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Abstract 
 

Interpreted as an instrumental variables estimator, nonlinear least squares constructs its instruments 

optimally from the explanatory variables using the nonlinear specification of the regression function. 

This has implications for the use of GMM estimators in nonlinear regression models, including 

systems of nonlinear regressions, where the explanatory variables are exogenous or 

predetermined and so serve as their own instruments, and where the restrictions under test are the 

only source of overidentification. In such situations the use of GMM test criteria involves a 

suboptimal construction of instruments; the use of optimally constructed instruments leads to 

conventional non-GMM test criteria. These implications are illustrated with two empirical examples, 

one a classic study of models of the short-term interest rate. 
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Generalized method of moments (GMM) test criteria are sometimes applied to nonlinear

models in which all the explanatory variables are treated as exogenous or predetermined,

the instrument set is specified to consist solely of these regressors, and the maintained model

is exactly identified. The only source of overidentification is the restrictions under test. As

we shall see, the classic study of models of the short-term interest rate by Chan, Karolyi,

Longstaff, and Sanders (1992; henceforth CKLS) is an example.

This paper shows that this practice involves a suboptimal construction of instruments

that vitiates the supposed benefits of GMM. Recognizing this turns out to involve nothing

more than applying the result that, when nonlinear least squares (NLS) is interpreted as an

instrumental variables (IV) estimator, asymptotic efficiency requires that the instruments

be constructed optimally using the nonlinear model specification. Although, in contrast to

NLS-as-IV, an expanded instrument set that includes the optimally constructed ones can in

principle be used to obtain a more efficient GMM estimator, the need for analytic derivatives

means that this is unlikely to be implemented in practice, CKLS being a case in point.

We begin by expositing these principles and then turn to their application in two ex-

amples of GMM. The first is a single-equation nonlinear regression, the second the CKLS

system.

I. NLS, NLIV, and GMM

Consider a nonlinear regression model denoted by, following the notation of Davidson and

MacKinnon (1993, 2004),

y = x(β) + ε.

The nonlinear least squares (NLS) estimator minimizes the sum-of-squares function

S(β) = (y − x(β))′(y − x(β)).

It is well known that, under typical assumptions on the explanatory variables and dis-

turbance, the NLS estimator is consistent. Furthermore, conditional on the information

contained in the model, NLS is asymptotically efficient under disturbance normality.

It is also well known, particularly in the special case of a linear model, that this asymp-

totic efficiency is robust to additional information in the form of instrumental variables

uncorrelated with the disturbance. An easy way to show this redundance for the nonlinear

model is to relate NLS to nonlinear instrumental variables estimation and then explore the

implications of introducing additional instruments.
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Nonlinear Least Squares as an IV Estimator

It is useful to begin by reminding ourselves that, for models in which the regression function

x(β) is differentiable, NLS has a method-of-moments interpretation. Continuing with the

Davidson-MacKinnon notation, define the matrix of derivatives X(β) ≡ ∂x(β)/∂β. Then

the NLS estimator satisfies the first order necessary conditions

X(β)′(y − x(β)) = 0, (1)

which require the NLS residuals to be orthogonal to the derivative matrix. Assuming that

the estimator is identified by the model and data set, in situations in which these nonlinear

orthogonality conditions yield multiple solutions, so that they are necessary but not sufficient

for a solution, direct minimization of the objective function S(β) seeks the unique solution

associated with a global minimum. Of course, in the special case of a linear regression model

where x(β) = Xβ the derivative matrix is simply the regressor matrix, X(β) = X, and

the orthogonality conditions reduce to the familiar first order conditions for OLS, which in

that case are not only necessary but sufficient and can be solved for the familiar closed-form

formula.

A key assumption on which the consistency of NLS rests is that the explanatory vari-

ables X be predetermined. In situations in which this is untenable estimation requires an

instrument set Z comprising at least as many instruments as there are coefficients in β.

Amemiya (1974) showed that a consistent estimator is obtained by minimizing

Q(β) = (y − x(β))′Z(Z ′Z)−1Z ′(y − x(β)), (2)

which we call the nonlinear instrumental variables (NLIV) estimator (although Amemiya

called it nonlinear two-stage least squares).

Like NLS, and with the same qualifications (differentiability of the regression function;

identification), NLIV has a method of moments interpretation. The first order necessary

conditions for a minimum are

X(β)Z(Z ′Z)−1Z ′(y − x(β)) = 0, (3)

which requires the NLIV residuals to be orthogonal to the projection of the derivative matrix

on the subspace spanned by the instrument set.

It is illuminating to consider the sense in which NLS is a special case of NLIV. Consider

the special case in which the explanatory variables X are predetermined and so qualify

to serve as their own instruments. It is significant that NLS is not obtained by setting

Z = X in the NLIV estimator, as would be true for linear regression. Setting Z = X does

not reduce the NLIV orthogonality conditions (3) to those for NLS (1), indicating that the
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minimization of Q(β) with Z = X is not equivalent to minimizing S(β). Since NLS is the

optimal estimator in these circumstances, such an NLIV estimator must be suboptimal.1

Instead inspection reveals that the minimization of the two objective functions is equiv-

alent only if we set Z = X(β), which does reduce the NLIV orthogonality conditions to

those of NLS. Thus the optimal construction of the instrument set requires not just variables

that qualify as instruments, but that they be used optimally. Their optimal employment

uses the information embodied in the model—the regression function x(β)—to construct

the derivative matrix X(β) for use in the orthogonality conditions.

The Redundance of Additional Instruments

In general in instrumental variables estimation the availability of additional information in

the form of additional instruments contributes to efficiency of the NLIV estimator. Consider

an instrument set Z partitioned as Z = [Z1;Z2]. Then the omission of Z2 from the

instruments upon which NLIV is based results in a loss of efficiency. (See Davidson and

MacKinnon, 2004, Exercise 8.8.)

However this intuition fails when the regressors X themselves qualify as instruments.

Suppose that, in addition to X, there are other variables Z2 that are predetermined with

respect to the disturbance, and consider expanding the instrument set to include them.

That is, consider generalizing the NLIV estimator from the NLS instrument set Z = X(β)

to the seemingly more informative one Z = [X(β);Z2]. Define the projection matrices

PZ ≡ Z(Z ′Z)−1Z ′ and P1 ≡ Z1(Z
′
1Z1)

−1Z ′
1. Under a partition Z = [Z1;Z2] it is a well-

known (Davidson and MacKinnon, 2004, p. 66) property of projections that P1PZ = P1.

Writing this out explicitly and premultiplying by Z ′
1 yields

Z ′
1Z1(Z

′
1Z1)

−1Z ′
1Z(Z ′Z)−1Z ′ = Z ′

1Z1(Z
′
1Z1)

−1Z ′
1

or, simplifying both sides,

Z ′
1Z(Z ′Z)−1Z ′ = Z ′

1.

Setting Z1 = X(β) yields

X(β)′Z(Z ′Z)−1Z ′ = X(β)′.

Thus when additional instruments beyond X(β) are included in Z the NLIV orthogonality

conditions (3) nevertheless reduce to those for NLS, the first order conditions (1), regardless

of the nature of the instruments. This establishes that, in such an instance, minimizing

Q(β) is equivalent to minimizing S(β), even though Q(β) does not reduce algebraically to

S(β).

In conclusion, the asymptotic efficiency of NLS is robust to the availability of additional

information in the form of variables from outside the model that qualify as instruments.
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Once the instrument set Z includes the derivatives X(β), expanding it to include addi-

tional instruments Z2 does not alter the NLIV estimator—it still reduces to NLS. In the

terminology of Breusch, Qian, Schmidt, and Wyhowski (1999) the additional instruments

Z2 are redundant.

Two special cases of this result are of interest. First and most obviously, it specializes

immediately to linear regression, revealing that extraneous instruments cannot be used to

improve OLS. Second and less obviously, it explains why, in nonlinear regression, it is not

possible to construct a more efficient estimator by supplementing the NLS instrumentsX(β)

with the raw X themselves—setting Z = [X(β);X].

GMM

An important qualification to this redundance-of-additional-instruments result is that it does

not generalize to GMM. The GMM estimator is defined to minimize a criterion function of

the form

J(β) =
1

n
(y − x(β))′ZŴZ ′(y − x(β)). (4)

Assuming efficient GMM estimation, the weighting matrix Ŵ denotes a consistent estimator

for the inverse of the asymptotic variance of (1/
√
n)Z ′ε. J(β) is a generalization of the

NLIV criterion (2) in that it reduces to Q(β) in the special case of a classical disturbance

having a scalar covariance matrix.

Another special case in which GMM reduces to NLIV is when the instrument set is

exactly identifying, so that an estimator exists that sets the sample moments Z ′(y−x(β)) to

zero without reference to the weighting matrix Ŵ . Such a case arises when the explanatory

variables all qualify as instruments and we set Z = X(β), yielding the sample moments (1)

that define the NLS estimator. Thus, when only X(β) are used as instruments, once again

NLS is obtained as the asymptotically efficient estimator.

However now this conclusion is not robust to the availability of additional instruments.

If instruments Z2 are available to supplement X(β), then setting Z = [X(β);Z2] in J(β)

yields a GMM estimator that is more efficient asymptotically than the NLS estimator that

GMM reduces to when Z = X(β). Remarkably, this efficiency improvement holds even if

we simply set Z2 = X, so Z = [X(β);X].2 Of course, actually implementing such a GMM

estimator may be problematic because it requires specifying J(β) in terms of the analytic

derivatives X(β), the expressions for which will be complex in all but the simplest nonlinear

models. Because these analytic derivatives are themselves functions of the coefficient vector,

the numerics of minimizing J(β) will be complicated considerably. It would not be surprising

if the promise of efficiency improvements is insufficient to induce empirical researchers to

overcome these difficulties, complications that NLS avoids. This is particularly true in view
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of the well-known feature of GMM that expansion of the instrument set beyond the most

relevant instruments, although in principle improving asymptotic efficiency, tends to lead

to a deterioration in its finite-sample properties.

In summary, as with IV estimation, in general additional instruments improve the asymp-

totic efficiency of the GMM estimator, although there is the usual tradeoff with finite-sample

bias. Unlike IV estimation, however, this remains true even when the regressors themselves

all serve as instruments. Instruments that are redundant to IV estimation may not be to

GMM.

II. Implications for GMM Inference

Presented in this manner these background results may seem elementary. That their impli-

cations for inference are nevertheless nontrivial in application may be illustrated with two

empirical examples. It is useful to begin with a single equation model in which the issues

emerge in their starkest form. We then turn to the more interesting and perhaps contro-

versial CKLS application, which shows that similar considerations extend to the systems

context.

Empirical Example: A Cobb-Douglas Production Function

Let us begin with a simple textbook example of NLS. Stewart (2005, Chap. 13) estimates a

Cobb-Douglas production function with an additive disturbance,

Qi = γKβ
i L

α
i + εi, (5)

using cross-section data on 24 industries. The data are from Pyatt and Stone (1964) and

were used in studies by Feldstein (1967) and Mizon (1977). In addition to reporting NLS

coefficient estimates and standard errors (see his Example 2 on p. 565) Stewart tests the

hypothesis of constant returns to scale (CRS), α+β = 1, using the inference procedures that

apply most naturally in this context. It will be of interest to contrast Stewart’s conventional

estimation and testing strategy with an alternative, and so we refer to his as Inference

Strategy 1.

Insert Table 1 around here

Inference Strategy 1: NLS with likelihood ratio or Wald tests NLS estimation

results for the unrestricted and CRS-restricted functions are presented in the left half

of Table 1, and reproduce results from Stewart (Example 2, p. 565; Example 6, pp.

577–8), although he does not present the heteroskedasticity-robust standard errors. A

likelihood ratio statistic is computed as LR = 2(LU−LR), where the unrestricted and
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restricted loglikelihood function values are (Stewart, Table 13.5) LU = −132.123 and

LR = −132.155. This yields LR = 0.0648 (Stewart, Table 13.6), which does not come

close to rejecting CRS at conventional significance levels (for example, χ2
0.10(1) = 2.71).

Alternatively, the Wald statistic is W = 0.0646 or, in its heteroskedasticity-robust

variant, W = 0.1283.3 Thus, although applied econometricians might debate the mer-

its of these alternative test criteria (the LR statistic is invariant to reparameterizaton

of the model and restriction while Wald statistics are not; but the Wald statistic

can be robustified, giving some indication of the sensitivity of the test decision to

heteroskedasticity in the data), in this application the substantive test decision is

insensitive to these variations: CRS is not rejected.

The analysis of Section I shows that this textbook approach to estimation can be inter-

preted as NLIV with instruments set to Z = X(β). For most purposes this interpretation

is little more than a curiosity, particularly given that a benchmark approach to testing (the

likelihood ratio test) comes from outside the IV framework. The NLIV interpretation is

of interest, however, in comparing Strategy 1 with an alternative that we attribute to a

hypothetical analyst.

Inference Strategy 2: GMM with distance or Wald tests Treating the explana-

tory variables of the Cobb-Douglas function as exogenous, the hypothetical analyst

advocates GMM estimation using the instruments Xi = [1,Ki, Li]. (The instrument

set includes the unit vector because, even though the model does not include an in-

tercept, the disturbance has zero mean and so is orthogonal to the unit vector in the

population.) Formally, this minimizes the GMM criterion (4) with Z = X.

The analyst acknowledges that, for the unrestricted model (5) with three coefficients,

an estimator β̂ generally exists that will set the expression Z ′(y − x(β)) to zero.

That is, the three instruments are exactly identifying and so the weighting matrix is

irrelevant to the minimization of J(β); GMM reduces to NLIV based on Z = X and

the GMM criterion must be identically zero. Under the CRS restriction, however, one

of the coefficients is eliminated, the instrument set becomes overidentifying, and GMM

differs from NLIV given some nonscalar covariance specification—in this application

presumably one of heteroskedasticity given that the data are cross-sectional.

Even in the exactly identified maintained model, because this implementation of

NLIV is based on Z = X rather than Z = X(β), the GMM estimates differ from

those of Strategy 1, as do Wald tests. The GMM analog to the LR statistic is the

distance statistic of Newey and West (1987),

D = J(β̃)− J(β̂)
d−→ χ2(g). (6)
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Here β̃ and β̂ denote the restricted and unrestricted GMM estimators and g is the

number of restrictions. It is well known that, to ensure that the statistic is nonnegative,

the two values of the objective function must be computed using a common weighting

matrix. The weighting matrix for either β̃ or β̂ may be used, giving rise to two ways

of computing the statistic:

D1 = Ĵ(β̃)− Ĵ(β̂) (uses Ŵ of unrestricted model) (7a)

D2 = J̃(β̃)− J̃(β̂) (uses W̃ of restricted model). (7b)

Practices vary regarding the choice of weighting matrix to hold constant. Applied

researchers often use D1, presumably on the intuition that it seems inappropriate to

impose on the weighting matrix the restrictions that are under test. However Hansen

(2006) presents analytical and simulation evidence supporting D2.

In the present application in which the unrestricted model is exactly identified and

so J(β̂) = 0 regardless of the weighting matrix, these minimum distance statistics

simplify to

D1 = Ĵ(β̃), D2 = J̃(β̃). (8)

The latter, J(β) for the restricted model, is familiar as the Hansen-Sargan test for

overidentification.

The results of Strategy 2 are presented in the right half of Table 1, and are similar to

those of Strategy 1. The point estimates suggest a roughly 16%/84% division of factor

payments between capital and labor, only slightly different from the NLS estimates of

14%/86%; two-standard deviation confidence bounds on either set of estimates easily

include those of the other strategy. CRS is not rejected by either Wald or distance

tests, which yield almost identical p -values. Interestingly, in this example the distance

statistic is almost unaffected by the choice of weighting matrix to hold constant.

In terms of the formal differences between the two strategies, the hypothetical analyst

might assert several advantages of Strategy 2 over Strategy 1. First, GMM makes no

assumption about the form of the population distribution, in contrast to likelihood-based

methods. As well, GMM estimation of the restricted model, because it is overidentified, uses

the nonscalar covariance structure, in principle improving the efficiency of those estimates.

Another byproduct of the overidentification of the restricted model is that it yields the

Hansen-Sargan test for overidentification, a useful model diagnostic.

However it is unlikely that most econometricians would be persuaded by these arguments.

Instead they would point out that the entire GMM exercise is predicated on the inefficient

instrument setZ = X. The use of the nonscalar covariance structure in the estimation of the
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restricted model, and the availability of the Hansen-Sargan test, are merely artifacts of this

initial inefficient instrument choice. Furthermore, estimation of the restricted model then

becomes dependent on the specification of that nonscalar covariance structure, which may

introduce the possibility of specification error. That GMM does not require an assumption

on the form of the population distribution is shared by NLS. NLS also shares the ability

to obtain standard errors and Wald tests that are robust to heteroskedasticity. It is only

the LR test that uses the additional assumption of normality. But this assumption yields

benefits that may be worth its cost. First, the LR statistic involves no issues of holding

the covariance matrix constant across estimations, a simplification that becomes increasingly

valuable with more complex nested testing structures. Second, the small-sample behavior of

LR tests and the quality of the finite-sample approximation they provide is better understood

and perhaps more reliable than for distance tests. Presumably the performance of the LR

test is enhanced by the fact that it is based on optimally-constructed instruments.

In this example this debate between the two strategies might be dismissed as immaterial

given the lack of sensitivity of the substantive results of the analysis to them. However this

is not always the case, as the next example illustrates.

Empirical Example: Models of the Short-Term Interest Rate

As a second example illustrating the practical importance of the considerations highlighted

by the analysis of Section I, consider the model of the short-term interest rate estimated

by Chan, Karolyi, Longstaff, and Sanders (1992). The CKLS model is of particular interest

because it nests several classic models of the interest rate as special cases, so these can be

tested as restrictions on their system. Consequently their analysis has often been cited or

replicated; see, for example, Bibby, Jacobsen, and Sørensen (2006, Example 5.5), Mills and

Markellos (2008, Example 4.4), and Zivot and Wang (2006, Sec. 21.7.5).4 Many papers

extend the CKLS analysis in various directions. Bliss and Smith (1998) find the results to

be sensitive to the treatment of structural breaks, while Treepongkaruna and Gray (2003)

study their robustness to different data sets and sampling frequencies. Brenner, Harjes,

and Kroner (1996) and Koedijk, Nissen, Schotman, and Wolff (1997) nest the CKLS model

within more general frameworks that permit GARCH volatility. As well, the CKLS model

has become a canonical application for illustrating alternative approaches to the estimation

of continuous time models: see Jiang and Knight (1997), Nowman (1997), and Yu and

Phillips (2001).

The CKLS estimation strategy uses a discrete-time approximation to an underlying

continuous-time process for the interest rate. This discrete-time approximation specifies the

interest rate as evolving according to a first-order autoregression with a disturbance variance
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that depends on the interest rate itself:

rt+1 − rt = α+ βrt + εt+1 (9a)

E(εt+1) = 0 (9b)

E(ε2t+1) = σ2r2γt . (9c)

A distinguishing feature of this model is that, although the variance specification (9c) per-

mits systematic variation in volatility, this variation depends only on the level of the inter-

est rate. By contrast, the GARCH alternatives investigated by Brenner et al. (1996) and

Koedijk et al. (1997) specify an autoregressive conditional volatility that depends directly

on information shocks.

The various interest rate models encompassed as special cases of the CKLS model, and

the associated parameter restrictions, are summarized in Table 2, which reproduces Table I

of CKLS.

Insert Table 2 around here

Turning to the population moments implicit in the model, the zero-mean disturbance

(9b) implies

E(∆rt+1 − α− βrt) = 0

while the variance specification (9c) implies

E[(∆rt+1 − α− βrt)
2]− σ2r2γt = 0.

In terms of its empirical content, therefore, the CKLS model may be represented as a

two-equation system of seemingly unrelated regressions (SUR).5

∆rt+1 = α+ βrt + u1,t+1

(∆rt+1 − α− βrt)
2 = σ2r2γt + u2,t+1

The lagged interest rate rt is predetermined in relation to the period t+1 shocks generating

the disturbances u1,t+1, u2,t+1; if these disturbances are serially uncorrelated then the model

is a true SUR rather than simultaneous system. This is implicitly the assumption adopted

by CKLS because they treat rt as satisfying the requirements for an instrumental variable.

The nonlinearity-in-parameters of the second equation makes this system nonlinear as a

whole, with the implications for the optimal construction of instruments revealed in Section

I. Paralleling the Cobb-Douglas example, two strategies for estimation and testing may be

identified.
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Inference Strategy 1: Nonlinear GLS Under a suitable specification for the distur-

bances u1t, u2t the nonlinear SUR system may be estimated by feasible generalized

least squares (often called Zellner estimation in the case of a classical SUR covari-

ance structure). For a disturbance covariance matrix satisfying the Oberhofer-Kmenta

(1974) conditions, iterating on the covariance matrix yields maximum likelihood esti-

mators, and so likelihood-based inference becomes available, as with iterative Zellner

estimation. Of course, Wald tests may also be used, the comparative advantages of

Wald versus LR tests being as described in the Cobb-Douglas example.

However Strategy 1 is not that adopted by CKLS, who instead use:

Inference Strategy 2: GMM Were the autoregression (9a) to be estimated as an

OLS regression the instrument set is effectively [1, rt], and this is the instrument set

used by CKLS for the system as a whole; the relevant moments are therefore[
εt+1

ε2t+1 − σ2r2γt

]
⊗ [1, rt]

′ =

[
∆rt+1 − α− βrt

(∆rt+1 − α− βrt)
2 − σ2r2γt

]
⊗ [1, rt]

′, (10)

which corresponds to equation (4) of CKLS. These four moments serve to exactly

identify the four parameters α, β, γ, and σ2 of the maintained model, but are overi-

dentifying under any of the restrictions of Table 2. In this respect inference in the

model is, therefore, analogous to that of the Cobb-Douglas example, although the

nested testing structure implied by the restrictions of Table 2 is more complex. In

general Newey-West distance statistics are computed as (6); CKLS indicate that they

use the weighting matrix from the unrestricted model, and thus the statistic D1 in our

notation. As in the Cobb-Douglas example, when the unrestricted model is the main-

tained model its exact identification yields J(β̂) = 0 and so the CKLS Newey-West

test statistic is simply D1 = Ĵ(β̃).

In order to compare the two strategies we begin by replicating CKLS. Table 4 reports

the results of my replication of their GMM estimates, as reported in their Table III, sup-

plemented with Wald tests. In order to gauge the precision of the replication all values are

reported to an accuracy one digit greater than in the CKLS table. The replication is exact

or very close. The maintained model is replicated exactly, perhaps because, under exact

identification, the estimated covariance matrix does not play a role in the coefficient point

estimates. (That is, for the maintained model GMM reduces to NLIV, albeit based on the

inefficient instrument set Z = X.) The coefficient estimates of the maintained model are

therefore not sensitive to variations across software in the numerics of the estimation of the

weighting matrix, aiding replication.6

Insert Tables 3 and 4 around here
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Contrasted with these are the Strategy 1 nonlinear GLS results of Table 3. As in

our Cobb-Douglas example, qualitatively the coefficient estimates and their t statistics are

broadly similar across the two strategies. Focusing on the maintained model to illustrate,

note that under both strategies the coefficient estimates have similar degrees of statistical

significance. Both estimates of β imply that the autoregressive process for the interest rate

(9a) is stable (because 1 + β̂ = 1 − 0.5921 = 0.4079 < 1 in the case of Strategy 2, while

1 + β̂ = −0.262 in the case of strategy 1). This implies long run convergence to an interest

rate of r∗ = −α̂/β̂ = 0.0408/0.5921 = 0.0689 in the case of Strategy 2, or the nearly identi-

cal r∗ = 0.0859/1.2620 = 0.0681 in the case of Strategy 1, a plausible long run annual rate

for the sample period in question (June 1964–December 1989). Even so, both strategies

yield estimates of α and β that are not highly significant, so the hypothesis that they are

zero—as specified in some of the special-case models—cannot necessarily be rejected. CKLS

observe (p. 1217) that “. . . there appears to be only weak evidence of mean reversion in the

short-term rate; the parameter β is insignificant in the unrestricted model . . . ”, a finding

that emerges from both estimation strategies.

Another important respect in which the two strategies yield consistent results is with

respect to the role of γ. CKLS remark that “. . . the conditional volatility of the process

is highly sensitive to the level of the short-term yield; the unconstrained estimate of γ is

1.499. This result is important since this is much higher than the values used in most of the

models.” Strategy 1 similarly yields γ̂ = 1.3871, also highly significant.

Despite these similarities, there is an important difference in the the results yielded by

the two strategies. The LR tests of Strategy 1 provide more decisive rejections of the nested

models, rejecting all but Model 6 (Brennan-Schwartz) at a 1% level of significance. By

contrast, the distance tests of Strategy 2 do not reject Models 4 (Dothan), 5 (GBM), 6

(Brennan-Schwartz), or 7 (CIR-VR) at conventional significance levels. The Wald tests, on

the other hand, tend to be more favorable to the special case models under Strategy 1 than

under Strategy 2. The GLS Wald tests do not reject models 4, 5, and 6 at conventional

significance levels, whereas the GMM Wald tests reject all the special-case models at 10%,

although not necessarily at more stringent significance levels.

Conclusions

Our analysis suggests general implications for the optimal construction of instruments in

nonlinear regression, including systems of nonlinear regressions—that is, situations in which

all the explanatory variables are exogenous or predetermined and so qualify as instruments.

In such situations nonlinear least squares (or, in the systems context, nonlinear feasible

generalized least squares) constructs instruments optimally from the regressors using the
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nonlinear specification of the model. In contrast, GMM does not. Tests of restrictions on

the maintained model should surely therefore be based on the NLS (or nonlinear FGLS)

rather than GMM results. This is particularly in view of the advantages of the generally

simpler likelihood-based inference methods afforded by the least squares estimators, which

do not involve issues of holding the GMM weighting matrix constant across restricted and

unrestricted models that complicate the application of Newey-West tests. The advantages

of likelihood-based inference include not just its simplicity of implementation but also, in

many applications, better-understood properties of asymptotic approximation.

The practical importance of this conclusion has been illustrated with two empirical

examples, one elementary, the other a classic and widely-cited comparison of models of the

short-term interest rate. In the latter, important test decisions are altered by the use of

optimally constructed instruments.

Of course, GMM continues to be an appropriate estimator in situations where some

regressors are not exogenous or predetermined, so that consistent estimation requires in-

struments from outside the specification of the estimating equations. In such situations any

nonlinearity of the model specification does not provide information relevant to the optimal

employment of the instruments.

GMM would also be an appropriate estimator, at least in principle, in situations where

the regressors all qualify as instruments and the researcher is willing to supplement X(β)

with additional instruments, X or otherwise. In this case, as discussed in Section I, the

additional instruments improve the asymptotic efficiency of the GMM estimator whereas

they do not improve NLS/NLIV. Here the maintained model is overidentified, the restrictions

under test are not the only source of overidentification, and the GMM distance statistics

take the full form (7) rather than reducing to (8). However most empirical researchers are

unlikely to find this route to efficiency improvements appealing. In addition to requiring the

formulation of the GMM criterion in terms of potentially complex expressions for analytic

derivatives and the accompanying numerical complexities, it is well known that expanding

the instrument set in GMM tends to come at the cost of finite-sample bias. Thus one cannot

fault CKLS for not using the instrument set Z = [X(β);X] rather than the Z = X that

they did use; our argument is instead that they should have used Z = X(β), i.e. nonlinear

FGLS in their systems context, or NLS in the simpler single-equation context.
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Notes

1This is another way of saying that the NLIV estimator cannot be obtained via a two-step

application of least squares, nonlinear or otherwise, in contrast to the linear case. It is for this

reason that Amemiya’s name nonlinear two-stage least squares is misleading. Attempts to

arrive at an estimator by such a two-step process invariably lead to an inconsistent estimator;

see the remarks to this effect in Davidson and MacKinnon (1993, p. 225). Historically, this

is why Amemiya’s demonstration that the minimization of Q(β) yields a consistent NLIV

estimator was of landmark significance.

2This conclusion is reminiscent of the early contribution to the GMM literature by Cragg

(1983). He showed that, in the context of linear regression with heteroskedasticity, an

efficiency improvement over OLS could be achieved with a GMM estimator based on an

instrument set that supplements the exogenous regressors with nonlinear functions of them

such as powers and cross-products.

3Stewart reports size-corrected values of W = 0.0565 (p. 596) and 0.112 (p. 634), respec-

tively. Here we focus on the non-size-corrected versions in order to facilitate comparison

with the GMM results.

4The CKLS paper is reprinted in Hughston (2001). Their results have also been (approx-

imately) replicated in unpublished papers by Christensen and Poulsen (1999) and Chris-

tensen, Poulsen, and Sørensen (2001). For surveys of interest rate modeling with some

discussion of CKLS see Campbell, Lo, and MacKinlay (1997, Chaps. 10, 11; especially pp.

449–451) or James and Webber (2000, Chap. 17).

5For the short-term interest rate rt CKLS used the one-month Treasury bill yield over

the period June 1964–December 1989. In their data set this appears as a continuously

compounded monthly return, and so must be multiplied by 12 to be expressed conventionally

as an annualized return. Because the model is estimated with annualized returns sampled

monthly, for technical reasons related to the discrete time approximation of a continuous

time process a factor 1/12 must be introduced in estimation; the SUR system is modified

as

∆rt+1 = (α+ βrt)/12 + u1,t+1

[∆rt+1 − (α+ βrt)/12]
2 = σ2r2γt /12 + u2,t+1,

and similarly for the moments (10).
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6All estimation results reported in this paper were obtained using the econometrics pack-

age TSP. The numerics of TSP’s nonlinear estimation routines have been favorably evaluated

by McCullough (1999).
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Table 2: Alternative Models of the Short Term Interest Rate as Restrictions on the CKLS
Model

Model α β σ2 γ

1. Merton 0 0
2. Vasicek 0
3. Cox-Ingersoll-Ross square root (CIR-SR) 0.5
4. Dothan 0 0 1
5. Geometric Brownian motion (GBM) 0 1
6. Brennan-Schwartz (BS) 1
7. Cox-Ingersoll-Ross variable rate (CIR-VR) 0 0 1.5
8. Constant elasticity of variance (CEV) 0

Table 3: Strategy 1: Nonlinear GLS Results for Alternative Models of the Short-Term
Interest Rate

Model α β σ2 γ d.f. LR test Wald test
(p -value) (p -value)

0. Maintained 0.0859 −1.2620 1.0295 1.3871
(1.8968) (−1.7337) (0.6482) (4.4569)

1. Merton 0.0011 0.0 0.0008 0.0 2 121.3051 21.1511
(0.0650) (3.2174) (0.0000) (0.0000)

2. Vasicek 0.0942 −1.3865 0.0008 0.0 1 69.3923 19.8643
(1.7578) (−1.6152) (4.4818) (0.0000) (0.0000)

3. CIR-SR 0.0922 −1.3489 0.0155 0.5 1 35.2251 8.1248
(1.7853) (−1.6348) (4.2156) (0.0000) (0.0044)

4. Dothan 0.0 0.0 0.1894 1.0 3 69.5244 4.6756
(3.6899) (0.0000) (0.1972)

5. GBM 0.0 −0.2644 0.1983 1.0 2 56.4569 3.6178
(−0.8811) (1.5426) (0.0000) (0.1638)

6. BS 0.0886 −1.3003 0.1892 1.0 1 6.3896 1.5472
(1.8277) (−1.6762) (3.8359) (0.0115) (0.2135)

7. CIR-VR 0.0 0.0 1.6839 1.5 3 61.6634 7.9883
(3.1225) (0.0000) (0.0462)

8. CEV 0.0 −0.2577 1.3067 1.4332 1 50.2852 3.5979
(−0.9252) (0.6783) (4.8755) (0.0000) (0.0578)

Notes: Coefficient t-ratios are in parentheses; t statistics and Wald tests are heteroskedasticity-robust.

LR and Wald tests are of the restricted model against the alternative of the maintained model.



Table 4: Strategy 2: GMM Results for Alternative Models of the Short-Term Interest Rate

Model α β σ2 γ d.f. Distance test Wald test
(p -value) (p -value)

0. Maintained 0.04082 −0.59214 1.67038 1.49990
(1.855) (−1.552) (0.773) (5.948)

1. Merton 0.00550 0.0 0.00042 0.0 2 6.75330 35.5386
(1.437) (7.272) (0.03416) (0.0000)

2. Vasicek 0.01540 −0.17763 0.00042 0.0 1 8.84288 35.3766
(0.793) (−0.522) (7.115) (0.00294) (0.0000)

3. CIR-SR 0.01884 −0.23155 0.00732 0.5 1 6.12651 15.7219
(0.973) (−0.683) (7.546) (0.01332) (0.0001)

4. Dothan 0.0 0.0 0.11729 1.0 3 5.62694 7.8324
(7.973) (0.13124) (0.0496)

5. GBM 0.0 0.10113 0.11848 1.0 2 3.15430 5.5320
(1.504) (8.036) (0.20656) (0.0629)

6. BS 0.02421 −0.31366 0.11857 1.0 1 2.21241 3.9297
(1.237) (−0.917) (8.091) (0.13690) (0.0474)

7. CIR-VR 0.0 0.0 1.5778 1.5 3 6.2067 6.3042
(8.00) (0.1019) (0.0977)

8. CEV 0.0 0.10300 0.43240 1.24438 1 2.98565 3.4399
(1.528) (0.615) (4.000) (0.08401) (0.0636)

Note: Coefficient t-ratios are in parentheses. Distance and Wald tests are of the restricted model against

the alternative of the maintained model.




