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Abstract 

By noting that the Hodrick-Prescott filter can be expressed as the solution to a particular regression 
problem, we are able to show how to construct confidence bands for the filtered time-series. This 
procedure requires that the data are stationary. The construction of such confidence bands is 
illustrated using annual U.S. data for real value-added output; and monthly U.S. data for the 
unemployment rate. 
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1. Introduction 

The Hodrick-Prescott (H-P) filter is very widely used for the decomposition of economic time-

series into their trend and cyclical components. Although economists generally attribute this filter 

to Hodrick and Prescott (1980, 1997), it actually dates at least from Leser (1961), and it is based 

on much earlier contributions by Whittaker (1922) and by Henderson (1924).  

 

Although the weaknesses of the H-P filter are well-documented, and various competing filters are 

available, it remains one of the standard tools used by empirical macroeconomists. The 

application of the H-P filter to extract the trend from a time-series amounts to signal extraction. 

Similarly, the estimation of a regression model extracts a signal about the dependent variable 

from the data, and separates it from the “noise”. In the case of a regression model it would be 

unthinkable to report estimated coefficients without their standard errors; or predictions without 

confidence bands. So, it is somewhat surprising that the trend that we extract from a time-series 

using the H-P filter is always reported without any indication of the uncertainty associated with it. 

 

In this paper we show how asymptotically valid confidence bands can be constructed for the H-P 

filter. The key insight is to recognize that the H-P filter can be represented as the solution to a 

regression problem. This interpretation of the filter is discussed in the next section. Section 3 

illustrates the application of our results using U.S. unemployment rate data. Our conclusions 

appear in section 4. 

 

2. A regression interpretation 

Suppose that we have a stationary time-series, yt , for t = 1, 2, 3, ...., T. We assume that the data 

can be described as ttt cy  , where τt represents the non-linear trend in the series, and ct is the 

cyclical component. A multiplicative representation of the time-series can be accommodated by 

taking the logarithms of the data. 

 

Then, the H-P filter involves solving the following optimization problem: 
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for t = 1 to T. 
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The first term in the objective function in (1) can be viewed as measuring “goodness of fit”; while 

the second term imposes a penalty for “roughness”. The smoothing parameter, λ, is chosen by the 

user and there are well-known rules regarding its choice, depending on the frequency of the data. 

Beginning with Danthine and Girardin (1989), several authors have noted that the optimization 

problem (1) can be re-written in the following vector-matrix form: 

 

 )()'('(.min
)(




KKcc   .      (2) 

Here, c and τ are (T   1) vectors with typical elements ct and τt respectively; and  K = {kij} is a 

[(T - 2)   T ] “second-differencing” matrix, with 

 

          kij  = 1 (if  i = j, or j = i + 2)  

                 = -2 (if  j = i + 1) 

                   = 0 (otherwise). 

 

The solution to the problem in (2) is: 

  yKKIT
1'ˆ    ,       (3) 

              

where IT is an identity matrix of order T. (In practice, care has to be taken over the inversion of 

the matrix in (3), as it can be close to being singular.) 

 

We see from (3) that the H-P filter can be interpreted as an application of Ridge Regression. 

Specifically, if we consider the “regression model” 

 

cIy T    ,        (4) 

then any (generalized) ridge estimator of τ is of the general form: 

    yAIyIAII TTTT
11 ''~    ,     (5) 

   

for some positive semi-definite matrix, A. Setting KKA ' in (5), we see that  ˆ~  .  

 

Schlicht (2005) extended this analysis to allow for the simultaneous estimation of the smoothing 

parameter, λ, and  Ttt 1 . However, this possibility is not pursued here. 
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It is also clear that, when written in the form (3), the H-P filter can also has a Bayesian 

interpretation, as was noted originally by Ley (2006), and more recently by Polasek (2011).  If the 

cyclical component in (4) is assumed to be normally distributed with a variance of σ2 and we 

use the natural-conjugate prior for the “parameters”, so that p (τ |  σ ) ~ N [0 , ( σ2 / λ ) (K 'K) -1],  

and )(p  is inverted-gamma, then the Bayes estimator of τ is given by (3).  

 

As the H-P filter can be interpreted as an estimator for a particular regression model, we can 

easily construct the covariance matrix for this estimator. From this, we can get confidence 

intervals for each value in the τ series. That is, we can obtain a confidence band for the extracted 

trend component. 

 

From (3), note that the covariance matrix for the elements of ̂  is given by 

    11 ')(')ˆ(   KKIyVKKIV TT   .    (6) 

                           

The form of V(y) will depend on the particular time-series being filtered, and under suitable 

assumptions this covariance matrix can be estimated from the data. The square roots of the 

diagonal elements of the estimated matrix corresponding to (6) will be asymptotic standard errors 

and a 95% (say) confidence band series for the extracted trend can be constructed as  { t̂   - 1.96 

s.e. ( t̂   )  ,  t̂   + 1.96 s.e. ( t̂  ) }; t = 1, 2, ..., T. 

 

In general, it would be unrealistic to assume that V(y) = σ2 I. Instead, if the data are stationary, 

then an ARIMA model for the series can be identified and estimated, yielding an estimate of the 

V(y) matrix for substitution into (6). The stationarity of the data is crucial requirement to the 

application of (6). This imposes an important limitation on this analysis. For example, real GDP 

for most countries is I(1), so in that context confidence bands for the H-P filter could be 

constructed for output growth, but not for output itself. 

 

3. Applications 

We consider three applications of these results. In each case, application of the (augmented) 

Dickey-Fuller and KPSS tests indicates that the data are stationary. The associated EViews 

workfiles and program files can be downloaded from web.uvic.ca/~dgiles/downloads/hp_filter/. 

Our first example relates to multifactor productivity. Specifically, we consider the annual rate of 
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growth in real value-added output (private business sector, excluding government enterprises) for 

the U.S. over the period 1949 to 2010. See Bureau of Labor Statistics (2012).  

 

The data and the H-P filtered trend, obtained using the EViews package and λ = 100, are shown in 

Figure 1. The correlogram for the series indicates that it is white noise, so Figure 2 provides 95% 

confidence bands constructed using equation (6) with V(y) = σ2 I, and with σ2 estimated by the 

sample variance. 

 

Our second application relates to the seasonally adjusted unemployment rate for all full-time U.S. 

workers. The decomposition of such data is of some interest as it offers one way of measuring the 

NAIRU. We use the monthly time-series, LNS14100000, from the FRED database (Federal 

Reserve Bank of St. Louis, 2012), for the period 1968M01 to 2012M03.  

 

Using EViews to apply the H-P filter with the value (14,400) of λ chosen according to the Ravn 

and Uhlig (2002) criterion for monthly data, we obtain the results in Figure 3. Under the very 

restrictive assumption that V(y) = σ2 I, estimating σ2 by using the sample variance of the original 

data, equation (6) yields the 95% confidence bands shown in Figure 4.  

 

However, the correlogram for the unemployment rate (U) data suggests that this series can be 

modeled by an AR(4) process. Simplifying the model using the SIC, the following restricted 

AR(4) process was selected: 

 

)0183.0()0183.0()0270.0(

03123.0;9908.0;1953.01834.10779.0ˆ 22
41   sRUUU ttt  

 

Asymptotic standard errors appear in parentheses, and the roots of the characteristic equation for 

this autoregression lie outside the unit circle. To construct V(y) in this case, we use the results of 

Hamilton (1994, pp.58-59), and his exercise 10.1 (p.290). His F matrix (p.7) is constructed using 

1834.11  , 032  , and 1953.04  , and s2 in the above regression results provides a 

consistent estimator of σ2. Then, using equation (6) we obtain the (much wider) 95% confidence 

bands shown in Figure 5. The importance of reporting the confidence bands can be seen by 

considering the H-P trend value of 9.34% in February 1983, when the 95% confidence interval 

was (6.24% , 12.44%)  
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Fig. 1  U.S. Value-Added Output Growth: Private Business Sector
(annual % change)  
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Fig. 2   U.S. Value-Added Output Growth: H-P Filtered Trend 
and 95% Confidence Band
(scalar covarance matrix)
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Fig. 3   U.S. Unemployment Rate: Full-Time Workers
(Seasonally Adjusted)
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Fig. 4  U.S. Unemployment Rate: H-P Filtered Trend 
and 95% Confidence Band
(scalar covariance matrix)
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Fig. 5  U.S. Unemployment Rate: H-P Filtered Trend
and 95% Confidence Band

(restricted AR(4) model)
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4. Conclusions 

We have shown that asymptotically valid confidence bands can be constructed very easily for 

trend series extracted using the Hodrick-Prescott filter. This is achieved by noting that this filter 

can be viewed as the solution to a ridge regression problem. We have illustrated the application of 

these results to macroeconomic data of types that are commonly subjected to the Hodrick-

Prescott filter.  
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