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1. Introduction

In this paper we investigate the finite-sample bias of the maximum likelihood
estimator for the parameters in the so-called Generalized Rayleigh family
of distributions. This family was proposed by Voda (1976). The density
function for the Generalized Rayleigh Distribution (GRD) takes the form:

f(x; θ, k) =
2θk+1

Γ(k + 1)
x2k+1exp{−θx2} (1)

with x > 0, θ > 0, and k ≥ 0. The GRD family includes several important
probability distributions as special cases.

For example, if k = 0 and θ = 1/2λ2 we obtain the one-parameter Rayleigh
distribution with density function

f(x;λ) =
x

λ2
exp{− x2

2λ2
}, x > 0, λ > 0. (2)

For k = 1/2 and θ = 1/2λ2 we obtain the one-parameter Maxwell distribu-
tion with the density function

f(x;λ) =
2

λ3(2π)1/2
x2exp{− x2

2λ2
} x > 0, λ > 0. (3)

For k = ((a/2)− 1) and θ = 1/2τ2 we obtain the Chi distribution with “a”
degrees of freedom, whose density function is

f(x; τ, a) =
xa−1

2
a
2
a−1τaΓ(a2 )

exp{− x2

2τ2
}, x > 0 , a ∈ N, τ > 0 (4)

where N denotes the set of natural numbers.

If we drop the positivity requirement for k and take k = −1/2 and θ = 1/2σ2,
we obtain the Half-Normal distribution with the density function

f(x;σ) =
2

σ(2π)1/2
exp{− x2

2σ2
}, x > 0, σ > 0. (5)
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Clearly, the GRD family is quite broad and lends itself to widespread appli-
cation. In the case of reliability modeling, for example, the GRD family is
more flexible than the widely used Weibull model, as the latter includes only
the Rayleigh distribution as a special case, while the GRD also encompasses
the Maxwell and Chi distributions. In addition, other members of the GRD
family, such as the Half-Normal distribution, are quite widely applied in the
social sciences and elsewhere.

More precisely, consider the following examples of areas of application for
each major distribution in the Generalized Rayleigh family. The Rayleigh
distribution itself has had many applications in life testing (e.g., electro-
vacuum devices; Polovko, 1968), and in communications engineering (Dyer
and Whisenand, 1973). It also arises when wind speed is analyzed in terms
of its orthogonal 2-dimensional vector components (Beenstock, 1995); and
in the context of wave heights (e.g., Naess, 1985; Battjes and Groenendijk,
2000); and the size of trapped prawns (Yamane, 1998). The Rayleigh distri-
bution has also been used in economic applications. For example, Abernethy
(1984) used it to model historical contract cost data; and Meagher et al.
(2008) exploited the log-concavity of its p.d.f. to characterize the existence
of a unique pure strategy equilibrium in the allocation-price duopoly game.

The Half-Normal distribution is an extension of the Normal distribution.
Whenever a difference or deviation is measured and the algebraic sign is
unknown, disregarded, lost, or otherwise absent, the resulting distribution
of these absolute measurements can range in shape from Half-Normal to the
normal distribution as the limit. Typical of this are the examples which arise
in industrial practice, such as quality control (e.g., Chou and Liu, 1998).
Other applications of the Half-Normal distribution arise in the context of
stochastic frontier production functions in economics (e.g., Aigner et al.,
1977; Battese and Coelli, 1992).

The Chi distribution arises, for example, when a k-dimensional vector’s
orthogonal components are independent and each follow a standard normal
distribution. The length of the vector will then have a Chi distribution. The
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most familiar example is the Maxwell distribution of (normalized) molecular
speeds which is a Chi distribution with 3 degrees of freedom. The Maxwell
distribution provides a description of how the speed of a mixture of moving
particles varies at a particular temperature. Accordingly, it is widely used
in physics.

In this paper we consider maximum likelihood (ML) estimation of the pa-
rameters of the GRD family. ML estimation is usually motivated by its
appealing large-samle asymptotic preoperties. Specifically, under the usual
regularity conditions, it is consistent, asymptotically efficient, and asymp-
totically normal. However, it is well known that in finite samples the ML
estimator need not possess any desirable sampling properties. In particular,
the ML estimator is often biased. The determination of such bias can be
complicated, as the likelihood equations (first-order conditions) that deter-
mine the maximum of the likelihood function are often highly non-linear,
and do not possess a closed-form solution. This is the situation with the
GRD family.

We focus on the methodology suggested by Cox and Snell (1968) to obtain
analytic expressions for the bias, to O(n−1), of the ML estimators. These
expressions are then used to bias-correct the ML estimator, resulting in
estimators that are unbiased to O(n−2). The effectiveness of this bias cor-
rection, in terms of both bias reduction and its impact on mean squared
error, is compared with that of a parametric bootstrap bias correction. We
conclude that the analytic approach to dealing with the bias is computa-
tionally efficient and highly effective.

In the next section we summarize the Cox-Snell methodology. Section 3
applies this methodolgy to the Generalized Rayleigh family of distributions.
A Monte Carlo simulation experiment that compares the Cox-Snell bias-
adjusted estimators with the bootstrap bias-corrected estimators is discussed
in section 4; and an illustrative empirical application using economic data
is presented in section 5. Section 6 gives our conclusions.
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2. Methodology

Let l(θ) be the log-likelihood function based on a sample of n observations,
and p-dimensional parameter vector, θ. In what follows, we require that
l(θ) is regular with respect to all derivatives up to and including the third
order. This condition is satisfied for the GRD family. We will require the
joint cumulants of the derivatives of l(θ) and the derivatives of certain of
these cumulants. The joint cumulants of the derivatives of l(θ) are denoted
as follows:

kij = E

(
∂2l

∂θi∂θj

)
; i, j = 1, 2, . . . , p

kijl = E

(
∂3l

∂θi∂θj∂θl

)
; i, j, l = 1, 2, . . . , p (6)

kij,l = E

(
∂2l

∂θi∂θj

∂l

∂θl

)
; i, j, l = 1, 2, . . . , p. (7)

In addition, the derivatives of the second-order cumulants are denoted:

k
(l)
ij =

∂kij
∂θl

; i, j, l = 1, 2, . . . , p. (8)

All of the expressions in (6) and (7) are assumed to be O(n). Cox and Snell
(1968) extended earlier results of Bartlett (1953a, 1953b), Haldane (1953),
Haldane and Smith (1956), Shenton and Wallington (1962), and Shenton
and Bowman (1963), to show that for sample data that are independent
(but not necessarily identically distributed) the bias of the sth element of
the MLE of θ (θ̂) is:

Bias(θ̂s) =

p∑
i=1

p∑
j=1

p∑
l=1

ksiksj(
1

2
kijl + kij,l) +O(n−2), s = 1, 2, ......, p, (9)

where kij is the (i, j)th element of the inverse of the (expected) information
matrix, K = {−kij}. Cordeiro and Klein (1994) noted that this bias expres-
sion also holds if the data are non-independent, provided that all of the k
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terms are O(n), and showed that it can be re-written as:

Bias(θ̂s) =

p∑
i=1

ksi
p∑
j=1

p∑
l=1

ksj(k
(l)
ij −

1

2
kijl)k

jl +O(n−2), s = 1, 2, ......, p.

(10)

The computational advantage of equation (10) is that it does not involve

terms of the form defined in (7). Now, let a
(l)
ij = k

(l)
ij −

1
2kijl, for i, j, l =

1, 2, ......, p, and define the following matrices:

A(l) = {a(l)
ij }; i, j, l = 1, 2, . . . , p (11)

A = [A(1)|A(2)|· · · |A(p)]. (12)

Cordeiro and Klein (1994) showed that the expression for the O(n−1) bias
of θ̂ can be re-written as:

Bias(θ̂) = K−1 A vec(K−1) +O(n−2). (13)

A “bias-corrected” MLE for θ can then be obtained as:

θ̃ = θ̂ − K̂−1 Â vec(K̂−1), (14)

where K̂ = (K)|θ̂ and Â = (A)|θ̂. It can be shown that the bias of θ̃ will be
O(n−2).

It is crucial to note that (13) and (14) can be evaluated even when the
likelihood equations do not admit a closed-form analytic solution, so that
the MLE has to be obtained via a numerical algorithm. For this reason, this
methodology is very useful for the Generalized Rayleigh distribution.
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3. Bias Adjustment and the Generalized Rayleigh Distribution

Suppose X is a random variable following the Generalized Rayleigh distribu-
tion. From (1), the likelihood function, based on a sample of n independent
observations, is:

L =
n∏
i=1

f(xi; θ, k) =

(
2θk+1

Γ(k + 1)

)( n∏
i=1

xi

)2k+1

exp{−θ
n∑
i=1

x2
i }. (15)

Then the corresponding log-likelihood function is:

l = nlog(2)+n(k+1)logθ−nlogΓ(k+1)+(2k+1)
n∑
i=1

logxi−θ
n∑
i=1

x2
i . (16)

It follows immediately that:

∂l

∂θ
=
n(k + 1)

θ
−

n∑
i=1

x2
i ;

∂l

∂k
= nlogθ − n(

1

k
+ Ψ(k)) + 2

n∑
i=1

logxi ;

∂2l

∂θ2
= −n(k + 1)

θ2
;

∂2l

∂k2
= −n(− 1

k2
+ Ψ(1)(k)) ; (17)

∂3l

∂θ3
=

2n(k + 1)

θ3
;

∂3l

∂k3
= −n(

2

k3
+ Ψ(2)(k)) .

Here, Ψ(k) is the usual digamma function:

Ψ(k) = dlogΓ(k)/dk = −γ −
∞∑
j=1

ξ(j + 3)(−(k − 1))j ,

where ξ(s) =
∑∞

j=1 (n−s) is the Riemann zeta function, and γ = 0.57721... is
the Euler-Mascheroni constant. In what follows we also need the trigamma
and tetragamma functions, these being Ψ(i)(k) = dilogΨ(k)/dki; i = 1, 2.
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Then, we need to determine the cross derivatives of the two parameters in
the generalized Rayleigh distribution. These are:

∂2l

∂θ∂k
=
n

θ
;

∂2l

∂k∂θ
=
n

θ
;

∂3l

∂θ2∂k
= − n

θ2
;

∂3l

∂k2∂θ
= 0 ; (18)

∂3l

∂θ∂k2
= 0 ;

∂3l

∂k∂θ2
= − n

θ2
;

∂3l

∂θ∂k∂θ
= − n

θ2
;

∂3l

∂k∂θ∂k
= 0 .

Based on the higher-order derivatives in (17) and (18), we note that there
are no observations, x’s, i.e. we avoid the calculation of expectations. This
shows us that the answers for the joint cumulants of the derivatives and the
derivatives of cumulants shown in (6) and (8) are the same as the higher-
order derivatives in (17) and (18) as follows:

k11 = −n(k+1)
θ2

k12 = k21 = n
θ

k22 = −n
(
− 1
k2

+ Ψ(1)(k)
)

k111 = k
(1)
11 = 2n(k+1)

θ3

k112 = k121 = k211 = k
(1)
12 = k

(1)
21 = k

(2)
11 = − n

θ2

k122 = k212 = k221 = k
(1)
22 = k

(2)
12 = k

(2)
21 = 0

k222 = k
(2)
22 = −n

(
2
k3

+ Ψ(2)(k)
)
.

The information matrix is

K =

(
n(k+1)
θ2

−n
θ

−n
θ n

(
− 1
k2

+ Ψ(1)(k)
)) ,

and

A =
n

2

(
2(k+1)
θ3

− 1
θ2
− 1
θ2

0
−n
θ 0 0 −

(
2
k3

+ Ψ(2)(k)
)) .

So, to O(n−1),
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Bias(θ̂) =
θ{[2(k + 1)(− 1

k2 + Ψ(1)(k))− 3](− 1
k2 + Ψ(1)(k))− (k + 1)( 2

k3 + Ψ(2)(k))}
2n[(k + 1)(−1/k2 + Ψ(1)(k))− 1]2

,

(19)

Bias(k̂) =
(k + 1)[−1/k2 + Ψ(1)(k)− (k + 1)(2/k3 + Ψ(2)(k))]− 2

2n[(k + 1)(−1/k2 + Ψ(1)(k))− 1]2
. (20)

Bias-adjusted estimators are then obtained as

θ̃ = θ̂ −
θ̂{[2(k̂ + 1)(− 1

k̂2
+ Ψ(1)(k̂))− 3](− 1

k̂2
+ Ψ(1)(k̂))− (k̂ + 1)( 2

k̂3
+ Ψ(2)(k̂))}

2n[(k̂ + 1)(−1/k̂2 + Ψ(1)(k̂))− 1]2
,

(21)

k̃ = k̂ −
(k̂ + 1)[−1/k̂2 + Ψ(1)(k̂)− (k̂ + 1)(2/k̂3 + Ψ(2)(k̂))]− 2

2n[(k̂ + 1)(−1/k̂2 + Ψ(1)(k̂))− 1]2
. (22)

Recall that the Rayleigh distribution corresponds to the case where k = 0 in
(2). Several of the general joint cumulants of the derivatives or derivatives of
cumulants that we use would be undefined in this case. Therefore, we need
to re-calculate the bias-corrected estimator for the Rayleigh distribution by
the methodology introduced by Cox and Snell, as illustrated in Section 2.1.
The following results show how we construct the bias-corrected estimator in
this special case. The log-likelihood function from (2) is:

l(xi;λ) = −2nlogλ+
n∑
i=1

logxi −
∑n

i=1 x
2
i

2λ2
.

Then,

∂l

∂λ
= −2n

λ
+

∑n
i=1 x

2
i

λ3
; k11 = −4n

λ2

∂2l

∂λ2
=

2n

λ2
−

3
∑n

i=1 x
2
i

λ4
; k111 =

20n

λ3

∂3l

∂λ3
= −4n

λ3
+

12
∑n

i=1 x
2
i

λ5
; k

(1)
11 =

∂k11

∂λ
=

8n

λ3

K = −[k11] =
4n

λ2
; K−1 =

λ2

4n

a11 = k
(1)
11 − 0.5k111 = −2n

λ3
.
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So,

Bias(λ̂) = ˆK−1Avec(K̂−1) =
λ2

4n

(
−2n

λ3

)
λ2

4n
= − λ

8n
,

which is unambiguously negative.

4. Simulation Results

The bias expressions in (19) and (20) are valid only to O(n−1). The actual
bias and mean squared error (MSE) of the maximum likelihood and bias-
corrected maximum likelihood estimators are now compared in a Monte
Carlo experiment. The maximum likelihood estimates were obtained us-
ing the Nelder-Mead algorithm in the maxLik package (Toomet and Hen-
ningsen, 2008) for the R statistical software environment (R, 2011). The R
software also includes routines for generating Rayleigh-distributed, Maxwell-
distributed, Half-Normal-distributed, and Chi-distributed random variates.

0 2 4 6 8 10

0.
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4

0.
6

0.
8

1.
0

1.
2

x

pd
f(x

)

lambda=0.5
lambda=1
lambda=2
lambda=4

Figure 1: The Rayleigh probability density plot with different parameter
values: λ = 0.5, 1, 2 and 4.
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In addition to θ̂, θ̃, k̂, and k̃, we have also considered the bootstrap-bias-
corrected estimator. In the case of θ, for example, this is obtained as θ̆ =
2θ̂−(1/NB)

∑NB
j=1 θ̂(j), where θ̂(j) is the MLE of θ obtained from the jth of the

NB bootstrap samples. Corresponding expressions apply for the estimator
of the other parameter.

0 1 2 3 4 5 6

0.
0

0.
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0.
4

0.
6

0.
8

1.
0
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2

x

pd
f(x

)

lambda=0.5
lambda=1
lambda=2

Figure 2: The Maxwell probability density plot with different parameter
values: λ = 0.5, 1 and 2.

We are interested in the effectiveness of the bias correction when the sample
data are generated with different parameter values in a particular distri-
bution. The effect of sample size is also of interest. We have considered
sample sizes of 20, 30, 50, 100, and 200 observations. The choice of the
parameter values for each of four different distributions in the Generalized
Rayleigh family is made by considering the density plots shown in Figures
1 to 4. Table 1 provides the selected parameter values and sample sizes (
nobs) for the Monte Carlo experiment. We have used Monte Carlo 200,000
replications, and 1,000 re-samples are used in constructing the bootstrap
bias corrections.
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Figure 3: The Half-Normal probability density plot with different parameter
values: σ = 0.5, 1, 2 and 3.
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Figure 4: The Chi probability density plot with different parameter values:
τ = 0.5, 1, 2 and 3 in both (a) and (b); a = 1 in (a) and a = 3 in (b).
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The results associated with the Rayleigh, Maxwell, Half-Normal and Chi dis-
tributions appear in Tables 2 to 5 respectively. We begin with the Rayleigh
distribution. Recall that the Rayleigh distribution arises when k = 0 in the
GRD. Several joint cumulants of the derivatives or derivatives of cumulants
would then be undefined. Accordingly, we cannot apply (21) and (22) to
compute the bias-corrected estimator, θ̃, for the Rayleigh distribution. This
case is treated separately as a one-parameter problem, as is explained in
Appendix A. Percentage biases and MSEs (in square brakets) of the MLE,
the analytic bias-adjusted estimator and the bootstrap bias-adjusted esti-
mator of the Rayleigh distribution’s parameter are shown in Table 3. The
percentage MSEs are defined as 100× (MSE/k2) or 100× (MSE/θ2).

Table 1: Parameter settings for Monte Carlo experiment

Distribution sample size k θ

Rayleigh

nobs = 20

k = 0 θ = 1
2λ2

λ = 1
nobs = 30 λ = 1
nobs = 50 λ = 0.5, 1, 2, and 4
nobs = 100 λ = 1
nobs = 200 λ = 1

Maxwell

nobs = 20

k = 1
2 θ = 1

2λ2

λ = 1
nobs = 30 λ = 1
nobs = 50 λ = 0.5, 1, 2
nobs = 100 λ = 1
nobs = 200 λ = 1

Half-normal

nobs = 20

k = −1
2 θ = 1

2σ2

σ = 1
nobs = 30 σ = 1
nobs = 50 σ = 0.5, 1, 2, and 3
nobs = 100 σ = 1
nobs = 200 σ = 1

Chi

nobs = 20 k = a
2 − 1 and a = 1

θ = 1
2τ2

τ = 1
nobs = 30 k = a

2 − 1 and a = 1 τ = 1
nobs = 50 k = a

2 − 1 and a = 1 or 3 τ = 0.5, 1, 2 or 3
nobs = 100 k = a

2 − 1 and a = 1 τ = 1
nobs = 200 k = a

2 − 1 and a = 1 τ = 1

13



T
a
b

le
2:

P
er

ce
n
ta

ge
b

ia
se

s
an

d
M

S
E

’s
of

th
e

R
ay

le
ig

h
d

is
tr

ib
u

ti
on

an
d

th
e

M
a
x
w

el
l

d
is

tr
ib

u
ti

on
R
a
y
le
ig
h

d
is
tr
ib
u
ti
o
n

M
a
x
w
e
ll

d
is
tr
ib
u
ti
o
n

n
θ̂

θ̃
θ̆

k̂
k̃

k̆
θ̂

θ̃
θ̆

(a
):
λ

=
0.

5
o
r
θ

=
2

(a
):
k

=
0.

5
,
λ

=
0.

5
o
r
θ

=
2

5
0

-0
.2

8
01

-0
.0

30
8

0
.0

31
2

16
.7

33
1

0.
07

11
6

-0
.4

63
7

6.
94

67
-0

.0
29

9
-0

.2
0
62

[0
.4

9
9
1]

[0
.5

0
0
8]

[0
.5

76
2]

[4
0.

07
45

1]
[3

3.
00

95
]

[3
3.

00
29

]
[6

.3
40

4
]

[5
.1

6
92

]
[5

.1
9
12

]
(b

):
λ

=
1
o
r
θ

=
0.

5
(b

):
k

=
0.

5,
λ

=
1
o
r
θ

=
0.

5
2
0

-0
.6

25
5

-0
.0

1
2
6

-0
.0

17
3

46
.1

81
1

0.
13

35
-4

.9
16

4
19

.3
81

9
0.

0
53

9
-2

.1
5
84

[1
.2

5
2
1]

[1
.2

6
3
8]

[1
.3

23
7]

[1
55

.1
54

5]
[9

7.
21

73
]

[1
05

.0
41

1]
[2

5.
44

75
]

[1
5.

6
25

1]
[1

6
.4

8
81

]
3
0

-0
.3

7
58

0.
03

9
3

-0
.0

34
2

29
.1

39
9

0.
13

63
-0

.2
48

6
12

.2
45

0
0.

0
80

6
1.

0
50

4
[0

.8
3
3
9]

[0
.8

3
9
4]

[0
.8

40
7]

[8
1.

38
52

]
[5

9.
24

91
]

[6
2.

59
67

]
[1

3.
06

56
]

[9
.3

4
93

]
[1

0.
6
32

4]
50

-0
.2

2
4
4

0
.0

25
1

-0
.0

35
4

16
.5

93
4

-0
.0

60
3

0.
13

74
6.

96
15

8
-0

.0
16

4
0
.0

1
99

[0
.4

9
9
2]

[0
.5

0
1
2]

[0
.5

27
1]

[3
9.

96
68

]
[3

2.
95

56
]

[3
2.

89
00

]
[6

.3
25

0]
[5

.1
53

9]
[5

.2
09

1]
10

0
-0

.1
29

2
-0

.0
0
43

0.
01

80
8.

09
52

0.
02

17
-0

.1
53

6
3.

40
34

0.
0
22

5
-0

.0
6
84

[0
.2

4
8
0]

[0
.2

4
8
5]

[0
.2

51
2]

[1
7.

22
98

]
[1

5.
61

33
]

[1
5.

54
37

]
[2

.7
15

2]
[2

.4
44

1]
[2

.4
40

6]
20

0
-0

.0
66

4
-0

.0
0
39

0.
12

47
4.

00
92

0.
03

33
0.

09
36

1.
68

9
7

0.
0
25

3
-0

.0
0
96

[0
.1

2
5
2]

[0
.1

2
5
4]

[0
.4

97
6]

[8
.0

07
0]

[7
.6

17
3]

[7
.6

58
8]

[1
.2

54
3]

[1
.1

88
9]

[1
.2

00
1]

(c
):
λ

=
2
o
r
θ

=
0.

1
2
5

(c
):
k

=
0.

5
,
λ

=
2
o
r
θ

=
0.

12
5

50
-0

.2
17

6
0
.0

3
18

0.
02

68
16

.6
02

28
-0

.0
51

9
-0

.5
13

8
6.

95
2
1

-0
.0

2
51

-0
.2

22
8

[0
.5

0
13

]
[0

.5
0
33

]
[0

.5
00

3]
[3

9.
60

36
]

[3
2.

63
14

]
[3

2.
91

74
]

[6
.3

07
3]

[5
.1

39
1]

[5
.1

85
7]

(d
):
λ

=
4
o
r
θ

=
0.

03
1
25

50
-0

.2
6
6
8

-0
.0

17
5

0.
00

85
[0

.4
9
78

]
[0

.4
9
96

]
[0

.4
90

7]

14



In Table 2, we see that the percentage biases of the MLEs are much larger
than those of both the analytic bias-adjusted estimates and the bootstrapped
bias-adjusted estimates, θ̃ and θ̆. All of the percentage biases of the MLEs
for the Rayleigh distribution are less than 1 percent. The analytic bias ad-
jusment and the bootstrap bias adjustment are both effective, and generally
reduce percentage bias by at least one order of magnitude in all cases. In
case (b) in Table 2, the absolute values of percentage biases of MLEs mono-
tonically decline as the sample size increases because of the consistency of
the MLEs. On the other hand, the percentage MSEs reported in Table 2 for
the different estimators are very close to each other, but for this distribution
it seems that bias reduction comes at the expense of some mild increase in
variance.

Table 3: Percentage biases and MSE’s of the Half-Normal distribution

n k̂ k̃ k̆ θ̂ θ̃ θ̆

(a): k = −0.5, σ = 0.5 or θ = 2
50 -4.6084 -0.0121 0.2085 8.9605 0.0062 -0.5042

[3.5173] [2.9658] [2.9424] [9.6729] [7.6740] [7.6818]
(b): k = −0.5, σ = 1 or θ = 0.5

20 -12.5300 0.0692 1.6159 24.9904 -0.1130 -4.2726
[12.9837] [8.5404] [8.4679] [41.4694] [24.2286] [24.9102]

30 -8.0008 -0.0249 0.4314 15.7146 0.0270 -1.2662
[6.9887] [5.2710] [5.2178] [20.7703] [14.3319] [14.0965]

50 -4.5916 0.0039 -0.1817 8.8967 -0.0527 -0.1817
[3.5124] [2.9627] [7.7405] [9.6484] [7.6661] [7.7405]

100 -2.2525 -0.0196 0.0837 4.2993 -0.0185 -0.1406
[1.5457] [1.4178] [1.4084] [4.0349] [3.5847] [3.5852]

200 -1.1169 -0.0162 0.0042 2.1283 0.0065 0.0048
[0.7285] [0.6975] [0.6987] [1.8427] [1.7348] [1.7523]

(c): k = −0.5, σ = 2 or θ = 0.125
50 -4.6569 -0.0579 0.2085 9.0187 0.0616 -0.5042

[3.5429] [2.9847] [2.9421] [9.7361] [7.7241] [7.6813]
(d): k = −0.5, σ = 3 or θ = 1/18

50 -4.6425 -0.0443 0.2085 8.9994 0.0472 -0.5041
[3.5242] [2.9692] [2.9423] [9.7866] [7.7700] [7.6817]

Tables 3 to 5 provide corresponding results for the Maxwell, Half-Normal,
and Chi distributions. These results are very similar to those for the Rayleigh
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Table 4: Percentage biases and MSE’s of the Chi distribution

n k̂ k̃ k̆ θ̂ θ̃ θ̆

(a): a = 1 or k = −0.5, λ = 0.5 or θ = 2
50 -4.5563 0.0373 0.1199 8.9727 0.0163 -0.3094

[3.4970] [2.9519] [2.9679] [9.7082] [7.7049] [7.7230]
(a): a = 3 or k = 0.5, λ = 0.5 or θ = 2

50 16.5948 -0.0589 -0.4748 7.0059 0.0251 -0.2162
[39.6932] [32.7129] [33.2130] [6.3204] [5.1442] [5.2102]

(b): a = 1 or k = −0.5, λ = 1 or θ = 0.5
20 -12.6474 -0.0326 1.4878 25.0599 -0.0483 -3.8618

[13.0473] [8.5651] [8.4769] [41.5974] [24.2933] [25.1288]
30 -8.0419 -0.0631 0.5362 15.7766 0.0829 -1.4112

[6.9467] [5.2307] [5.1906] [20.6236] [14.1990] [14.2530]
50 -4.6496 -0.0511 0.0794 9.1072 0.1429 -0.1768

[3.5207] [2.9654] [2.9729] [9.8263] [7.7870] [7.7815]
100 -2.2866 -0.0527 -0.0394 4.2989 -0.0181 0.0189

[1.5475] [1.4181] [1.4278] [4.0359] [3.5858] [3.5942]
200 -1.0849 0.0155 0.0161 2.0831 -0.0381 0.0300

[0.7280] [0.6977] [0.6989] [1.8415] [1.7354] [1.7425]
(b): a = 3 or k = 0.5, λ = 1 or θ = 0.5

50 16.8518 0.1829 0.3279 7.0863 0.1009 0.1605
[40.13] [33.0236] [32.9918] [6.3887] [5.1946] [5.1907]

(c): a = 1 or k = −0.5, λ = 2 or θ = 0.125
50 -4.5785 0.0163 0.1019 9.0437 0.0821 -0.2595

[3.5103] [2.9620] [2.9615] [9.7865] [7.7620] [7.8086]
(c): a = 3 or k = 0.5, λ = 2 or θ = 0.125

50 16.7661 0.1022 -0.7921 7.0316 0.0495 -0.2855
[40.3018] [33.2009] [32.8446] [6.4147] [5.2243] [5.1769]

(d): a = 1 or k = −0.5, λ = 3 or θ = 1/18
50 -4.6888 -0.0882 -0.0915 9.0061 0.0503 0.0596

[3.5385] [2.9782] [2.9954] [9.6563] [7.6562] [7.7047]
(d): a = 3 or k = −0.5, λ = 3 or θ = 1/18

50 16.5731 -0.0793 -0.5064 6.9514 -0.0258 -0.2199
[39.5854] [32.6238] [32.9079] [6.3260] [5.1557] [5.1846]
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distribution in Table 2, except that the analytic bias correction performs
even better, with a reduction of at least two orders of magnitude in terms of
percentage bias itself. Any comparison of the two methods of bias adjust-
ment can be made on the basis of percentage bias itself, given the similarities
in percentage MSE. On this basis, the overall thrust of the results in Tables
3 to 5 is that the analytical Cox-Snell/Cordeiro-Klein methodology out-
performs the use of the bootstrap in almost all of the cases considered, and
especially if the sample size is less than n = 100.

5. Illustrative Example

In this section, we use some real data to investigate the practical perfor-
mance of bias corrected estimates obtained using the method introduced
by Cox and Snell. UK consumption of beer, wine and spirits, 1955-1985,
in liters per capita (Selvanathan and Clements, 1995, p.130) is considered.
Using a logisitic regression with Half-Normal errors, we have modelled the
expenditure on each beverage as a function of total alcohol expenditure. Ex-
penditures are expressed in current pounds per capita. We first estimate the
model by the maximum likelihood method, and then apply the Cox-Snell
bias correction. The results are shown in Table 6.

We have also calculated the ”marginal effects” based on the estimates in
Table 5; i.e., the marginal changes in expected probability,

∂E(y|x)

∂x
=

βexp(α̂+ β̂x)

(1 + exp(α̂+ β̂x))2
,

where y is the conditional budget share for a beverage; x is total expenditure
on alcohol; and α and β are the intercept and slope parameters from the
logistic regression. Table 6 shows the mean value of the marginal effects for
each observation for each beverage. The first row shows the mean marginal
effects calculated by MLE, while the second row shows those from biased
corrected estimates. The sum of the entries in the first row is (essentially)
zero, reflecting the fact that expenditure (on alcohol) is fully allocated across
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Table 5: Estimates of Logistic Regression Modesl with Half Normal distri-
bution

Beer Wine Spirits
α β α β α β

MLE -5.3399 -0.0005 -6.9225 0.0026 -6.0890 -0.0005
Bias-correct -5.3266 -0.0003 -6.9093 0.0028 -6.0758 -0.0002

Table 6: Mean Marginal Effects

Beer Wine Spirits

MLE −2.4961× 10−6 3.2660× 10−6 −1.0300× 10−6

Bias-corrected −1.4957× 10−6 3.6858× 10−6 −5.4753× 10−7

the three beverage groups noted in Table 5. On the other hand, the sec-
ond row entries do not sum to zero, because the bias correction does not
impose this constraint. In general, the marginal effects in Table 6 are very
small, being of the order 10−6. The bias correction does, however, reduce
the marginal effect for spirits by an order of magnitude. The parameter
estimates in Table 5 are also very small, but in percentage terms, the Cox-
Snell bias correction decreases the estimates of β by approximately 50% in
absolute value in the case of beer or spirits. These results illustrate that the
use of the bias correction can have important implications.

6. Conclusions

The two-parameter Generalized Rayleigh distribution provides us with a rich
family of specific distributions that have widespread application in many dis-
ciplines. Members of this family include the Rayleigh distribution itself, the
Half-Normal distribution, the Maxwell distribution, and the Chi distribu-
tion. The parameters of these distributions are commonly estimated by the
method of maximum likelihood, which in these cases involves solving non-
linear first-order conditions. We have applied the analytic bias correction
method, introduced by Cox and Snell, to these maximum likelihood esti-
mators, and obtained expressions for the biases to O(n−1). These results
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have then been used to construct the bias-adjusted estimators that are unbi-
ased to order O(n−2). Using a Monte Carlo simulation experiment, we have
investigated the performance of these bias-corrected estimators, in terms
of mean squared error and remaining bias, for each of the major members
of the Generalized Rayleigh distribution family. The experiment also com-
pared the performance of our bias-corrected estimator with one based on
the parametric bootstrap.

In general, our analytic bias correction, which has not previously been imple-
mented or evaluated in this context, is found to be superior to the alternative
of bias-correction via the bootstrap. Substantial reductions in percentage
bias are achieved and, importantly, these gains are usually obtained with
only very small increases in relative mean squared error, at least for sample
sizes of the magnitude likely to be encountered in practice. Particularly
when the computational costs of bootstrapping the bias are taken into ac-
count, the use of the Cox-Snell bias correction is strongly recommended
when estimating the parameters of the Generalized Rayleigh distribution by
maximum likelihood.
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