent empirical 

studies that adopt the Gini coefficient, among the many that could be listed, are Nho 

(2006), who considers regional income inequality for Korean households, and Slater 

et al. (2009), who examine the prevalence of being overweight and obese in Canadian 

adults across a range of socio-economic and geographic groupings.  Both of these 

cited works estimate Gini coefficients from sample data obtained from complex 

survey designs, a multistage sampling process, typically involving stratification and 

clustering used to guarantee representation of groups of interest as well as to keep 

costs as low as possible1,2.  The process used to obtain the sample, which clearly is 

not a randomly drawn iid sample, needs to be accounted for when forming both the 

estimator and an associated variance.  Such applications motivate our work. 

The problem of obtaining a variance for a Gini coefficient estimator has been 

investigated by many researchers including, but not limited to, Hoeffding (1948), 

Glasser (1962), Sendler (1979), Beach and Davidson (1983), Gastwirth and Gail 

(1985), Schechtman and Yitzhaki (1987), Sandström et al. (1985, 1988), Nygård and 

Sandström (1989), Yitzhaki (1991), Shao (1994), Binder and Kovačević (1995), 

Bishop et al. (1997), Karagiannis and Kovačević (2000), Giles (2004), Modarres and 

Gastwirth (2006), Bhattacharya (2007), Xu (2007), Davidson (2009) and Qin et al. 

(2010).  Some of these studies propose analytic (asymptotic) variances while others 

adopt resampling methods, with the latter works often claiming that such tools are 

preferable, as they avoid the mathematical and coding complexities associated with 

                                                 
1 See, for instance, Cochran (1977), Skinner et al. (1989) and Cameron and Trivedi (2005, Chapter 24). 
2 Nho (2006)’s work, for example, uses household data from the Korean National Survey of Household 
Incomes and Expenditures, which stratifies the country according to geographical regions and 
administrative districts and then forms clusters based on Census enumeration areas.  Clusters are 
selected using probability sampling proportional to size and then two segments of five households are 
randomly selected from the sampled clusters. 
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the available analytic expressions3,4.  The extent of studies, even given our incomplete 

list, suggests that there should be nothing more to say about a seemingly simple task 

of providing a variance for a sample statistic. 

However, the research that provides analytic asymptotic variances has adopted 

several different methods, with links between them and the resulting formulae often 

unclear.  For instance, some obtain asymptotic variances based on �-statistics (e.g., 

Hoeffding, 1948; Yitzhaki, 1991; Bishop et al. (1997); Xu, 2007) whereas others use �-statistic theory (e.g., Nygård and Sandström, 1989; Shao, 1994). Via the use of 

Taylor-series expansions, Binder and Kovačević (1995) and Davidson (2009) provide 

approximation expressions for Gini coefficient estimators, from which they obtain 

variances; Binder and Kovačević (1995) allow for complex survey sample data 

whereas Davidson (2009) assumes an iid sample.    The use of estimating equations 

underlies the work of Binder and Kovačević (1995) (see also Kovačević and Binder, 

1997), who, after generating an appropriate asymptotic approximation expression, 

appeal to standard survey theory to provide a so-called linearization variance.  Coding 

for this variance is, in our view, not complicated, especially with access to software 

that accounts for survey design5.  

Although Davidson (2009) limits attention to an iid random sample, he approaches 

variance estimation in a similar fashion by also deriving an approximation for his 

Gini estimator, which he uses to suggest a variance estimator.  Bhattacharya (2007), 

based on his earlier, more general, paper (Bhattacharya, 2005) frames estimation of 

the Gini coefficient, with complex survey sample data, within generalized method of 

moments (GMM) theory, and appeals to available GMM results to show the 

consistency and asymptotic normality of a plug-in estimator.  Using sample empirical 

process theory and the functional delta method, Bhattacharya (2007) derives an 

                                                 
3 Ogwong (2000, p123) provides one such example, stating, to justify his jackknife approach, that 
“standard errors of the Gini index that have been suggested so far ... are either mathematically very 
complicated or require heavy computation which cannot be conveniently undertaken using commonly 
available regression software packages”.   
4 Empirical work has also often followed such recommendations; for instance, Nho (2006, p341) states 
“The standard error of the gini index is estimated by jackknife and bootstrap methods rather than the 
traditional delta method because of the complexity of the latter.” 
5 For econometricians, Stata is likely the best known such package.  Jenkins (2006) provides a Stata 
add-on entitled svylorenz that readily produces Binder and Kovačević’s variance estimator.    
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expression for the asymptotic variance of his Gini estimator, taking account of the 

sample design.  One of the many notable contributions of Bhattacharya’s work is his 

breakdown of the variance into three components: the estimate of the variance 

without taking the sample design into account; the impact of clustering on the 

variance; and the stratum effect on the variance.  The resulting variance formula, to 

quote Davidson (2009, p30), “is however not at all easy to implement”6.   

We focus on these last three cited works: Binder and Kovačević (1995), 

Bhattacharya (2007) and Davidson (2009).  First, we show that the approximation for 

the Gini estimator obtained by Bhattacharya (2007) is algebraically equivalent to that 

provided by Binder and Kovačević (1995), over a decade earlier.  Second, we show 

that Davidson’s (2009) approximation for the Gini estimator is a special example of 

Binder and Kovačević’s (1995) expression.  This latter result is not surprising, as 

Davidson notes (p32) that the random variable in his approximation “can with some 

effort be shown to be the same as that used by Bhattacharya (2007)”; the difference 

here is that Davidson’s approximation follows from that of Binder and Kovačević’s 

(1995) with very little effort. We believe that it is important to note the connections of 

the recent econometrics works (Bhattacharya, 2007; Davidson, 2009) with an earlier 

work, from the sample survey literature, which seems to have slipped their attention. 

We then consider variance estimators, showing that Bhattacharya’s and Binder and 

Kovačević’s variance estimators are equivalent, at least asymptotically, with the 

asymptotic analysis referring to the number of sampled clusters in each stratum going 

to infinity at the same rate.  This outcome is expected given the equivalence of the 

approximations for the estimator of the Gini coefficient.  That the two works lead to 

the same variance is useful, as calculating Binder and Kovačević’s variance is 

straightforward, especially with packages designed to account for complex surveys.  

Furthermore, we show that Davidson’s variance estimator is a special example of that 

derived by Binder and Kovačević. 

Another recent study that also stresses the lack of connection of branches of the 

literature with regard to estimation of the sampling variance for the Gini estimator is 

                                                 
6 In addition, our reading of Bhattacharya’s work suggests some typographical errors that further 
complicate use of the results.  We have attempted to correct these in our presentation. 
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Langel and Tillé (2013)7.  These authors provide an excellent survey of the evolution 

of papers on variance estimation, highlighting some methodological issues that have 

arisen over time.  In particular, they concentrate on linking various linearization 

techniques used to approximate the variance.  The papers we consider – Binder and 

Kovačević (1995), Bhattacharya (2007) and Davidson (2009) – are mentioned by 

Langel and Tillé (2013), as they adopt linearization tools, but Langel and Tillé do not 

algebraically provide the results contained in our work.  We believe that our study 

provides a natural complement to Langel and Tillé (2013), being of particular use to 

applied economists, who are likely to be more aware of the research in economics and 

econometrics journals than in statistics journals.  It is our view that the variance 

formula derived by Bhattacharya (2007), although algebraically equivalent to that 

obtained by others as we show, is useful for understanding the implications of 

complex survey sampling, compared with simple random sampling, a feature not 

highlighted by Langel and Tillé.  However, we believe that Bhattacharya’s formula is 

simply not friendly to code, whereas other formulations, such as that of Binder and 

Kovačević (1995), lead to a linearization variance, under complex survey sampling, 

that is far easier to compute.  Our work also suggests easy ways to obtain the 

linearization variance using artificial regressions, not considered by Langel and Tillé, 

which we believe applied researchers will find helpful8. 

These auxiliary regressions can be used to obtain the Gini estimator and its 

associated variance without the need for specialized survey software.  Although using 

artificial regressions for estimating the Gini coefficient has been considered in the 

literature (e.g., Ogwong, 2000; Giles, 2004; Davidson, 2009), this has been limited to 

data presumed to arise under an iid assumption, whereas our regressions account for 

sample data obtained from a complex survey design.   Additionally, we show how 

auxiliary regressions can be employed to compute variances, often regarded as 

burdensome.   

  This paper is organized as follows.  Section 2 outlines the sampling design 

framework considered in our theoretical work, along with considering sampling 

                                                 
7 We thank Thomson Ogwong for informing us of this study after he read a draft version of our paper. 
8 We note that the discussion in Langel and Tillé (2013) on regression-based variance estimation, their 
section 5, is not related to our proposed regressions. 
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weights.  For comparability, we adopt Bhattacharya’s (2005, 2007) structure, but we 

explain how this setup does not limit the applicability of results for researchers using 

other commonly considered complex survey data.  We explore estimation of the Gini 

coefficient and approximations for the estimator in Section 3.  Our main results are 

presented in Section 4, where we examine asymptotic variance (hereafter, variance) 

estimation of the usual plug-in estimator of the Gini coefficient using data obtained 

under a complex survey design.  In addition, variance estimation with a random iid 

sample is considered.  Section 5 suggests ways to obtain estimators in practice.  We 

detail results from a small empirical study in Section 6.  Our illustration shows how 

the theoretical results can be applied under a somewhat different sampling design 

than that examined by Bhattacharya.  We conclude in Section 7 and provide algebraic 

proofs in an Appendix. 

2.  FRAMEWORK 

The effect of the sampling design on estimation of a population parameter is 

discussed in standard statistics texts, such as Cochran (1977) and Wolter (2007).  Our 

focus is on multistage sampling, often adopted when obtaining household (or 

individual) data, a sampling design that may involve one or more combinations of 

sampling techniques, with the key outcome being that the sample cannot be regarded 

as iid.  Ignoring how the sample has been constructed (such as behaving as if the 

sample is iid) can lead to inconsistent population parameter estimators and 

inconsistent variance estimators.  Some common sampling methods include 

stratification, clustering, double sampling, multiple frames, poststratification and so 

on (see, e.g., Wolter, 2007).  We focus here on a design that consists of first stage 

stratification9 and second stage clustering, as it turns out that further sampling stages, 

after the initial level of clustering, do not affect the (asymptotic) variance estimator, 

which is computed from quantities formed from the ultimate cluster observations 

(see, e.g., Skinner et al., 1989, p47)10.   

                                                 
9 Should the sampling design involve several stages of stratification (e.g., urban/rural, then 
province/state), prior to the first level of clustering, then it is the “ultimate” level of (initial) 
stratification that needs to be considered. 
10 Because any additional correlation between units, introduced from further stratification and 
clustering, is already accounted for, as the “primary” cluster level units are assumed to be correlated.  
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Stratifying divides a population into relatively homogenous subgroups before 

sampling (e.g., area of residence, gender, or race) with sample selection then 

proceeding separately for each stratum.  Such a design typically breaks the identical 

part of an iid assumption.  The independent component, on the other hand, is usually 

violated with clustering, which splits the population into contiguous groupings; e.g., 

villages in rural areas and blocks or enumeration areas in urban areas.  Given this 

contiguity, units within clusters are usually correlated.   

For comparability, we adopt Bhattacharya’s (2007) framework of a household 

survey with interest in inequality for a well-being variable that is at the individual 

level, but with the feature that the value of the well-being variable is the same for all 

members of a household; e.g., per capita annual household consumption expenditure.  

This implies that the unit being sampled is the household, but the relevant sampling 

weight (discussed shortly) is for the individual; the number of sampled units is the 

total number of households.  Such a structure, although commonly of interest, differs 

from that explored by other theoretical studies.  For instance, Biewen and Jenkins 

(2006) and Clarke and Roy (2012) consider survey designs where the ultimate unit is 

the individual (rather than the household) so that the total number of observations 

equals the number of individuals, with the individual sampling weight of relevance.  

In contrast, Binder and Kovačević.(1995) illustrate their theoretical results using a 

household level variable (family income) for households, so the adopted sampling 

weight is for the household.    It turns out that such specifics are not important.  With 

appropriate changes in the sampling weight and the number of units being sampled, 

our presented theoretical results carry through.  To illustrate, we purposely examine 

an application where the well-being variable is measured at the individual level, with 

individuals (ever-married women in a household) being the ultimate unit of interest.  

Following Bhattacharya’s setup, our notation with respect to the design follows.  

Let ���ℎ��	: ℎ = 1, … , �; � = 1, … , ��; � = 1, … , ���� be a finite population 

stratified into � strata, with �� clusters or primary sampling units within each 

stratum so that the population consists of � = ∑ ������  clusters.  In cluster �, within 

stratum ℎ, there are ��� units, which we assume to be households, leading to 

ℳ� = ∑ ��������  households in stratum ℎ; the population number of households is 
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then ℳ = ∑ ∑ ������������ .  A sample of �� clusters is drawn from the ℎ�� stratum via 

simple random sampling, with the total number of sampled clusters being � =∑ ������ 11.		From cluster �, within stratum ℎ, we suppose that  " households are 

selected12, using simple random sampling, such that the total number of sampled 

households is � = " ∑ ������ = "�.  Let  #��$ be the number of members in the ��� 

household in the ���	cluster within the ℎ�� stratum.   

Given the complex survey’s design, along with the common practice of 

oversampling particular subgroups to ensure stable estimates, household members in 

the population likely will not have the same probability of being included in the 

sample, a feature that is accounted for by a sampling weight for each member that 

denotes how many individuals this observation represents in the population.  Under 

the described sampling framework, the weight, which is inversely proportional to 

selection probability, is %��$ = &�'��()� #��$,	which is often normalized so that 

∑ ∑ ∑ %��$($��)�������� 	is equal to the number of sampled households or individuals; we 

assume that the weights have been scaled to ensure that ∑ ∑ ∑ %��$($�� = �)�������� , 

the number of sampled households.  In addition, it simplifies the algebra to adopt 

standardized weights  *��$ = +�',∑ ∑ ∑ +�',-,./0�'./1�./ 			such that ∑ ∑ ∑ *��$ =($��)��������
1 13.   

3. GINI COEFFICIENT ESTIMATION AND ASYMPTOTIC 

APPROXIMATIONS 

In subsection 3.1, we define the Gini coefficient and provide its natural plug-in 

estimator when sample data are obtained from a multistage complex survey.  We also 

give the formula for the estimator when the sample is regarded as iid, randomly 

drawn from an underlying population.  We follow, in subsection 3.2, with a 

                                                 
11 Clusters are sometimes selected with probability proportional to size, which alters the sampling 
weight but not the fundamental results presented herein. 
12 The assumption that the same number of households is sampled from each cluster can be relaxed. 
13 Sampling weights also usually account for other features such as different nonresponse rates of 
interviews.  Should clusters have been selected with probability proportional to size, then %��$ =	∑ �ℎ��ℎ�=1"�ℎ 	#ℎ��.	 
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consideration of approximations for the estimator, showing that Binder and 

Kovačević (1995) and Bhattacharya (2007) obtain equivalent expressions.  We also 

show that the approximation of Davidson (2009) is a straightforward special example 

of that derived by Binder and Kovačević (1995).   

 

3.1.Gini Coefficient and Plug-in Estimator 

The Gini coefficient, bounded by zero and one, is typically defined as twice the area 

between the 45° −line and the Lorenz (1905) curve.  The Lorenz curve graphically 

illustrates the distribution of the well-being variable (e.g., household income, 

education attainment, per capita mean household consumption expenditure) by 

displaying the cumulative share of the well-being variable against its recipient share.  

Recall that our framework considers an individual level characteristic of well-being.  

Specifically, for a random well-being variable 7 ∈ �0, ∞; with cumulative 

distribution function <(7; and finite non-zero mean > ≡ @ 7A<(7;,BC  the Lorenz 

curve is 

 �(D; = 1> E 7A<(7;FG
C 		, (3.1) 

where HI = <J�(D; = inf�7|<(7; ≥ D� is the Dth quantile or fractile of the 

distribution function with D = <RHIS = @ A<(7;FGC , 0 ≤ D ≤ 1.  On the 45° −line, the 

line of equality, D = �(D;, whereas there is inequality when D > �(D;.  Given 

expression (3.1), the Gini coefficient is then commonly defined as 

 V = 1 − 2 E �(D;AD�
C = 2> E 7<(7;A<(7;B

C − 1		. (3.2) 

This summary measure of the degree of inequality, is zero (one) for a perfectly equal 

(unequal) distribution.  To proceed, let <X(7��$; be the empirical distribution function 

for 7��$, which given the sampling design, is 



 10

 <X(7��$; = Y Y Y *Z[�
(

���
)\

[�� ]�7Z[� ≤ 7��$	�
Z��

= Y *^
&

^�� ]_7(^; ≤ 7��$`			, 
(3.3) 

where 7(^; is the A�� order statistic in the full sample and *^ is the associated 

sampling weight.   Although not necessary, it is sometimes helpful to write 

expressions in terms of order statistics, as it provides consistency with some of the 

related research.  Then, let Ĥ(D; be the estimated sample quantile (i.e., Ĥ(D; =
inf�,�,$b7��$|<X(7��$; ≥ Dc) and >̂ = ∑ ∑ ∑ *��$7��$	($��)�������� be the estimator of >,	such 

that we obtain the following estimator for �(D;, allowing for the sampling design: 

�X(D; = 1>̂ Y Y Y *��$7��$]R7��$ ≤ Ĥ(D;S(
$��

)�

���
�

��� = de(D;>̂ 				, 
with de(D; being an estimator of d(D; = f gh]Rh ≤ H(D;Si.  Using this, we have the 

following estimator of V: 

VX = 1 − 2 E �X(D;AD = 1 − 2>̂ E jY Y Y *��$7��$]R7��$ ≤ Ĥ(D;S(
$��

)�

���
�

��� k AD�
C

�
C  

= 1 − 2>̂ Y Y Y *��$7��$ lE ]R7��$ ≤ Ĥ(D;SAD�
C m(

$��
)�

���
�

��� 			, 
which can be estimated by 

VX = 1 − 2>̂ Y Y Y *��$7��$
(

$�� nY *^]R7(^; ≥ 7��$S&
^�� o)�

���
�

���
= 1 − 2>̂ Y Y Y *��$7��$ g1 − <X(7��$;i(

$��
)�

���
�

��� 			. 
This is the estimator adopted by Bhattacharya (2007).  Re-arranging, we arrive at 

Binder and Kovačević’s (1995) estimator: 

 VX = 2>̂ Y Y Y *��$
(

$�� 7��$<X(7��$;)�

���
�

��� − 1				. (3.4) 
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For an iid randomly drawn sample of individuals ofsize �C, this result suggests using 

 VX = 2�>̂ Y 7^
&

^�� <X(7^; − 1			, (3.5) 

where  <X(7^; = �& ∑ ](7p ≤ 7^;&p�� .  However, noting that the second expression in 

(3.2) can be equivalently written as  V = �q @ 7AR<(7;SrBC − 1, and using order 

statistics, Davidson (2009) suggests the following estimator for V, which overcomes 

the problem of defining the empirical distribution function as being either right- or 

left-continuous: 

 VX = 1>̂ Y 7(^; ls A�tr − sA − 1� trm&
^�� − 1

= 2>̂�r Y 7(^; sA − 12t&
^�� − 1					. 

(3.6) 

In this formula, an average of the lower and upper limits is used for <X.  Expression 

(3.6) is equivalent to that considered by, amongst others, Sendler (1979), Nygård and 

Sandström (1989), Ogwong (2000) and Giles (2004).   

 

3.2 Approximations for (VX − V; 
We now turn to obtaining approximate expressions for (VX − V; from which we can 

obtain variance estimators.  Bhattacharya (2007) frames estimation as a method of 

moments problem, showing that an approximate expression for the Lorenz share at a 

fixed percentile D, with u = (H(D;, d(D;, >;	is given by 

 �X(D; − �(D; ≈ Y Y Y *��$w(7��$, u(
$�� ;	)�

���
�

��� 			, (3.7) 

where 

w(7��$, u; = 1> (7��$](7��$ ≤ H(D;; − d(D;; + 1> H(D;(D − ]R7��$ ≤ H(D;S;
+ d(D;>r (> − 7��$;	 

= 1> y7��$]R7��$ ≤ H(D;S + H(D; gD − ]R7��$ ≤ H(D;Si − d(D;> 7��$z					. 
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Then, the approximate expression for RV	{ – VSis 

VX − V ≈ −2 E AD�
C Y Y Y *��$w(7��$, u(

$�� ;	)�

���
�

���  

 = −2 Y Y Y *��$
(

$��
)�

���
�

��� lE w(7��$, u;AD�
C m (3.8) 

= Y Y Y *��$
(

$��
)�

���
�

��� Ψ��$ 						. 
An estimator of Ψ��$ is: 

Ψ{��$ = −2 Y *^
&

^�� ~1>̂ l7��$]R7��$ ≤ 7(^;S + 7(^; g<XR7(^;S − ]R7��$ ≤ 7(^;Si
− deR7(^;S>̂ 7��$m�			, 

where deR7(^;S = ∑ ∑ ∑ *Z[�7Z[�]R7Z[� ≤ 7(^;S(���)\[���Z�� 	is used to estimate de(D;.		We then have Bhattacharya’s (2007) approximation: VX − V ≈ 

 Y Y Y *��$
(

$��
)�

���
�

��� �−2 Y *^
&

^�� �1>̂ j 7��$]R7��$ ≤ 7(^;S +
7(^;<XR7(^;S − 7(^;]R7��$ ≤ 7(^;S − deR7(^;S>̂ 7(3.9

) 

It should be noted that we have written Bhattacharya’s approximate expression using 

the traditional summing over stratum, clusters, and households, in contrast to 

Bhattacharya, who rearranges the summing to take account of his asymptotic 

analysis, which is with respect to the number of clusters14.  Specifically, let �� = )��   

and ](�	�	ℎ; = 1	when cluster �	is in stratum ℎ, 0 otherwise.  Then, let %��$∗ =

                                                 
14 As household surveys often have significantly more clusters sampled per stratum than the number of 
strata or the number of households sampled per cluster, it seems sensible to consider an asymptotic 
framework with the number of clusters going to infinity, holding the number of strata and households 
per cluster fixed and finite.  This is Bhattacharya’s framework.  In contrast, Krewski and Rao (1981), 
Rao and Wu (1985), Binder and Kovačević (1995) and Kovačević and Binder (1997), amongst others, 
consider asymptotic analysis with the number of strata tending to infinity, assuming the number of 
clusters per stratum is fixed.    
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�%��$ = R](�	�	ℎ;S × &�'��(�� #��$ and *��$∗ = %��$∗ / ∑ ∑ ∑ %��$($��)��������   so that we 

write (3.8) as VX − V ≈ 

− 2� Y Y Y *��$∗(
$��

�
���

�
��� lE AD	 �1> y7��$]R7��$ ≤ H(D;S + H(D; gD − ]R7��$ ≤ H(D;Si�

C
− d(D;> 7��$z�m			. 

Rearranging, we obtain Bhattacharya’s (2007, p685) explicit expression: 

 √�RVX − VS ≈ − 2√� Y Ψ$
�

���  (3.10) 

where 

Ψ$ = E AD�
C �Y Y *��$∗(

$��
�

��� s1> y7��$]R7��$ ≤ H(D;S + H(D; gD − ]R7��$ ≤ H(D;Si
− d(D;> 7��$zt�			. 

We now consider Binder and Kovačević’s (1995) approximation for (VX − V;.  Binder 

and Kovačević (1995) approach estimation using estimating equations15, a general 

way to estimate population parameters.  Some examples of methods that lead 

naturally to estimating equations are maximum likelihood, method of moments and 

least squares.  To illustrate, following Binder and Kovačević (1995), suppose interest 

lies in estimation of a finite population parameter � that can be written as the solution 

to 

E �(7, �;A<(7; = 0				, 
where <(7; is the finite population distribution function.  Then, with <X(7; being a 

consistent empirical distribution function, the estimating equations estimator of � is 

that value of �� such that 

                                                 
15 First proposed by Godambe (1960); see also Godambe and Thompson (1978, 1984), Binder (1991) 
and Binder and Patak (1994). 
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E �eR7, ��SA<X(7; = 0				, 
where �eR7, ��S, the estimating equation, is an estimate (or approximation) of �(7, �;.  
Given these definitions, it is straightforward to see how moment equations and 

likelihood equations are examples of estimating equations.  Not surprisingly, 

sometimes more than one estimating equation is required.  Using this method, Binder 

and Kovačević (1995) provide the following two estimating equations for estimating 

the Lorenz curve ordinate and the 100Dth percentile of the distribution: 

��R7, �(D;S = ]R7 ≤ H(D;S7 − �(D;7			&					�r(7; = ]R7 ≤ H(D;S − D				. 
Using these estimating equations and approximations, based on theorems from 

Francisco and Fuller (1991), Binder and Kovačević (p141) obtain an approximation 

for the Lorenz share at a fixed percentile D: 

�X(D; − �(D; ≈ Y Y Y *��$�(7��$, u(
$�� ;	)�

���
�

��� 			,																																																																				 
where  	

�(7��$, u; = 1> _(7��$ − H(D;;]R7��$ ≤ H(D;S + DH(D; − 7��$d(D;/>`			. 
By simple inspection, �(7��$, u; = w(7��$, u;.  Given the equivalence of these 

approximations, the approximate expressions of Binder and Kovačević (1995) and 

Bhattacharya (2007) for V	{ are also the same.  It is, nevertheless, useful to show this 

result, as we find Binder and Kovačević’s (1995) expression to be practically more 

convenient.  Binder and Kovačević (1995, p143) provide the sample estimating 

equation for the Gini coefficient: 

Y Y Y *��$_R2<X(7��$; − 1S7��$ − VX7��$`(
$��

)�

���
�

��� = 0			, 
and the estimator for their approximation of (VX − V; is: VX − V ≈ 
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 Y Y Y *��$ ~2>̂ l7��$ �<X(7��$; − RVX + 1S2 � + �(7��$;(
$��

)�

���
�

���
− >̂2 RVX + 1Sm� 

(3.11) 

 = Y Y Y *��$
(

$��
)�

���
�

��� ���$∗ 			, (3.12) 

where 

�(7��$; = Y Y Y *Z[�7Z[�](7Z[� ≥ 7��$;(
���

)\

[��
�

Z�� 			. 
The equivalence of expressions (3.9) and (3.11) is shown in the Appendix under the 

Proof of Result 1.  When calculating variances, considered in the next section, 

practitioners need to generate either ���$∗  or Ψ{��$.	 Although equivalent terms, having 

already formed >̂, <X(7��$; and VX, it is our belief that it is computationally easier to 

code  ���$∗  rather than Ψ{��$, as �(7��$; is the only additionally required term. 

To end this subsection, we simplify Binder and Kovačević’s (1995) expression 

(3.11) for the case of a randomly drawn iid sample, showing that it straightforwardly 

gives the expression derived by Davidson (2009).  In the iid case, expression (3.11) 

becomes: 

 VX − V ≈ 1� Y 2>̂
&

p�� n7p �<XR7pS − �VX + 12 �� + �R7pS
− >̂2 RVX + 1So			, 

(3.13) 

where �R7pS = �& ∑ 7$]R7$ ≥ 7pS.&$��   Using Davidson’s notation, �R7pS = >̂ −
w� R7pS, 

��q� = (�X��;r  and ]� = q�r (VX + 1;, where ] = @ 7<(7;A7BC .  Making these 

substitutions, with some minor algebraic manipulations, we obtain 
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 VX − V ≈ 1� Y 2>̂
&

^�� l− ]�>̂ (7^ − >̂; + 7^<X(7^; − w� (7^;
− (2]� − >̂;m			, 

(3.14) 

which is Davidson’s (p32) estimator of the approximation for (VX − V;.  Note that we 

can equivalently write (3.13) as: 

VX − V ≈ 1� Y �∗̂&
^�� 			, 

where 

 �∗̂ = 2>̂ n7^ �<X(7^; − �VX + 12 �� + �(7^; − >̂2 RVX + 1So (3.15) 

 																												= (��^ − �̅;>̂ 			,  

in Davidson’s adopted notation, with ��^ = −RVX + 1S7^ + 2 g7^<X(7^; − w� (7^;i 

and �̅ = >̂(VX − 1;. 

In this section, we have shown that recent derivations of approximate expressions 

for V	{ by Bhattacharya (2007) and Davidson (2009) are either equivalent to or a 

special example of the expression obtained by Binder and Kovačević (1995), over a 

decade earlier.  We now turn to variances for VX. 

 

4. VARIANCE ESTIMATORS 

We first present the variance estimator of Binder and Kovačević (1995), which is 

based on standard survey theory, and then consider its limiting form as the number of 

clusters goes to infinity.  We then examine Bhattacharya’s (2007) variance estimator, 

showing that formula is equivalent to the limiting form of Binder and Kovačević’s 

(1995) variance estimator, a formula that we believe is easier to use.  Finally, we 

show that Davidson’s (2009) variance formula, suggested for the iid case, is easy to 

obtain from the complex survey variance of Binder and Kovačević (1995).  That this 

follows is expected from our results in the previous section.   

Using expression (3.12), an estimator of the variance of VX is 
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���� RVXS = ��� �Y Y Y *��$
(

$��
)�

���
�

��� ���$∗ �		, 
which is merely the variance of a survey weighted total, a well-discussed estimation 

problem in the survey literature.  For instance, following Skinner et al. (1989, p47)16, 

the standard nonparametric estimator is: 

 ���� RVXS = Y s ���� − 1t�
��� Y(���∗ − � �∗ ;r)�

��� 			, (4.1) 

where ���∗ = ∑ *��$���$∗($��  and � �∗ = (1 ��;⁄ ∑ ���∗)���� .  As (�� (�� − 1;; = 	 (�� (�� − (1 �;;⁄⁄⁄ → 1 as �� , � → ∞, an asymptotically17 

equivalent estimator is 

 ���� RVXS = Y Y(���∗ − � �∗ ;r)�

���
�

��� 			. (4.2) 

Bhattacharya (2007), on the other hand, based on his general paper Bhattacharya 

(2005), provides the asymptotic variance estimator: 

���£ RVXS = ��� �Y Y Y *��$
(

$��
)�

���
�

��� Ψ{��$� 

 = Y Y Y *��$r(
$��

)�

��� Ψ{��$r�
���

+ Y Y �Y Y *��$
(

p¤$ *��p
(

$�� Ψ{��$Ψ{��p�)�

���
�

���

− Y 1��
�

��� �Y Y *��$
(

$��
)�

��� Ψ{��$�
r

, 
(4.3) 

where, from Section 3,  

                                                 
16 This assumes that primary sampling units, the clusters, are selected with replacement. 
17 As per Bhattacharya (2005, 2007), the asymptotic behaviour is with respect to the number of 
sampled clusters for each stratum going to infinity at the same rate, leading to ��	remaining fixed.  
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Ψ{��$ = −2 Y *^
&

^�� ~1>̂ l7��$]R7��$ ≤ 7(^;S + 7(^; g<XR7(^;S − ]R7��$ ≤ 7(^;Si
− deR7(^;S>̂ 7��$m�		. 

This is equivalent to ���$∗  (recall Result 1 in the Appendix).  Bhattacharya’s 

expression (4.3) is useful for understanding the impact of the sampling design on 

variance estimation; the first term is the estimator of the variance under a simple 

random sampling design (or iid assumption) with weights, which we denote by ���£ ¥¦¥RVXS,	the second term is the effect on the variance from clustering and the third 

term is the impact of stratification on the variance.  As we would expect a positive 

covariance between values obtained from the same cluster, the cluster effect is 

expected to be positive, raising the variance over that which would arise under an iid 

with weights assumption.  Stratification reduces the variance; the more homogeneous 

are the units within a stratum and the more heterogeneous are units across strata, the 

higher would be this stratification effect. 

 Despite the benefits of writing the variance estimator as expression (4.3), it is not 

especially friendly for practitioners to implement, whereas the form of expression 

(4.1) (or (4.2)) is simpler to practically calculate.   Not surprisingly, given our earlier 

findings, Bhattacharya’s variance (4.3) is equivalent to the limiting form of Binder 

and Kovačević’s variance, expression (4.2).  We show this as Proof of Result 2 in the 

Appendix.  Aside from showing the equivalence of Bhattacharya’s recent result with 

that of one derived over a decade earlier, this outcome is beneficial for practitioners 

as it turns out to be relatively easy to estimate expression (4.2) (and (4.1) should a 

researcher wish to adopt the standard survey sampling variance).  Estimation is 

discussed in the next section. 

 Prior to doing so, we consider the case of an iid sample.  The natural estimator 

from expression (4.2) is 

 ���� RVXS = 1�r Y(�∗̂ − � ∗;r&
^�� = 1�r Y �∗̂r&

^��  (4.4) 
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where �∗̂  is as defined in expression (3.15) and using that � ∗ = �& ∑ �∗̂&̂�� = 018.  In 

terms of Davidson’s (2009) notation, this is equivalent to 

���� RVXS = �(&q�;¨ ∑ R��^ − �̅Sr&̂�� , which is explicitly his equation (19) on p32.  That 

is, as expected, Davidson’s proposed variance estimator is a special example of the 

variance estimator suggested by Binder and Kovačević (1995).   

 

5. CALCULATING ESTIMATES IN PRACTICE 

In this section we discuss straightforward ways of practically calculating VX and its 

associated variance estimator.  In subsection 5.1 we examine obtaining VX for both the 

complex survey and iid sample and in subsection 5.2 we consider estimating	���RVXS 

with a complex survey sample.  We do not discuss calculating ���� RVXS for an iid 

sample as this is just a scaled sum of squares. 

 

5.1 Computing VX  
When data are from an iid random sample, it has been show that VX can be easily 

obtained from an artificial ordinary least squares (OLS) regression; see, e.g., Ogwong 

(2000), Giles (2004) and Davidson (2009).  Specifically, with unordered data and 

denoting © as a random error, we estimate the artificial regression: 

R2<X(7^; − 1Sª7^ = uª7^ + «^ ,						A = 1, … , � 

by OLS to yield uX = VX.  If data are ordered with <X computed using the average of the 

lower and upper limits, as advocated by Davidson (2009), the artificial regression: 

s2A� − 1� − 1t ª7(^; = uª7(^; + «^ ,						A = 1, … , � 

estimated by OLS results in uX = VX as defined by expression (3.6).   

 A similar approach can be adopted with a complex survey.  For the auxiliary 

regressions with complex survey data, the sampling weights are assumed to be 

normalized such that ∑ ∑ ∑ *��$($��)�������� = 1.   Should a researcher be using a 

                                                 
18 This also holds for the complex survey; i.e., ∑ ∑ ∑ *��$���$∗($�� 	)�������� = 0. 
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software package not explicitly designed to handle complex survey data, the OLS 

estimator of u using the artificial regression: 

R2<X(7��$; − 1Sª*��$7��$ = uª*��$7��$ + «��$ ,						ℎ = 1, … , �; � = 1, . . , ��; �
= 1, … , " 

leads to VX given in expression (3.4); the data need not be ordered for this regression.  

That is, we simply estimate the OLS regression over all data ignoring the sampling 

design.   If access is available to software that accounts for survey design, having 

declared appropriate elements of the sampling design, the artificial regression: 

R2<X(7��$; − 1Sª7��$ = uª7��$ + «��$,						ℎ = 1, … , �; � = 1, . . , ��; � = 1, … , " 

yields uX = VX. 

 

5.2 Computing Variances with a Complex Survey Sample 

If a researcher is using a package designed for surveys19, then it is easy to calculate 

Binder and Kovačević’s (1995) variance estimator 

���� RVXS = Y s ���� − 1t�
��� Y(���∗ − � �∗ ;r)�

��� 			, 
as this is the variance for a survey weighted total based on the approximation 

VX − V ≈ Y Y Y *��$
(

$��
)�

���
�

��� ���$∗ 			. 
For such software packages, the variance (often called the linearization variance) is 

easily generated using an appropriate “total” command after forming the series ���$∗ , 

along with specifying the weight series and declaring strata and cluster identification 

variables.   When each stratum contains a large number of clusters (as would be the 

case for many household surveys) there will be little difference between this estimator 

and its asymptotic version (i.e., that associated with the number of sampled clusters 

going to infinity at the same rate): 

���£ RVXS = Y Y(���∗ − � �∗ ;r)�

���
�

��� 				, 
                                                 
19 Examples include Stata (StataCorp), SPSS (SPSS Inc.), SUDAAN (Research Triangle Institute) and 
the “survey” package developed by Lumley for R (see Lumley, 2010). 
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which, we recall, is the same as the variance derived by Bhattacharya (2007) (as 

shown in the Proof of Result 2 in the Appendix).  However, should stratum contain 

few clusters, then it may be preferable to use Binder and Kovačević’s (1995) variance 

estimator, as the scaling factor (�� (�� − 1;;	⁄ may then be useful. 

 When access is not available to survey software, one way to obtain Bhattacharya’s 

variance estimator is to estimate the artificial regression: 

���∗ = Y ¬�­��
�

��� + «��			, 
where ­�� = 1	if cluster � is in stratum ℎ, 0 otherwise.  Let ®®¯	be the sum of 

squared residuals from this regression.  It follows that ���� RVXS = ∑ ∑ (���∗ −)��������� �∗ ;r = ®®¯.  To undertake this regression, a researcher needs to initially generate ���∗ = ∑ *��$���$∗($�� , which only requires a few lines of code.  Finally, Binder and 

Kovačević’s (1995) variance estimator, ���� RVXS = ∑ g )�)�J�i���� ∑ (���∗ − � �∗ ;r)���� , 

can be generated without survey software, as the ®®¯ from the artificial regression: 

s ���� − 1tC.° ���∗ = Y ¬�­��∗�
��� + «��							, 

where ­��∗ = ª(�� (�� − 1;⁄ ; = 1	if cluster � is in stratum ℎ, 0 otherwise.  It may 

seem surprising that ���� RVXS = ®®¯ from an auxiliary regression, as the ®®¯ does 

not go to zero asymptotically under a traditional LS framework, which is required 

here for consistency.  However, recalling that ���∗ = ∑ *��$���$∗($��  with  *��$ =
+�',∑ ∑ ∑ +�',-,./0�'./1�./ = +�',&  and � = "�,	it is clear that ®®¯ → 0 as � → ∞. 

 

6. EMPIRICAL EXAMPLE: BMI INEQUALITY AMONG 

BANGLADESHI WOMEN 

To illustrate results, we examine health inequality amongst Bangladeshi women 

employing body mass index (BMI) as our gauge of well-being.  Data are from three 

Bangladesh Demographic and Health Surveys (BDHS): 2004, 2007 and 2011; 

NIPORT et al. (2005, 2009, 2013).  Our adoption of such a measure of health status, 
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as an indicator of welfare, is part of a growing body of research that studies inequality 

using metrics of well-being aside from income or consumption expenditure, 

recognizing that attributes of an individual’s life, such as education, health and 

longevity, may be just as important as income or consumption.  Some studies that 

have considered inequality in BMI for developing countries are Araar et al. (2009), 

Sahn and Younger (2009) and Molini et al. (2010).  Araar et al. (2009) study a sample 

of Namibian individuals, including children; Sahn and Younger (2009) compare 

inequality across 36 developing countries, based on Demographic Health Surveys and 

Living Standards Measurement Studies, with data from several surveys for each 

country; and Molini et al. (2010) contrast female BMIs for a cross-section of 

countries and male and female BMIs for Vietnam.   

 An individual’s BMI is given by his or her weight in kilograms scaled by height 

in metres squared.  Low adult BMI suggests inadequate access to food and possible 

diseases, leading to an increased likelihood of morbidity and mortality, birth 

difficulties and poor health in delivered infants, and reduced ability to work 

productively; see, for example, Molini et al. (2010) for discussion and the references 

cited therein.  High adult BMI (obesity) may also be detrimental for an individual’s 

well-being, being associated with high blood pressure, high cholesterol and 

triglycerides, type 2 diabetes, coronary artery disease, stroke, breathing problems 

such as sleep apnea and asthma, gallbladder disease and gallstones, osteoarthritis, and 

some cancers, among other conditions.  That both low and high BMI are associated 

with a decline in well-being is an issue when calculating inequality indicators, as 

these measures assume a monotonic ranking of individuals.  For two reasons we 

ignore this concern.  First, as we shall see in section 6.1, although obesity is rising in 

Bangladesh, the proportion is still relatively small compared with the developed 

world, suggesting that inequality indicators will not be too distorted with the 

inclusion of obese women.  Secondly, as discussed by, for instance, Molini et al. 

(2010), it is unlikely that the obese BMI observations will severely skew the BMI 

distribution, in contrast to high incomes in that distribution. 

 To construct Gini coefficients using our BMI data, we need to ensure 

comparability across women of different ages, as our sample comprises women aged 
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15-49.  We allow for natural age effects by standardizing the BMIs using growth 

curves provided by the World Health Organization (WHO); see de Onis et al. (2007).  

Specifically, as the WHO finds that the distribution of BMIs for 19 year olds matches 

that for adult women, we use WHO growth curves to convert the BMIs for women 

aged 15 through 18 to an “equivalent” BMI for a 19 year old woman.  By 

“equivalent”, we mean that the woman’s position in the age specific BMI distribution 

is maintained.  Let ��]$ be the actual sample value for the ��� woman with 

associated cumulative distribution function <�(��]$; for age �, calculated using the 

WHO growth curve.  Then, let <�±(��]�±,$; be the cumulative distribution function 

from the WHO growth curve for a 19 year old woman with standardized BMI given 

by ��]�±,$.  For those women with	� = 15, … , 18,	we generate ��]�±,$ such that <�(��]$; = <�±(��]�±,$; , our notion of “equivalent”, with these “standardized” 

BMIs being used in statistics generated for the sample20.   The number of 

“standardized” observations is 1295 (954; 1147) for the 2011 (2007; 2004) datasets.   

Hereafter, we use “BMI” to denote the series that includes the “standardized” BMI 

numbers for those women younger than 19 years of age. 

 In addition to estimating the Gini coefficient and its variance for ever-married 

women in each dataset, we also report Gini coefficients when data are divided by 

region of residence (urban; rural) and by wealth category (poorest; poorer; middle; 

richer; richest).  We consider region of residence as urbanization is often cited as 

being a contributing factor to increasing BMIs in developing countries, with urban 

residents often cited to having predominantly higher BMIs than that of rural residents; 

e.g., see Nubé et al. (1998), Popkin and Gordon-Larson (2004), Mendez et al. (2005), 

Shafique et al. (2007), Neuman et al. (2013).  This may result in differing inequality 

in BMI between urban and rural women.   Subdividing data by wealth category 

enables us to consider the impact of a common measure of socioeconomic status on 

inequality in health and well-being, as measured by BMI; e.g., Mendez et al. (2005), 

Corsi et al. (2011), Subramanian et al. (2011), Razak et al. (2013).  A women’s health 

                                                 
20 See, for example, de Onis et al. (2007) and Araar et al. (2009) for descriptions of the methods we use 
to calculate the age specific distribution functions with relevant, so-called, LMS coefficients, obtained 
from http://www.who.int/childgrowth/standards/bmi_for_age/en/index.html, last accessed 14 January 
2014. 
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likely varies substantially with wealth, affecting, for instance, her ability to acquire 

adequate and nutritious food supplies, have access to appropriate health services, safe 

sources of water and safe sanitation facilities, and her knowledge of diseases; see, for 

instance, Banerjee et al. (2004), Araar et al. (2009), Neuman et al. (2011).  

  

6.1 Data, Survey Designs and Summary Statistics 

 The raw BMI data are from the 2004, 2007 and 2011 Bangladesh Demographic 

and Health Surveys (BDHS), nationally representative sample surveys that aim to 

detail statistics useful for ascertaining changes in key areas of development, including 

maternal and child health, domestic violence, education and poverty reduction; see, 

NIPORT et al. (2005, 2009, 2013).  These are the fourth, fifth and sixth such surveys 

for this developing country, conducted through collaboration between the National 

Institute of Population Research and Training (NIPORT) of the Ministry of Health 

and Family Welfare, ICF International/Macro International/ORC Macro, and Mitra 

and Associates.  The 2011 (2007; 2004) survey consists of information from ever-

married women aged 12-49 (15-49; 10-49).  The 2007 survey originally included 

ever-married women aged 10-49 but those aged 10-14 were dropped due to the small 

number of women in this age range.  Accordingly, for consistency across surveys, we 

limited attention to those ever-married women aged 15-49.  

 Data were obtained using stratified multistage cluster sampling with somewhat 

similar designs across surveys. We provide a brief outline here, referring the reader to 

NIPORT et al. (2005, 2009, 2013) for full details.  Bangladesh is comprised of 

administrative divisions21 that are split into zilas with zilas further subdivided into 

upazilas.   In rural regions, upazilas are split into union parishads, with these districts 

further divided into mouzas.  Urban region upazilas contain wards, which are 

subdivided into mahallas.  These divisions enable the country to be stratified into 

rural and urban areas, with enumeration areas (EAs) used (mostly) as the primary 

sampling units (PSUs). The EAs correspond to mahallas in urban districts and 

mouzas in rural regions, with 100-120 households, on average, in each EA; large EAs 

                                                 
21 For the 2004 and 2007 surveys, there were six administrative divisions (Barisal, Chittagong, Dhaka, 
Khulna, Rajshahi and Sylhet), with an additional one existing at the time of the 2011 survey 
(Rangpur). 
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were further segmented with these segmented areas forming the PSU.  Having 

stratified the country into rural and urban areas for each division, urban areas are 

further stratified into city corporations and other than city corporations for the 2011 

survey, and statistical metropolitan areas, municipality areas and other urban areas for 

the 2004 and 2007 surveys.  This resulted in 20 strata for the 2011 survey and 22 

strata for the 2004 and 2007 surveys22.   

 The desired number of clusters was then selected, independently across strata, 

with probability proportional to the EA household size.  Equal probability systematic 

selection was used to draw 30 households from each sampled cluster.  As most of the 

population reside in rural areas, urban households were over-sampled to obtain a 

similar level of statistical precision to the rural regions23.  All ever-married women 

who were members of the selected household, and any ever-married woman who 

slept in the household the night before the survey, were eligible to be interviewed.  

Hence, the sampling design of our empirical example differs from the framework 

considered in the theoretical sections; here the clusters and households are chosen by 

other than simple random sampling, and we have potentially more than one ever-

married woman from a household in the sample.  Thus, the “i” (or “t”, as appropriate) 

subscript, in the expressions, is now over all ever-married women in the sampled 

cluster, rather than over households.  The total number of sample observations is now 

the number of ever-married women.   Such changes do not matter, as long as the 

“right” sampling weight is considered.  Here we use the individual weight from the 

ever-married women survey file.  Given the setup, only nonresponse leads to a 

difference between the individual sampling weight and the household sampling 

weight. 

 Wealth of a woman is determined by her household’s assignment in a categorical 

ranking: poorest, poorer, middle, richer and richest.  These divisions are calculated 

via a wealth index, constructed using principal components analysis, which combines 

                                                 
22 We detected several coding mistakes in the raw 2007 BDHS data with respect to matching the strata 
with rural/urban classifications; we amended these and used the corrected data file throughout our 
study. 
23 In addition, as one of the BDHS objectives is to obtain estimates for each division, as well as for the 
country as a whole, some divisions were also oversampled.  Such features mean that the BDHS 
samples are not self-weighting. 
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weighted values for indicator variables that reflect economic status, including 

household assets (e.g., television, bicycle, refrigerator, telephone, car, motor cycle, 

radio, livestock), utility services (e.g., electricity, sources of water, sanitation 

facilities, type of cooking fuel), materials used to construct housing (e.g., type of 

flooring, roofing material), persons per sleeping room, ownership of agricultural land, 

and whether the household has one or more domestic servants; see Rutstein and 

Johnson (2004) for details.   

  Turning to our sample data, in Table 1 we report BMI summary statistics, 

including the percentages for each sample that fall within traditional WHO 

classifications of BMI.  In particular, a BMI < 18.5 represents chronic energy 

deficiency.  Evidently, BMI has increased over time with slightly more variation, as  

 

Table 1.  Summary statistics for the three BDHS surveys: ever-married women 

 2004 2007 2011 

Number of observations 11,166 10,836 17,309 

Number of clusters (rural; urban) (239;122) (228;136) (393;207) 

Range of number of clusters in each 

stratum 

(smallest; largest; number of strata) 

 

(2; 57; 22) 

 

(3; 46; 22) 

 

(5; 61; 20) 

Mean BMI (std. error) 20.26 (0.06) 20.73 (0.07) 21.45 (0.06) 

BMI std. dev. 3.32 3.52 3.80 

Underweight (<18.50) 31.5% 27.2% 22.4% 

Severe thinness (<16.00) 5.2% 4.2% 3.4% 

Moderate thinness (16.00-<17.00) 7.5% 6.4% 5.4% 

Mild thinness (17.00-<18.50) 18.8% 16.6% 13.6% 

Normal weight (18.50-24.99) 57.9% 58.9% 59.8% 

Overweight (≥ 25.00; 10.6% 13.9% 17.8% 

Pre-obese (25.00-<30.00) 8.8% 11.6% 14.6% 

Obese (≥ 30.00; 1.8% 2.3% 3.2% 

Obese class I (30.00-<35.00) 1.6% 1.9% 2.7% 

Obese class II (35.00-<40.00) 0.1% 0.3% 0.4% 

Obese class III (≥ 40.00; 0.1% 0.1% 0.1% 

Notes:  All statistics are calculated using the standardized BMI data.  The mean statistics account for 
the survey design, with the common survey-based estimator (see, e.g., Skinner et al., 1989, p.47) 
employed to estimate variances.  This variance estimator is equivalent to expression (4.1) applied to 
the BMI data.   
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indicated by the increase in the standard deviation.  The mean BMIs are statistically 

significantly higher from each survey to the next, at common choices of significance 

level using a one-sided test.   Over time, we see proportionally fewer women in each 

of the thinness categories, an indication that perhaps some gains have been made on 

malnutrition, suggesting that Bangladesh has made progress on Millennium 

Development Goal 1, particularly Target 1C.24  However, that 1 in 5 women remain 

underweight is troubling, as is also noted in a report on Bangladesh’s progress on  

 

Table 2.  Summary statistics for the three BDHS surveys: by urban and rural divisions 

 2004 2007 2011 

Urban Women 

Number of observations 3,816 4,118 6,024 

Mean BMI (std. error) 21.59 (0.14) 22.29 (0.17) 23.03 (0.12) 

BMI std. dev. 5.00 5.42 4.86 

Underweight (<18.50) 24.0% 19.5% 15.0% 

Normal weight (18.50-<25.00) 56.3% 57.0% 56.9% 

Overweight (≥ 25.00; 19.7% 23.5% 28.2% 

Rural Women 

Number of observations 7,350 6,718 11,285 

Mean BMI (std. error) 19.87 (0.06) 20.27 (0.07) 20.90 (0.06) 

BMI std. dev. 2.72 2.83 3.27 

Underweight (<18.50) 35.4% 32.0% 26.5% 

Normal weight (18.50-<25.00) 58.8% 60.1% 61.3% 

Overweight (≥ 25.00; 5.8% 8.0% 12.2% 

Notes:  All statistics are calculated using the standardized BMI data.  The mean statistics account for 
the survey design, with the common survey-based estimator (see, e.g., Skinner et al., 1989, p.47) 
employed to estimate variances.  This variance estimator is equivalent to expression (4.1) applied to 
the BMI data.   
 

reaching the Millennium Development Goals (Bangladesh Planning Commission, 

2012).  Nearly 60% of women are in the normal BMI range.  On the other hand, 

although only a small percentage of women are obese, the proportion of women who 

                                                 
24 Goal 1 is “Eradicate extreme poverty and hunger” and Target 1C is “Halve between 1990 and 2015, 
the proportion of people who suffer from hunger.”  
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are overweight or obese has nearly doubled over the time span, being, in 2011, not 

much less than the proportion of women who are underweight.  This feature of 

simultaneously observing a significant percentage of the population being 

underweight and overweight coincides with evidence from other developing 

countries; e.g., for Namibia (Arrar et al. 2009) and for Kenya (Jayne et al. 2011), and 

see also Caballero (2005), Prentice (2006) and Razak et al. (2013).  Although an 

investigation of the specific causes of this trend for Bangladeshi women is beyond 

our scope, we anticipate that growing urbanization, more sedentary lifestyles, and 

higher consumption of energy-dense foods, forms part of the story, as has been 

hypothesized for other developing countries; e.g., Martorell et al. (2000).  The double 

burden of having women who are underweight and overweight is a dilemma for 

health authorities and the health care system. 

Summary statistics are provided in Tables 2 and 3 when the sample data are 

divided by region of residence (urban and rural) and wealth category.  We detail 

percentages in three broad BMI categories: underweight (BMI<18.5), normal 

(18.50≤BMI<25.00) and overweight (BMI≥25.00), along with means and standard 

deviations.  Mean BMIs are higher for urban women than for rural women, with the 

mean BMIs increasing across time for both rural and urban women.  At a nominal 5% 

significance level, with a one-sided test, the mean BMIs are statistically significantly 

higher for urban women than for rural women, and higher for each successive survey 

for a given region of residence, except when comparing 2011 with 2007 for rural 

women.   Chronic energy deficiency (BMI < 18.5) is more widespread for rural 

women than for women residing in urban regions, whereas overweight and obesity 

(BMI > 25.0) is significantly more prevalent for women living in urban areas.  

Although there have been gains in reducing chronic energy deficiency for both urban 

and rural women, it is troubling that one in four rural women are still underweight.   

 The proportion of women in the BMI classifications across the different wealth 

categories varies quite substantially, irrespective of survey.   Over or close to a third 

of the “poor” women are underweight, with only modest declines in the proportion of 

underweight “poor” women over the period covered by the three surveys.  Only a 

small percentage of the poorest and poorer women are overweight, but this proportion 
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has more than doubled over the seven years. Although a woman in the “middle” 

wealth group is less likely to be underweight in contrast with her poorer counterpart, 

there is still a substantial prevalence of chronic energy deficiency for the “middle” 

wealth category women.  In contrast, “rich” women are now about equally likely to 

be overweight as underweight, contrary to the situation in 2004 when three times as 

many women were underweight than overweight.  Nearly 40% of the richest women 

were overweight in 2011, with less than 10% underweight.  The degree of spread of 

BMI, as measured by the standard deviations, increases with wealth, for a given 

survey. 

 Mean BMIs have statistically significantly increased (nominal 5% significance 

level, one-sided test) from one survey to the next for each of the wealth categories, 

and the mean BMIs are also statistically significantly higher (nominal 5% 

significance level) for women in each wealth category compared with those in the 

poorer adjacent category (e.g., middle compared with poorer).  Overall, these findings 

suggest that there is a strong positive correlation between wealth and BMI with low 

BMI being concentrated in the “poor” and high BMI being concentrated in the “rich” 

– malnutrition does not fall randomly across the population.  Also, mean BMI is 

increasing over time, for each wealth group.  Nevertheless, as it is feasible for a 

woman to be underweight in a “rich” household and overweight in a “poor” 

household, it is more than just wealth status that determines nutritional status.  We 

also note that more than half of women have a BMI within the normal category, 

irrespective of wealth group and survey date, suggesting that malnutrition 

(underweight or overweight) is of concern for just under half of the women.  We now 

turn to estimating Gini coefficients. 
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Table 3.  Summary statistics for the three BDHS surveys: by wealth group 

 2004 2007 2011 

Poorest 

Number of observations 1,979 1,751 3,013 

Mean BMI (std. error) 19.04 (0.06) 19.35 (0.09) 19.68 (0.07) 

BMI std. dev. 2.37 2.42 2.81 

Underweight (<18.50) 45.3% 41.7% 38.3% 

Normal weight (18.50-<25.00) 52.7% 54.9% 56.7% 

Overweight (≥ 25.00; 2.0% 3.4% 5.0% 

Poorer 

Number of observations 1,997 1,964 3,235 

Mean BMI (std. error) 19.39 (0.07) 19.76 (0.08) 20.34 (0.06) 

BMI std. dev. 2.47 2.57 2.94 

Underweight (<18.50) 39.5% 34.3% 28.3% 

Normal weight (18.50-<25.00) 57.8% 61.5% 64.5% 

Overweight (≥ 25.00; 2.8% 4.2% 7.2% 

Middle 

Number of observations 2,092 2,070 3,328 

Mean BMI (std. error) 19.88 (0.08) 20.24 (0.08) 21.02 (0.07) 

BMI std. dev. 2.76 2.97 3.25 

Underweight (<18.50) 34.6% 30.6% 24.0% 

Normal weight (18.50-<25.00) 60.4% 62.4% 64.0% 

Overweight (≥ 25.00; 5.0% 7.0% 12.0% 

Richer 

Number of observations 2,230 2,173 3,670 

Mean BMI (std. error) 20.54 (0.10) 20.99 (0.10) 21.94 (0.08) 

BMI std. dev. 3.25 3.34 3.78 

Underweight (<18.50) 29.8% 25.2% 18.7% 

Normal weight (18.50-<25.00) 61.0% 62.9% 61.1% 

Overweight (≥ 25.00; 9.2% 11.9% 20.2% 

Richest 

Number of observations 2,868 2,878 4,063 

Mean BMI (std. error) 22.38 (0.11) 23.15 (0.13) 23.96 (0.10) 

BMI std. dev. 4.51 4.74 4.44 

Underweight (<18.50) 15.6% 12.8% 8.4% 

Normal weight (18.50-<25.00) 57.5% 54.0% 53.6% 

Overweight (≥ 25.00; 27.0% 33.2% 38.0% 

Notes:  All statistics are calculated using the standardized BMI data.  The mean statistics account for 
the survey design, with the common survey-based estimator (see, e.g., Skinner et al., 1989, p.47) 
employed to estimate variances.  This variance estimator is equivalent to expression (4.1) applied to 
the BMI data.   
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6.2 Gini Coefficients and Variance Estimates: All Women 

In the previous subsection, we discussed health status (as measured by BMI) in terms 

of means and the proportion of women with a BMI above or below a specified 

threshold.  Such statistics ignore much of the BMI information.   Here we estimate 

Gini coefficients for BMI; a value of V = 0 results when there is perfect equality, that 

is, all women have exactly the same BMI.  In contrast, a value of	V = 1 corresponds 

to the unrealistic case of perfect inequality; i.e., one woman has all the BMI.  Table 4 

provides the estimated Gini coefficients for all women in each survey, along with 

estimated variances using expressions (4.1) and (4.3); the former corresponds with 

that obtained by Binder and Kovačević (1995) and the latter to that derived by 

Bhattacharya (2007).  Recall that the difference between them is a correction factor 

for the finite number of clusters in each stratum.  We also report the breakdown of the 

variance estimates, using expression (4.3), into the three component parts: the 

variance arising from naively assuming a simple random sample (SRS) design with 

weights and the effects of clustering and stratifying on the variance.  In addition, we 

provide Wald statistics, and associated Chi-square p-values, for testing equality of the 

Gini coefficients using the variances corrected for the complex survey sampling 

design, along with the incorrect Wald statistics (and p-values) that would result if we 

employed the SRS with weights variance formula.25 

 The Gini estimates show that there is inequality in health, as measured by BMI, 

with inequality growing statistically significantly over the three surveys.  As there 

will always be variations in women’s BMI, even in a healthy population with equality 

in health, as measured by the absence of malnutrition (under- or over-weight), we 

calculated Gini estimates for those Bangladeshi women whose standardized BMI was 

in the “normal” range (18.50-<25.00).  For the three survey years, these Gini 

estimates are, respectively, 0.048, 0.047 and 0.046; the observed estimates for all 

ever-married women are approximately double these values.  Malnutrition is resulting 

in significant increases in inequality.  How do these estimates compare with other 

countries?  Interestingly, the absolute magnitudes of the Gini estimates for 

                                                 
25 We assume that the samples across surveys are independent, a reasonable assumption given that 
clusters are randomly selected. 
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Bangladesh are approximately thirty percent lower than the Gini estimate reported by 

Araar et al. (2009) for Namibian females, but this may be due to the fact that their 

sample includes children, aside from any inequality concerns.  Further, the 

Bangladeshi indices are lower than those reported by Contoyannis and Wildman 

(2007) for females from two developed countries, Canada and England.    

 

Table 4.  Gini coefficient estimates, estimated variances, design effects and 

hypothesis tests: ever-married women 

Survey VX ���� RVXS ���£ RVXS ���£ ¥¦¥RVXS Design 

effect 

Stratum 

Effect 

Cluster 

Effect 

2004 0.088 0.880 0.806 0.529 1.524 0.644 0.922 

2007 0.092 1.114 1.056 0.591 1.787 0.471 0.936 

2011 0.097 0.607 0.589 0.369 1.596 0.170 0.390 

Hypothesis Tests 

Null hypothesis Change 

in VX 

Using ���£ RVXS Using ���£ ¥¦¥RVXS 

Wald statistic p-value Wald 

statistic 

p-value 

2007=2004 0.004 8.593 0.003 14.286 0.000 

2011=2007 0.005 15.198 0.000 26.042 0.000 

2011=2007=2004 n.a. 59.096 0.000 92.297 0.000 

Notes: Variance estimates and associated components have been scaled by 10². ���� RVXS is Binder and 

Kovačević’s (1995) estimator, see expression (4.1).   ���£ RVXS is Bhattacharya’s (2007) estimator, see 

expression (4.3).  ���£ ¥¦¥RVXS is the first term of expression (4.3), the variance estimator under an 

assumption of SRS with weights.  The “design effect” provides the ratio of ���£ RVXS to ���£ ¥¦¥RVXS.  
The “stratum effect” and “cluster effect” are, respectively, the second and third terms of expression 
(4.3).   

  

 Turning to variance estimates, we see some differences from using Bhattacharya’s 

(2007) and Binder and Kovačević’s (1995) formulae, with ���� RVXS being between 3% 

and 10% higher than	���£ RVXS.		As some strata have few clusters, the correction factor (�� (�� − 1;;⁄ 	in expression (4.1) can markedly differ from unity for these strata, 

implying that for samples that do have relatively few clusters in some of the strata, 

the asymptotic variance, ���£ RVXS, may understate the variance.  Then, in practice, it 

may be preferable to adopt ���� RVXS.   
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 Further, allowing for the survey design26 leads to more than a 50% increase in the 

variance than under an incorrect assumption of a simple random sample with weights.  

The magnitude of the design effects is consistent with those for other statistics from 

the BDHS surveys, as reported in the appendices of the final reports (see NIPORT 

2005; 2009; 2013).  These results show the importance of accounting for the survey 

design when estimating variances.  We see the appreciatively large contribution of 

clustering and the smaller offset gain in precision by stratifying.  The impact of 

increasing the sample size and the number of clusters is evident when comparing the 

variances, and the design components, from the 2011 survey with the earlier surveys 

– over 50% more women were surveyed for the 2011 survey than with the earlier 

surveys and the number of clusters sampled nearly doubled.  The larger number of 

women in each stratum for the 2011 survey likely reduces homogeneity, resulting in 

smaller gains in precision as shown by a relatively smaller stratum effect, compared 

with the earlier surveys.   In contrast, sampling many more clusters likely adds useful 

information that is reflected in a smaller cluster effect for the 2011 survey.  As 

expected, the SRS variance decreases with the larger sample size. 

 For our cases, taking account of the survey design on the variances for the Gini 

coefficient estimators does not alter the outcomes of the hypothesis tests.  Here, we 

reject that the Gini coefficients are equal from one survey to the next, and that they 

are jointly equal across the three surveys.  There is a significant increase in BMI 

inequality over the three surveys.  This contrasts to changes in Gini coefficient 

estimates for inequality in income over the same period, which has shown a small 

decline.27  We next consider results when the data are subdivided by broad region of 

residence. 

 

 

                                                 
26 In some studies, the design effect is relative to the SRS variance without weights; i.e., that assumes 
each observation has the same probability of being selected.  As SRS with weights is commonly 
undertaken in inequality work, we have allowed for the survey weights when forming ���£ ¥¦¥RVXS.  
Such an approach also enables a straightforward decomposition of the overall variance. 
27 As reported by The World Bank; see 
http://data.worldbank.org/indicator/SI.POV.GINI/countries?display=default, last accessed 14 January 
2014. 



 34

6.3 Gini Coefficients and Variance Estimates: Rural and Urban Regions 

This subsection reports Gini coefficient estimates and estimated variances when we 

subdivide the population into the region (urban/rural) of residence for each woman.  

For space reasons, we report only ���� RVXS, ���£ RVXS and ���£ ¥¦¥RVXS, concentrating 

our attention on hypothesis tests for equality of Gini coefficients, which use ���£ RVXS, 

across regions for a given survey and across surveys for a given region.  Results are 

provided in Tables 5 and 6.  Nutritional inequalities are higher for urban women than 

for rural women, practically and statistically significantly.  Interestingly, inequality 

has increased amongst women living in rural regions across the surveys, whereas it 

remained relatively stable amongst urban women, even declining marginally from 

2007 to 2011.   

 

Table 5.  Gini coefficient estimates, estimated variances and design effects: by region 

of residence 

Survey VX ���� RVXS ���£ RVXS ���£ ¥¦¥RVXS Design effect 

 U R U R U R U R U R 

2004 0.104 0.081 2.422 1.214 1.981 1.188 1.806 0.691 1.097 1.719 

2007 0.104 0.085 2.402 1.733 2.169 1.689 1.659 0.843 1.307 2.004 

2011 0.101 0.092 1.814 0.750 1.736 0.738 1.307 0.470 1.328 1.570 

Notes: Variance estimates have been scaled by 10². “U” and “R” denote Urban and Rural, 
respectively; ���� RVXS	is Binder & Kovačević’s (1995) estimator (expression (4.1)), ���£ RVXS is 

Bhattacharya’s (2007) estimator (expression (4.3)); ���£ ¥¦¥RVXS is the first term of expression (4.3), the 
variance estimator under an assumption of SRS with weights.  The “design effect” provides the ratio of ���£ RVXS to ���£ ¥¦¥RVXS.   

 
 Variance estimates are substantially higher for the urban Gini coefficient 

estimators than the rural ones, most likely due to the smaller number of clusters (and 

number of women) in each urban stratum, along with the variance effect from nearly 

twice the number of rural women, over urban women, being sampled in each survey.  

In addition, design effects are relatively larger for rural areas than urban areas, 
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suggesting, ceteris paribus, that there is a higher positive intracluster correlation for 

rural women than for urban women with respect to BMI.28     

 Two-sided hypothesis tests for urban women, reported in Table 6, suggest 

equality of Gini coefficients between 2004 and 2007, with the change in inequality 

between 2007 and 2011 being significantly different from zero, at least at the nominal 

10% significance level.  Overall, however, we support that the urban Gini coefficients 

are jointly equal across the three surveys.  In contrast, the changes in Gini coefficients 

between surveys for rural women are statistically significantly different from zero. 

We also reject that the rural Gini coefficients are equal across the three surveys.  In 

addition, results suggest that the urban and rural Gini coefficients are unequal for 

each survey.  Such features are not evident from the summary statistics reported in 

Table 2, indicating the usefulness of examining inequality measures, along with 

commonly reported summary measures when considering BMI.   

 
Table 6.  Hypothesis tests for equality of Gini coefficients: by region of residence 

 

Test 

Across surveys 

Urban 

Wald statistic (p-value) 

Rural 

Wald statistic (p-value) 

2004=2007 0.101 (0.751) 5.561 (0.018) 

2007=2011 2.783 (0.095) 19.943 (0.000) 

2004=2007=2011 3.259 (0.196) 65.196 (0.000) 

 

Test 

Across regions 

2004 

Wald statistic 

(p-value) 

2007 

Wald statistic 

(p-value) 

2011 

Wald statistic 

(p-value) 

urban=rural 161.886 (0.000) 96.514 (0.000) 32.348 (0.000) 

Notes: Statistics are formed using ���£ RVXS. 

 
 
 
 
 
                                                 
28 All else the same, the size of the design effect is also impacted by the variability of the sampling 
weights.  For our cases variability of the sampling weights is higher for the urban subsamples than for 
rural ones. 
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6.4 Gini Coefficients and Variance Estimates: Wealth Categories 

 In this subsection we provide, in Table 7, estimated Gini coefficients, and 

associated variances29, corrected for the survey design, for women’s BMI when the 

women are sorted by wealth category: poorest, poorer, middle, richer and richest.  To 

illustrate hypothesis testing, we report Wald statistics, and corresponding Chi-square 

p-values, that examine for equality of Gini coefficients across the three surveys by 

wealth category in Table 8.  The results in Table 7 highlight the usefulness of 

examining subgroups when considering inequality – irrespective of survey, inequality 

in women’s BMI increases with socioeconomic status, as measured by wealth asset 

status.  This is as expected.  

 

Table 7.  Gini coefficient estimates and estimated variances: by wealth category 

 

Wealth category 

VX 	g���� (VX;; ���£ RVXSi 

2004 2007 2011 

Poorest 0.069 (2.309;2.200) 0.073 (3.066;2.998) 0.081 (1.933;1.905) 

Poorer 0.073 (2.584;2.527) 0.075 (2.570;2.487) 0.081 (1.483;1.457) 

Middle 0.077 (1.931;1.868) 0.081 (3.301;3.202) 0.088 (1.573;1.543) 

Richer 0.088 (3.966;3.826) 0.089 (2.823;2.713) 0.095 (1.761;1.718) 

Richest 0.100 (2.237;1.937) 0.101 (2.648;2.518) 0.098 (2.130;2.055) 

Notes: Variance estimates have been scaled by 10².  ���� (VX;  g���£ RVXSi is Binder & Kovačević’s 

(1995) (Bhattacharya’s (2007)) estimator. 

  

 In addition, for a given wealth subgroup (except for the richest subgroup), 

inequality has numerically increased over the surveys, especially between 2007 and 

2011, with most of the changes, but not all, being statistically significantly different.30  

We see, for instance, using the hypothesis test outcomes reported in Table 8, that the 

Gini coefficient has statistically increased for the “poorest” and “middle” subgroups 

across all surveys but not for the “richest” subgroup.  And, although there is no 

                                                 
29 The breakdowns of the complex survey variances into the component parts (SRS, cluster, stratum 
effects) are available on request. 
30 At the nominal 10% significance level.  Note that for some of the cases, we would conclude 
statistical significance in the change in the Gini coefficient had we examined an appropriate one-sided 
alternative hypothesis.   
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statistical change in the Gini coefficient between 2004 and 2007 for the “poorer” and 

“richer” women, the changes are statistically significantly different from zero when 

we compare the 2007 and 2011 Gini coefficients for these subgroups of women.  

Such features, along with the summary statistics reported in Table 3, suggest that, 

typically, the prevalence of overweight is increasing at a faster rate than the decline in 

the prevalence of underweight, leading to higher inequality.  In other words, although 

mean BMIs have increased over time for women in each wealth category, the weight 

gain is distributed unevenly leading to a rise in inequality.  This undesirable outcome 

suggests that Bangladesh faces rising issues associated with women being overweight 

and obese, along with difficulties in decreasing chronic energy deficiency for a large 

proportion of women.   

 

Table 8.  Hypothesis tests for equality of Gini coefficients: by wealth category 

Hypothesis 

Test 

Wealth Category 

Poorest Poorer Middle Richer Richest 

2004=2007 3.078 

(0.079) 

0.798 

(0.372) 

3.156 

(0.076) 

0.153 

(0.696) 

0.224 

(0.636) 

2007=2011 13.053 

(0.000) 

9.128 

(0.003) 

10.327 

(0.001) 

8.125 

(0.004) 

1.968 

(0.161) 

2004=2007=2011 36.550 

(0.000) 

18.835 

(0.000) 

36.486 

(0.000) 

12.603 

(0.002) 

2.107 

(0.349) 

Note:  The table reports Wald statistics for testing the appropriate null hypothesis of equality with Chi-
square p-values in parentheses.  Statistics are formed using ���£ RVXS. 
 

7. CONCLUSIONS 

In this paper, we examine variance estimation for Gini coefficients calculated from 

samples obtained under complex survey designs.   We show that a relatively recently 

proposed variance estimator (Bhattacharya, 2007) is equivalent to an estimator 

derived by Binder and Kovačević (1995), in an article published in the survey 

literature over a decade earlier.  A key advantage of this equivalence result is that the 

variance formula provided by Binder and Kovačević, along with the approximation 

for the Gini estimator, is, we believe, far easier to practically calculate, of importance 
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to practitioners who often resort to resampling methods for variance estimation, under 

the belief that it is too computationally burdensome to estimate a variance obtained 

from asymptotic approximations.  As an iid sample can be treated as a special case of 

a complex survey sample, we also link Davidson’s (2009) work to the earlier research 

undertaken by Binder and Kovačević, showing that Davidson’s derived 

approximation for the Gini estimator and his proposed variance estimator also follow 

directly from Binder and Kovačević’s results.  

 In addition to linking econometric research with past survey literature research, we 

believe that our work dismisses the folklore that asymptotic variances for Gini 

indices, especially with complex survey data, are computationally burdensome to 

calculate.  This is not the case; asymptotic variances can be readily calculated, even 

for those without access to specialized complex survey software. 

We provide applied researchers with easily implementable ways to calculate both a 

Gini coefficient estimator and an estimator of its associated variance.  

 Our empirical application, using BMI data for Bangladeshi women, illustrates the 

importance of accounting for the complex survey design when forming variances.  

Corrected variances are much higher than would have been obtained under a simple 

random sampling (with weights) assumption.  Overall, for all ever-married women 

we detect increasing BMI inequality across the surveys.  Urban inequality, typically, 

has remained (statistically) unchanged, whereas rural inequality has (statistically) 

increased.  There still remains, nevertheless, higher inequality in BMI for urban 

women than for rural women.  BMI inequality increases with wealth, but has also 

been increasing over time for all wealth categories, aside from the “richest” cohort.  

Our findings suggest that Bangladesh faces growing issues associated with dealing 

with the dual health problems of chronic low BMI and increasing high BMI. 
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APPENDIX: PROOFS OF RESULTS 

Proof of Result 1:   Here we show equivalence of Ψ{��$ and ���$∗ , implying that 

Bhattacharya’s (2007) and Binder and  Kovačević’s (1995) approximate expressions 

for V	{ are the same.  We have 

Ψ{��$ = −2 Y *^
&

^�� ~1>̂ l7��$]R7��$ ≤ 7(^;S + 7(^; g<XR7(^;S − ]R7��$ ≤ 7(^;Si
− deR7(^;S>̂ 7��$m� 

= − 2>̂
³́
´́
´́
µY *^7��$]R7��$ ≤ 7(^;S −&

^�� Y *^7(^;]R7��$ ≤ 7(^;S&
^�� + Y *^7(^;

&
^�� <XR7(^;S

− Y *^ �deR7(^;S>̂ �&
^�� 7��$ ¶·

··
··̧				. 

Now: 

• ∑ *^7(^;&̂�� <XR7(^;S = q�r RVX + 1S 

• ∑ *^7(^;]R7��$ ≤ 7(^;S&̂�� = �(7��$; 

• ∑ *^7��$]R7��$ ≤ 7(^;S = 7��$ − 7��$<X(7��$;&̂��  

• ∑ ¹º»�',¼�R»(º;Sq�&̂�� = »�',q� ∑ ∑ ∑ *Z[�7Z[� ∑ *^]R7Z[� ≤&̂��(���)\[���Z��
7(^;S = 7��$ − (�X��;r 7��$			. 

Using these results, we have 

Ψ{��$ = − 2>̂ l7��$ − 7��$<X(7��$; − �(7��$; + >̂2 RVX + 1S − 7��$ + (VX + 1;2 7��$m 

= ���$∗ 							# 

Proof of Result 2:   Here we show that ���� RVXS as given by expression (4.2) is 

equivalent to ���£ RVXS as defined in expression (4.3).  From (4.2) 

���� RVXS = Y Y(���∗ − � �∗ ;r)�

���
�

���  



 46

 = Y Y(���∗r − 2� �∗ ���∗ + � �∗r;)�

���
�

��� 			. (A.1) 

We have,  

 Y Y �Y *��$���$∗(
$�� �)�

���
�

���
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= Y Y �Y *��$r ���$∗r(
$��

)�

���
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���
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$�� �			, 
(A.2) 

and, 

Y Y(−2� �∗ ���∗ + � �∗r;)�

���
�

��� = Y �−2� �∗ Y ���∗)�

��� + Y � �∗r)�

��� ��
���  

= − Y ��� �∗r�
���  

 = − Y 1��
�

��� �Y Y *��$���$∗(
$��

)�

��� �
r

		. (A.3) 

 

Substituting (A.2) and (A.3) into (A.1) and using that ���$∗ = Ψ{��$	gives the desired 

result that 

 ���� RVXS = ���£ RVXS.    # 

 


