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Abstract 

We develop and evaluate analytic and bootstrap bias-corrected maximum likelihood estimators for 
the shape parameter in the Nakagami distribution. This distribution is widely used in a variety of 
disciplines, and the corresponding estimator of its scale parameter is trivially unbiased. We find that 
both “corrective” and “preventive” analytic approaches to eliminating the bias, to O(n-2), are equally, 
and extremely, effective and simple to implement. As a bonus, the sizeable reduction in bias comes 
with a small reduction in mean squared error. Overall, we prefer analytic bias corrections in the case 
of this estimator. This preference is based on the relative computational costs and the magnitudes of 
the bias reductions that can be achieved in each case. Our results are illustrated with two real-data 
applications, including one which provides the first application of the Nakagami distribution to data 
for ocean wave heights. 
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1. Introduction

The Nakagami-m distribution (or simply the Nakagami distribution) was proposed

for modeling the fading of radio signals (Nakagami, 1960). There is now a vast

literature relating to its application in the general area of communications engi-

neering. For example, a search of the IEEE Xplore digital Library (IEEE, 2011)

on 5 May 2011, based on the word “Nakagami”, located 2,041 research papers.

The Nakagami distribution has also been applied successfully in various other

fields. For example, Sarkar et al. (2009, 2010) show that it performs well in the

derivation of unit hydrographs, as used to estimate runoff in hydrology. Shankar

et al. (2005) and Tsui et al. (2006) use the Nakagami distribution to model ul-

trasound data in medical imaging studies; and Kim and Latchman (2009) use this

distribution in their analysis of multimedia (MPEG-2 frame) data traffic over net-

works. Recently, Carcolé and Sato (2009) and Nakahara and Carcolé (2010) have

shown the usefulness of the Nakagami distribution for modelling high-frequency

seismogram envelopes.

A random variable, X, that follows a Nakagami distribution has the density func-

tion

f(x) = (2/Γ(µ))
(µ
ω

)µ
x2µ−1exp

(
−µ
ω
x2
)

; x > 0 (1)

where µ (≥ 0.5) is the shape parameter (often given the label ‘m’ and referred to

as the ‘fading’ parameter); and ω (> 0) is the scale parameter. The Nakagami dis-

tribution is closely related to various other distributions. For example, it collapses

to the Rayleigh distribution when µ = 1, and to the half-normal distribution when

µ = 0.5. For this reason, the interval 0.5 < µ < 1 is sometimes referred to as

the “pre-Rayleigh” range for the shape parameter, while µ > 1 defines the “post-

Rayleigh” range. In addition, if Y is gamma-distributed with shape and scale

parameters k and θ respectively, then
√
Y follows a Nakagami distribution with

parameters µ = k and ω = kθ. Finally, if 2µ is integer-valued and if Z follows

a chi distribution with parameters 2µ, then
√

(ω/2µ)Z is Nakagami-distributed

with parameters µ and ω.

As we will see, the estimation of the scale parameter, ω, is trivial. However, con-

siderable attention has been paid to the estimation of the shape parameter in this
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distribution. Many of the estimators that have been suggested are approxima-

tions, to some degree or other, to the maximum likelihood (ML) or method of

moments (MOM) estimators. For example, see Cheng and Beaulieu (2001, 2002),

Hadžialić et al. (2007). Alternative estimators have been considered and com-

pared by Abdi and Kaveh (2000), Gaeddert and Annamalai (2004) and Beaulieu

and Chen (2007), for example. In part, the use of approximations to the “natural”

estimators appears to be motivated in this context by practical considerations

of implementation. Specifically, practitioners in the communications engineering

field often wish to avoid the need to solve the non-linear first-order conditions

associated with MLE because this computation has to be undertaken many times,

very rapidly, in real time. Approximations that involve “look-up tables” are com-

putationally more convenient. Typically, this is not a consideration in other areas

of application. In addition, in some cases there seems to be a lack of awareness

(e.g., Zhang, 2002) of the accuracy and computational ease of modern routines

for evaluating the non-standard functions that enter the first-order conditions.

The ML estimator (MLE) is attractive in view of its usual desirable asymptotic

properties, as is exemplified by Nakahara and Carcolé (2010) in a different area

of application.

In this paper, we re-visit MLE for the parameters of the Nakagami distribution,

and focus on performance in small samples. From (1), the log likelihood function

based on n i.i.d. sample observations is

l(µ, ω|x) = nln(2) + nµln(µ)− nlnΓ(µ)− nµln(ω) (2)

+(2µ− 1)
n∑
i=1

ln(xi)−
µ

ω

n∑
i=1

x2
i

It follows immediately that the MLE for the scale parameter is ω̂ = 1
n

∑n
i=1 x

2
i .

As the second raw moment for the Nakagami distribution is just ω, it follows

immediately that the MLE coincides with the MOM estimator, and is exactly

unbiased.

Obtaining the MLE for the shape parameter involves profiling (2) and then solv-

ing the associated non-linear first-order condition for µ̂. There is no closed-form

solution to this problem. However, as we show in section 3, to O(n−1), µ̂ is

upward-biased in finite samples. Accurate measures of the scale parameter are of
2



paramount importance in applications of the Nakagami distribution. Accordingly,

we consider various methods for measuring and correcting for the bias of its MLE.

Specifically, we use two analytic techniques - one “corrective”, and one “preven-

tive” - to estimate the second-order bias of µ̂, and to bias-correct this estimator.

We compare the performance of these modified estimators with that of another

bias-corrected MLE of µ, based on the parametric bootstrap.

In the next section we discuss the analytic bias adjustment methods in general

terms; and in section 3 we provide the details of their application to the MLE

for the shape parameter in the Nakagami distribution. The results of a Monte

Carlo simulation that evaluates the bias of µ̂, and compares the analytic bias-

corrections with one based on the bootstrap, are reported in section 4. In section

5, we illustrate our main results with several applications involving real data-sets

of modest size. Secction 6 concludes.

2. Bias-reduced maximum likelihood estimation

2.1. Definitions

Let l(θ) be the log-likelihood function where the p-dimensional vector of param-

eters, θ, is to be estimated using a sample of n observations. Assume that the

log-likelihood function is well behaved and satisfies the usual regularity conditions

(Duguét, 1937; Cramér, 1946).

The joint cumulants of l(θ) are:

κij = E
(

∂2l
∂θiθj

)
; i, j = 1, 2, . . . , p .

κijl = E
(

∂3l
∂θi∂θj∂θl

)
; i, j, l = 1, 2, . . . , p .

κij,l = E
[(

∂2l
∂θi∂θj

)(
∂l
∂θl

)]
; i, j, l = 1, 2, . . . , p.

The derivatives of these cumulants are:

κ
(l)
il = ∂κij/∂θl; i, j, l = 1, 2, . . . , p.

Fisher’s information matrix is K = {−κij}, each element of which is O(n).
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2.2. A corrective approach

Cox and Snell (1968) showed that with a sample of independent data that are not

necessarily identically distributed, the bias of the sth element of θ̂s can be written

as:

Bias(θ̂s) =

p∑
i=1

p∑
j=1

p∑
l=1

κsiκjl[
1

2
κijl + κij,l] +O(n−2); s = 1, 2, . . . , p

where κij is the (i, j)th element of the inverse of the information matrix, K. Fur-

thermore, Cordeiro and Klein (1994) showed that the previous equation can be

written in the following convenient form, and can be applied even when the sample

data are non-independent :

Bias(θ̂s) =

p∑
s=1

κsi
p∑
j=1

p∑
l=1

[κ
(l)
ij −

1

2
κijl] +O(n−2); s = 1, 2, . . . , p.

Define a
(l)
ij = κ

(l)
ij − 1

2
κijl ∀i, j, l = 1, 2, . . . , p and define the matrices A(l) = {a(l)

ij }
∀i, j, l = 1, 2, . . . , p. After concatenating the matrices, A = [A(1)|A(2)| . . . |A(p)],

we are able to write the bias of θ̂ in the following way (Cordeiro and Klein, 1994):

Bias(θ̂) = K−1Avec(K−1) +O(n−2).

Finally, define the bias adjusted-MLE as:

θ̃ = θ̂ − K̂−1Âvec(K̂−1),

where K̂ = K|θ̂ and Â = A|θ̂. One of the advantages of this method is that these

expressions can be evaluated when the likelihood equations for the problem in

question do not admit a closed-form, analytic, solution. In such situations we can

obtain bias-corrected MLE easily by means of conventional numerical methods,

and θ̃ is unbiased O(n−2).

2.3. A preventive approach

We wish to obtain a bias-reduced MLE of m using a preventive approach. The

MLE is typically found by solving the score equation:

∇l(θ) = U(θ) = 0,

where l(θ) = logL(θ).
4



Firth (1993) proposed solving the following modified score function:

U∗r (θ) = Ur(θ) + Ar(θ),

where A may take the form A(E) = −i(θ)b1(θ)/n or A(O) = −I(θ)b1(θ)/n. The

E (O) superscript denotes expected (observed) information. In the case of the

Nakagami distribution, the Hessian involves the data so we must use A(E).

3. Bias-reduced MLE For the Nakagami Distribution

This paper considers bias-reduction for the MLE for the µ parameter of the Nak-

agami distribution. Assuming independent sampling, the log-likelihood function

for this problem is given as:

l = nln(2) + nµln(µ)− nlnΓ(µ)− nµln(ω) + (2µ− 1)
n∑
i=1

ln(xi)−
µ

ω

n∑
i=1

x2
i .

To proceed, we require the derivatives of the log-likelihood function up to the third

order. We will also use the digamma function, defined as Ψ(µ) = dlogΓ(µ)/dµ,

as well as the trigamma and tetragamma functions, which are given by Ψ(i)(µ) =

diΨ(µ)/dµi for i = 1, 2 respectively.

∂l

∂µ
= n[1 + ln(µ)]− nΨ(µ)− nln(ω) + 2

n∑
i=1

ln(xi)−
1

ω

n∑
i=1

x2
i

∂l

∂ω
= −nµ

ω
+

µ

ω2

n∑
i=1

x2
i

∂2l

∂µ2
=
n

µ
− nΨ1(µ)

∂2l

∂µ∂ω
= −n

ω
+

1

ω2

n∑
i=1

x2
i

∂2l

∂ω2
=
nµ

ω2
− 2µ

ω3

n∑
i=1

x2
i
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∂3l

∂µ3
= − n

µ2
− nΨ2(µ)

∂3l

∂µ2∂ω
= 0

∂3l

∂ω2∂µ
=

n

ω2
− 2

ω3

n∑
i=1

x2
i

∂3l

∂ω3
= −2nµ

ω3
+

6µ

ω4

n∑
i=1

x2
i

We now determine the joint cumulants of the log likelihood function. Note that

E(x2
i ) = ω.

k11 =
n

µ
− nΨ1(µ)

k12 = k21 = −n
ω

+
1

ω2

n∑
i=1

E(x2
i ) = 0

k22 =
nµ

ω2
− 2µ

ω3

n∑
i=1

E(x2
i ) = −nµ

ω2

k111 = − n

µ2
− nΨ2(µ)

k112 = k121 = k211 = 0

k122 = k212 = k221 =
n

ω2
− 2

ω3

n∑
i=1

E(x2
i ) = − n

ω2

k222 = −2nµ

ω3
+

6µ

ω4

n∑
i=1

E(x2
i ) =

4nµ

ω3

k
(1)
11 = − n

µ2
− nΨ2(µ)

k
(2)
11 = k

(1)
12 = k

(1)
21 = k

(2)
12 = k

(2)
21 = 0

k
(1)
22 = − n

ω2

k
(2)
22 = −2nµ

ω3
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Now, to implement the Cox-Snell bias correction, we have (in the notation of

section 2.1):

a
(1)
11 = − n

2µ2
− 1

2
nΨ(2)(µ)

a
(1)
22 = − n

2ω2

a
(2)
12 = a

(2)
21 =

n

2ω2

a
(2)
11 = a

(1)
12 = a

(1)
21 = a

(2)
22 = 0

A(1) =

[
−
(
n+nµ2Ψ(2)(µ)

2µ2

)
0

0 − n
2ω2

]
, A(2) =

[
0 n

2ω2

n
2ω2 0

]
.

K−1 =

[
µ

n[µΨ1(µ)−1]
0

0 ω2

nµ

]

Finally, we can write the bias vector using the result of Cordeiro and Klein (1994):

Bias

(
µ̂

ω̂

)
= K−1AV ec(K−1) +O(n−2) =

(
ς

0

)
+O(n−2),

where K̂ = K|θ̂ and Â = A|θ̂. ω̂ is unbiased and µ̂ has O(n−1) bias of:

ς =
µψ(1)(µ)− µ2ψ(2)(µ)− 2

2n(µψ(1)(µ)− 1)2
.

It is readily verified that the bias is positive for all µ > 0. Thus, the bias-reduced

MLE of µ is given as:

µ̃ =µ̂−
µ̂ψ(1)(µ)− µ̂2ψ(2)(µ̂)− 2

2n(µ̂ψ(1)(µ̂)− 1)2
,

which is unbiased to O(n−2).

To implement Firth’s (1993) “preventive” adjustment of the score function, we

note that, in our problem, θ = {(r1, r2) : µ, ω ∈ R+}. However we know that the

MLE for ω, namely ω̂ = 1
n

∑n
i=1 x

2
i , is unbiased. Noting that

A(E) = −i(θ)b1(θ)/n = −i(θ)K−1Avec(K−1) = −Avec(K−1),
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the modified score function to solve (for µ̂) is:

Ur(θ) = −Ar(θ) = Avec(K−1),

or

nln(µ̂)− nψ(µ̂)− nln

(
1

n

n∑
i=1

x2
i

)
+

n∑
i=1

ln(x2
i ) = −

1 + µ̂2ψ(2)(µ̂)

2(µ̂2ψ(1)(µ̂)− µ̂)
+

1

2µ̂
.

This non-linear function of µ̂ can be solved easily by standard numerical methods.

4. Numerical evaluations

The corrective and preventive analytic bias reduction methods of Cox and Snell

and Firth, respectively, eliminate the bias to O(n−1). The resulting estimators are

still biased to O(n−2). We have conducted a Monte Carlo simulation experiment

to examine the bias and mean squared error (MSE) of the basic MLE for the

shape parameter, µ, of the Nakagami distribution, as well as these measures for

the corrective and preventive MLEs, µ̃ and µf . An alternative, computationally

intensive, way of dealing with the bias of the MLE to the same order of magnitude

is to use the parametric bootstrap to simulate the bias, and then bias-adjust the

MLE. This approach is also corrective in nature, and we compare its performance

here with the effectiveness of the two analytic bias-reduced MLEs. The bootstrap

bias-corrected estimator is obtained as µ̆ = 2µ̂ − (1/NB)
∑NB

j=1 µ̂(j), where µ̂(j) is

the MLE of µ obtained from the jth of the NB bootstrap samples. See Efron

(1982, p.33).

The simulations were undertaken using the R statistical software environment

(R, 2008). Nakagami-distributed variates were generated using the VGAM pack-

age (Yee, 2009), and the log-likelihood function was maximized using the nleqslv

package (Hasselman, 2009). Each part of the experiment uses 50,000 Monte Carlo

replications. In the case of µ̆ we use 1,000 bootstrap samples per replication (i.e.,

50 million evaluations for each value of n, in this case). The results that are

reported in Table 1 are percentage biases and MSEs, the latter being defined as

100× (MSE/µ2). For each of the estimators under consideration the percentage

biases and MSEs are invariant to the value of the scale parameter, ω, for a given

sample size, so we assign ω = 1.
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A range of values of µ ≥ 0.75 is considered, including µ = 1, which corresponds

to the Rayleigh distribution. When smaller values of µ were included in the

experiment it was found that a substantial number of the Monte Carlo replications

resulted in estimates for the shape parameter which were less than the admissible

lower bound of 0.5. This problem was, not surprisingly, compounded significantly

in the case of the bootstrap-corrected estimator. We comment further on this

below, when offering our recommendations about the choice of bias-reduction

technique to adopt in practice.

The simulation results appear in Table 1. We see that the relative bias of the

MLE, µ̂, can be quite substantial for small sample sizes, especially in the “post-

Rayleigh”range for µ. The relative bias and MSE increase with the value of µ, and

of course they decrease with n, as the estimator is consistent. Both of the analytic

techniques for handling the bias of µ̂ are equally successful, and they reduce the

percentage bias by one or two orders of magnitude, virtually eliminating it in

most of the cases considered. These two estimators, µ̃ and µf , also have slightly

lower percentage MSE than the original estimator, µ̂. Overall, there is nothing to

choose between the corrective and preventive analytic bias reduction methods for

this problem.

The bootstrap bias correction also succeeds in reducing the bias of µ̂, but it over-

corrects when n = 25. For small sample sizes, the remaining relative (absolute)

bias for µ̆ is an order of magnitude greater than that for µ̃ and µf . For n ≥
100, µ̆ often out-performs µ̃ and µf in terms of absolute percentage bias (e.g.,

when µ = 15 and n = 200). However, in those cases where the bootstrap-based

estimator might be preferred, all three bias-corrected estimators have negligible

percentage bias. The relative MSE for µ̆ is always very similar in magnitude to

that of both µ̃ and µf . In summary, we recommend that either the Cox-Snell

“corrective” estimator, or Firth’s “preventive” estimator be used for the Nakagami

shape parameter, given their performance with respect to both bias and MSE,

and their computational simplicity.
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Table 1. Percentage biases and MSE’s of shape parameter estimators

n %Bias(µ̂) %Bias(µ̃) %Bias(µf ) %Bias(µ̆)

%MSE(µ̂) %MSE(µ̃) %MSE(µf ) %MSE(µ̆)

µ = 0.75

25 10.842 0.207 0.295 -1.867

[10.304] [7.180] [7.189] [7.764]

50 5.036 0.056 0.076 -0.343

[3.885] [3.237] [3.238] [3.320]

100 2.466 0.050 0.055 -0.018

[1.684] [1.534] [1.535] [1.535]

200 1.252 0.062 0.064 0.045

[0.790] [0.753] [0.752] [0.753]

µ = 1.0

25 11.071 -0.088 -0.009 -1.585

[10.812] [7.492] [7.498] [7.277]

50 5.090 -0.137 -0.118 -0.465

[4.098] [3.410] [3.410] [3.388]

100 2.590 0.050 0.055 -0.024

[1.784] [1.620] [1.620] [1.620]

200 1.279 0.029 0.029 0.011

[0.836] [0.796] [0.796] [0.797]

µ = 2.0

25 12.235 -0.015 0.033 -1.678

[12.558] [8.584] [8.585] [8.307]

50 5.764 0.026 0.038 -0.335

[4.618] [3.791] [3.791] [3.768]

100 2.797 0.017 0.019 -0.069

[2.003] [1.812] [1.812] [1.811]

200 1.340 -0.029 -0.028 -0.049

[0.935] [0.890] [0.890] [0.890]
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Table 1. Percentage biases and MSE’s of shape parameter estimators

(continued)

n %Bias(µ̂) %Bias(µ̃) %Bias(µf ) %Bias(µ̆)

%MSE(µ̂) %MSE(µ̃) %MSE(µf ) %MSE(µ̆)

µ = 5.0

25 12.947 -0.091 -0.072 -1.872

[13.483] [9.1460] [9.146] [8.866]

50 6.274 0.156 0.160 -0.230

[5.202] [4.250] [4.250] [4.222]

100 3.007 0.046 0.047 -0.045

[2.210] [1.994] [1.994] [1.992]

200 1.347 -0.109 -0.108 -0.129

[1.009] [0.962] [0.962] [0.963]

µ = 10.0

25 13.251 -0.076 -0.067 -1.888

[14.064] [9.532] [9.532] [9.241]

50 6.292 0.046 0.0479 -0.349

[5.339] [4.368] [4.368] [4.340]

100 3.097 0.069 0.070 -0.023

[2.267] [2.043] [2.043] [2.042]

200 1.494 0.005 0.005 -0.015

[1.037] [0.984] [0.984] [0.985]

µ = 15.0

25 13.273 -0.144 -0.138 -1.957

[14.117] [9.568] [9.568] [9.311]

50 6.345 0.053 0.054 -0.352

[5.342] [4.365] [4.365] [4.335]

100 2.939 -0.105 -0.105 -0.120

[2.265] [2.050] [2.050] [2.049]

200 1.539 0.038 0.038 0.017

[1.053] [0.999] [0.999] [1.000]
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Some additional comments of a practical nature are also in order. As the MLE

for the shape parameter is upward-biased, correcting by using either µ̃ and µf will

always reduce the value of the point estimate. If the original MLE is close to 0.5

in value, this may result in values for µ̃ and/or µf which violate the constraint

µ̂ ≥ 0.5. For example, when µ was chosen to be 0.5001 in a Monte Carlo exper-

iment, we found that 42% of the time µ̂ ≤ 0.5 when n = 25. This percentage

approached 50% as the sample size increased (49% at n = 5000), reflecting the

asymptotic normality and consistency of the MLE. In such instances one might

either reject the Nakagami model, or one might impose the boundary value as

the point estimate. Our preference is to follow the second of these options if this

situation arises in a practical application.
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5. Empirical examples

5.1 Seismological data

Our first example relates to a recent application of the Nakagami distribution to

seismological data by Nakahara and Carcolé (2010). Using data relating to 60

earthquakes from three recording sites in the Katakami Mountain Range in East-

ern Japan, these authors estimate the shape parameter of the Nakagami distri-

bution, using MLE, and use this information to estimate seisomogram envelopes.

Previous analyses of this type use the Rayleigh distribution, and Nakahara and

Carcolé find that generalizing this to the Nakagami distribution has important

implications for the results.

Using the MLEs and asymptotic standard errors (a.s.e.) in Table 1 of Nakahara

and Carcolé (2010), and their equation (19), we are able to impute the sample sizes

used for the various results that are tabulated. We have bias-adjusted the MLE for

the shape parameters for the results at the 1 – 2 Hz. frequency, using the Cox-Snell

corrective procedure. Acceleration measurements at the three recording stations

are taken at the top and the bottom (with the character ‘B’ in the site name)

of a 100m borehole; and in the vertical, North-South, and East-West directions.

So, there are results for 18 cases reported in Table 2 below. In all cases, the

original MLEs are in the post-Rayleigh range, but only three of our bias-adjusted

estimates are in this range. However, the numerical differences are not statistically

significant when the bootstrap standard errors (b.s.e.) for the latter estimates are

taken into account. The p-values reported in the last column of Table 2 relate

to the occurrence of values, in the sampling distribution of µ̃ that are as large,

or larger, than the corresponding point estimate based on µ̂. These values also

imply that there is no significant difference between bias-adjusted and unadjusted

estimates of the shape parameter.
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Table 2: Fitting the Nakagami distribution to seismic recordings (1 – 2Hz.)

Site n µ̂ a.s.e. µ̃ b.s.e. p

IWTH13

East-West 18 1.04 0.31 0.90 0.36 0.41

North-South 18 1.12 0.33 0.96 0.38 0.41

Vertical 16 1.09 0.34 0.92 0.42 0.40

IWTH17

East-West 53 1.05 0.18 1.00 0.19 0.46

North-South 19 1.08 0.31 0.94 0.36 0.42

Vertical 67 1.05 0.16 1.01 0.17 0.45

IWTH02

East-West 67 1.05 0.16 1.01 0.17 0.45

North-South 11 1.18 0.45 0.91 0.58 0.38

Vertical 22 1.11 0.30 0.98 0.34 0.42

IWTH13

East-West 11 1.07 0.41 0.83 0.56 0.37

North-South 16 1.12 0.35 0.95 0.43 0.41

Vertical 12 1.13 0.41 0.89 0.54 0.39

IWTH17

East-West 19 1.09 0.31 0.95 0.37 0.41

North-South 60 1.05 0.17 1.01 0.18 0.46

Vertical 84 1.03 0.14 1.00 0.14 0.46

IWTH02

East-West 8 1.23 0.54 0.84 0.94 0.34

North-South 9 1.26 0.53 0.90 0.75 0.36

Vertical 9 1.24 0.52 0.89 0.80 0.36

Note: Sample sizes are imputed from Table 1 and equation (19) of Nakahara and Carcolé

(2010).
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5.2. Wave height data

The modeling of maximum sea wave heights is of considerable importance in ocean

engineering, and other related fields. For example, such models are used to pro-

vide input into the construction specifications for fixed-location offshore structures

such as oil and gas rigs, as well as for ocean-going vessels. The underlying physics

of random waves on a Gaussian free surface elevation suggests that (appropri-

ately measured) wave heights will follow a Rayleigh distribution (Longuet-Higgins,

1952). That is, they should follow a Nakagami distribution with µ = 1. However,

in practice ocean waves are observed to be asymmetric as a result of underlying

nonlinearities in their generating mechanism. The Rayleigh distribution is very re-

strictive, having a single (scale) parameter. Forristall (1978) and Magnusson et al.

(1999) note that the Rayleigh distribution tends to over-predict the heights of the

largest waves. For a fixed value of the scale parameter, the right-tail probability of

the Nakagami distribution declines as µ increases. This suggests that a Nakagami

distribution with µ > 1, and a second (scale) parameter, may out-perform the

Rayleigh distribution when modeling the heights of rogue waves.

We present two applications of the Nakagami distribution to this problem. We

believe that this is the first time that this distribution has been used in this

particular context, and work in progress investigates its usefulness in more detail.

The first set of data that we use are for the maximum down-crossing wave heights

(HmaxD), in metres, for 23 abnormal waves, as reported by Petrova et al. (2006,

p. 237). These waves were measured at the offshore platform North Alwyn in

the northern part of the North Sea, about 100 miles east of the Shetland Islands,

during the November storm in 1997. The second set of data are for the zero

down-crossing wave heights (peak plus trough), H∗, in metres, for 14 freak waves

measured at the same North Sea location, as reported by Stansell (2005, p. 1018).

Figures 1 and 2 show empirical and fitted distributions for the Petrova et al. and

Stansell data-sets, respectively. Given the small sample sizes, we anticipate that

correction for bias in the estimation of the shape parameter of the Nakagami

distribution will be important.
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Figure 1: Petrova et al. (2006) data, empirical and fitted distributions
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Note: Nakagami (Nakagami*) refers to the distribution fitted with the MLE (corrective

bias-adjusted MLE).

Figure 2: Stansell (2005) data, empirical and fitted distributions
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Table 3 reports the maximum likelihood estimates of the scale and shape pa-

rameters, together with the Cox-Snell and Firth modified estimators of the latter

parameter, for these two data-sets. Asymptotic standard errors are provided for

ω̂ and µ̂. For a generic parameter, θ, asymptotic standard errors are given by the

square-roots of the diagonal elements of the inverse information matrix, I−1(θ̂),

where the latter is defined as −{E [(∂2logL(θ))/ (∂θ∂θ′)]} |θ=θ̂. We also report

95% confidence intervals for the parameters. These are bootstrap percentile in-

tervals, based on 999 bootstrap samples. The latter number is justified by the

results of Efron (1987, p.181). The results support the use of the Nakagami dis-

tribution, as the estimates of the shape parameter are significantly different from

the (Raleigh) value of unity. In addition, the reductions in the values of the shape

parameter estimates, induced by the bias corrections, are numerically sizeable.

However, we see from the bootstrap confidence intervals that these reductions are

not statistically significant here.

Table 3. Fitting the Nakagami distribution to wave data

ω̂ µ̂ µ̃ µf

Petrova et al. data (n = 23)

estimate 258.527 9.499 8.289 8.290

a.s.e. (17.490) (2.753) - -

b.s.e. (3.470) (3.184) (2.739)

95% b.c.i. [6.025, 19.083] [5.293, 17.777] [4.487, 15.347]

Stansell data (n = 14)

estimate 341.643 3.441 2.749 2.753

a.s.e. (49.222) (1.242) - -

b.s.e. (1.890) (1.394) (1.195)

95% b.c.i. [2.061, 9.480] [1.591, 7.036] [1.326, 5.763]

Note: 95% confidence intervals appear in brackets. These are bootstrap percentile intervals, to

allow for the non-normality of the small-sample distributions of the MLEs.

17



6. Conclusions

The Nakagami distribution is widely used in a number of disciplines, especially

in the analysis of the fading of radio and ultrasound signals. Recently, it has also

been finding application in other fields, including hydrology, seismology, and data

compression. Accurate estimation of the shape parameter of this distribution is

crucial in all of these applications. For example, this parameter is a direct measure

of the fading rate in the case of radio waves; and in seismology its reciprocal is the

scintillation index, which is used to express fluctuations in seismogram envelopes.

While it is well known that the maximum likelihood estimator of the scale pa-

rameter in the Nakagami distribution is unbiased, we find that the corresponding

estimator is upward-biased in finite samples. In addition, we have shown that this

bias can be dramatically reduced by adjusting the estimator by analytic methods

of either a “preventive” or “corrective” nature. These techniques are simple to

apply, and are equally successful in constructing estimators that are unbiased to

O(n−2), where n is the sample size. Our simulation results show that a paramet-

ric bootstrap bias correction is also very effective, and that in all three cases the

reduction in bias is accompanied by a small improvement in mean squared error.

When computational costs are taken into account, we recommend the use of ei-

ther the Cox-Snell (1968) “corrective” procedure or the Firth (1993) “preventive”

procedure, to obtain an almost-unbiased maximum likelihood estimator for the

shape parameter of the Nakagami distribution.

Finally, we have illustrated the practical effect that undertaking this bias ad-

justment can have in two empirical applications. In the case of some seismic

acceleration data we find that the shape parameter estimates are largely modi-

fied from the post-Rayleigh (µ > 1) range to the pre-Rayleigh (µ < 1) range as

a result of using the Cox-Snell bias adjustment. Our other example provides a

novel application of the Nakagami distribution to ocean wave height data. We find

that the results support the use of this distribution (rather than the conventional

Rayleigh distribution) in this context, and both of the analytic bias-correction

procedures result in marked numerical reductions in the estimates of the shape

parameter. Work in progress pursues our investigation of the usefulness of the

Nakagami distribution for modeling the characteristics of ocean waves.
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