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1. Introduction 
This paper discusses the calculation of analytic second-order bias expressions for the maximum 

likelihood estimators (MLEs) of the parameters of the generalized Pareto distribution (GPD). This 

distribution is widely used in extreme value analysis in many areas of application. These include 

empirical finance (e.g., Angelini, 2002; Klüppelberg, 2002; Bali and Neftci, 2003; Gilli and Këllizi, 

2006; and Gençay and Selçuk, 2006; Ren and Giles, 2010); meteorology (e.g., Holmes and Moriarty, 

1999); hydrology (e.g., Van Montfort and Witter, 1986); climatology (e.g., Nadarajah, 2008); 

metallurgy (e.g., Shi et al., 1999); seismology (e.g., Pisarenko and Sornette, 2003; and Huyes et al., 

2010); actuarial science (e.g., Cebriàn et al., 2003; Brazouskas and Kleefeld, 2009); ocean science 

(e.g., Stansell, 2005); and movie box office revenues (Bi and Giles, 2009). A useful summary table of 

additional applications is provided by de Zea Bermudez and Kotz (2010, p.1370). 

 

The motivation for the use of the GPD in such studies arises from asymptotic theory that is specific to 

the tail behaviour of the data. Accordingly, in practice, the parameters may be estimated from a 

relatively small number of extreme order statistics (as is the case if the so-called “peaks over 

threshold” procedure is used), so the finite-sample properties of the MLEs for the parameters of this 

distribution are of particular interest. Some attention has been paid previously to the small-sample bias 

of the MLEs for this distribution, most notably by Hosking and Wallis (1987). However, the earlier 

evidence is entirely simulation-based, and in many cases must be viewed with caution because of 

subsequently recognized issues associated with the maximization of the likelihood function. In this 

paper we consider the O(n-1) bias formula introduced by Cox and Snell (1968). This methodology is 

especially appealing here, as it enables us to obtain analytic bias expressions, and hence “bias-

corrected” MLEs, even though the likelihood equations for the GPD do not admit a closed-form 

solution.  

 

It should be noted that the Cox-Snell approach that we adopt here is “corrective”, in the sense that a 

“bias adjusted” MLE can be constructed by subtracting the bias (estimated at the MLEs of the 

parameters) from the original MLE. An alternative “preventive” approach, introduced by Firth (1993), 

involves modifying the score vector of the log-likelihood function prior to solving for the MLE. 

Interestingly, Cribari-Neto and Vasconcellos (2002) find that these two approaches are equally 

successful with respect to (finite sample) bias reduction without loss of efficiency in the context of the 

MLE for the parameters of the beta distribution. In that same context, they find that the bootstrap 

performs poorly with respect to bias reduction and efficiency. We do not pursue preventive methods of 

bias reduction in this study. 
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Our results show that bias-correcting the MLEs for the parameters of the GPD, using the estimated 

values of the analytic O(n-1) bias expressions, is extremely effective in reducing absolute relative bias. 

In addition, this is often accompanied by a modest reduction in relative mean squared error. We 

compare this analytic bias correction with the alternative of using the parametric bootstrap to estimate 

the O(n-1) bias, and then correcting accordingly. We find that the bootstrap bias-correction can be even 

more effective in terms of reducing bias, but this generally comes at the expense of increased relative 

mean squared error. Also, in practice its application raises some computational issues. Consequently 

we do not recommend a bootstrap bias correction for the MLEs of the GPD parameters, and instead 

favour the Cox-Snell analytic correction. 

 

Section 2 summarizes the required background theory, which is then used to derive analytic 

expressions for the first-order biases of the MLEs of the parameters of the generalized Pareto 

distribution in section 3. Section 4 reports the results of a simulation experiment that evaluates the 

properties of bias-corrected estimators that are based on our analytic results, as well as the 

corresponding bootstrap bias-corrected MLEs. Some illustrative applications are provided in section 5, 

and some concluding remarks appear in section 6. 

 

2. Second-order biases of maximum likelihood estimators 

For some arbitrary distribution, let )(l  be the (total) log-likelihood based on a sample of n 

observations, with p-dimensional parameter vector, θ. )(l is assumed to be regular (in the sense of 

Dugué, 1937 and Cramér, 1946, p.500) with respect to all derivatives up to and including the third 

order. The implications of this in the case of the GPD are discussed below. 

 

The joint cumulants of the derivatives of )(l are denoted: 

 

 )/( 2
jiij lEk     ; i, j = 1, 2, …., p     (1) 

)/( 3
ljiijl lEk     ; i, j, l = 1, 2, …., p    (2) 

)]/)(/[( 2
, ljilij llEk    ; i, j, l = 1, 2, …., p     (3) 

and the derivatives of the cumulants are: 

  

 lij
l

ij kk  /)(    ; i, j, l = 1, 2, …., p.    (4) 
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All of the ‘k’ expressions are assumed to be O(n). 

 

Extending earlier work by Bartlett (1953a, 1953b), Haldane (1953), Haldane and Smith (1956), 

Shenton and Wallington (1962) and Shenton and Bowman (1963), Cox and Snell (1968) showed that 

when the sample data are independent (but not necessarily identically distributed) the bias of the sth 

element of the MLE of θ ( )̂ is: 

 

    
  


p

i

p

j

p

l
lijijl

jlsi
s nOkkkkBias

1 1 1

2
, )(]5.0[)ˆ( ; s = 1, 2, …., p.    (5) 

where kij is the (i,j)th element of the inverse of the (expected) information matrix, }{ ijkK  . Cordeiro 

and Klein (1994) noted that this bias expression also holds if the data are non-independent, provided 

that all of the k terms are O(n), and that it can be re-written as: 

    
  


p

i

p

j

p

l

jl
ijl

l
ij

si
s nOkkkkBias

1 1 1

2)( )(]5.0[)ˆ( ; s = 1, 2, …., p.    (6) 

Notice that (6) has a computational advantage over (5), as it does not involve terms of the form 

defined in (3).  

 

Now, let )2/()()(
ijl

l
ij

l
ij kka  , for i, j, l = 1, 2, …., p ; and define the following matrices: 

 }{ )()( l
ij

l aA  ; i, j, l = 1, 2, …., p       (7) 

 ]|.......||[ )()2()1( pAAAA  .        (8) 

 

Cordeiro and Klein (1994) show that the expression for the O(n-1) bias of the MLE of θ ( )̂ can be re-

written in the convenient matrix form: 

 

)()()ˆ( 211   nOKvecAKBias  .       (9) 

A “bias-corrected” MLE for θ can then be obtained as: 

 

)ˆ(ˆˆˆ~ 11  KvecAK ,         (10) 

where  ̂|)(ˆ KK   and  ̂|)(ˆ AA  , and the bias of ~ is O(n-2). 
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3. Bias correction for the generalized Pareto distribution 

We now turn to the problem of reducing the bias of the MLEs for the parameters of a distribution that 

is widely used in the context of the peaks-over-threshold method in extreme value analysis. The 

generalized Pareto distribution (GPD) was proposed by Pickands (1975), and it follows directly from 

the generalized extreme value (GEV) distribution (Coles, 2001, pp.47-48, 75-76) that is used in the 

context of block maxima data. The distribution and density functions for the GPD, with shape 

parameter, or tail index, ξ and scale parameter σ, are: 

 

 
0;)/exp(1

0,0;/11)( /1


 


 

y

yyyF
       (11) 

 

 
0;)/exp()/1(

0,0;/1)/1()( 1/1


 


 

y

yyyf
      (12) 

respectively. Note that  y0  if 0 , and  /0  y  if 0 . The (integer-order) central 

moments of the GPD can be shown (e.g., Arnold, 1983, pp. 50-51) to be: 

  


r

i

rr irYE
1

)]1(/[]![)(   ; r = 1, 2, …. 

and the rth moment exists if r/1 .  

 

We will be concerned with the MLE for ),('   . The finite-sample properties of this estimator 

have not been considered analytically before, although Hosking and Wallis (1987) and Moharram et 

al. (1993) provide some simulation evidence. Jondeau and Rockinger (2003) provide some limited 

Monte Carlo results for a modified MLE of the shape parameter in the related GEV distribution. Other 

estimators are available, and many of them are reviewed by de Zea Bermudez and Kotz (2010). 

Hosking and Wallis (1987) discuss the method of moments (MOM) and probability-weighted 

moments (PWM) estimators of θ; Castillo and Hadi (1997) propose the “elemental percentile method”; 

Luceño (2006) considers various “maximum goodness of fit” estimators, based on the empirical 

distribution function; and Brazauskas and Kleefeld (2009) provide a robust estimation procedure. 

Finally, Zhang (2007) proposes a “likelihood moment estimator”, and Zhang and Stephens (2009) 

discuss a quasi-Bayesian estimator. We discuss these last two estimators further in section 4, as we 

compare their performance with that of our bias corrected estimator in this study. 
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The above condition for the existence of moments can, of course, limit the applicability of MOM 

estimation for this distribution. In what follows, it is important to note that the MLE is also defined 

only in certain parameter ranges. More specifically, the MLEs of ξ and σ do not exist if 1  

because in that case the density in (4.2) tends to infinity when y tends to  / . In addition, the usual 

regularity conditions do not hold if 2/1  (Smith, 1985, p.89). For these and other reasons, 

maximum likelihood estimation of the parameters of the GPD can be challenging in practice, as is 

discussed more fully by Davison and Smith (1990), Grimshaw (1993), Castillo and Hadi (1997), 

Chaouche and Bacro (2006), Castillo and Daoudi (2009), and Zhang and Stephens (2009).  

 

Assuming independent observations, which in practice may require that the data be “de-clustered” 

prior to use, the full log-likelihood based on (12) is: 

 


n

i
iynl

1
)/1ln()/11()ln(),(  .      (13) 

So, 

   


 n

i
ii

n

i
i yyyl

11

12 )]/([)1()/1ln(/       (14) 

 ]})/([)1({/
1

1  


 n

i
ii yynl        (15) 

    






 n

i
ii

n

i
i

n

i
ii yyyyyl

1

221

11

322 ])/([)1()]}/1[ln()/({2/    (16) 

 }])/()2([)1({/
1

2222  


 n

i
iii yyynl       (17) 

 })]/([])/([)1{(/
1 1

1212   
 

 n

i

n

i
iiii yyyyl      (18) 

 


 



 




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n

i
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n

i
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n

i

n

i
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yyyl

1
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1
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1 1

433

]))/([()/11(2}])/([

)]/([2)]/1[ln(2{3/




   (19) 

 

 









n

i
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n

i
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yyynl

1
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1

2333

])/([)[1(2

}])/()2([)1({2/




     (20) 
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 

  



 



n

i
ii

n

i

n

i
iiii

yy

yyyyl

1

3
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212123

]})/([)1(2

])/([)]/([{/




    (22) 

 

The first-order conditions that are obtained by setting (14) and (15) to zero do not admit a closed-form 

solution. However, we can still determine the bias of the MLEs of the parameters and then obtain their 

“bias-adjusted” counterparts by modifying the numerical solutions (estimates) to the likelihood 

equations by the extent of the (estimated) bias. 

 

The following results are obtained readily by direct integration after the change of variable, 

 /1 yx  , regardless of the sign of  , and hence regardless of the domains of y and x: 

1)1()]/([   yyE    ;   1     (23) 

12 )]21)(1([])/([   yyE   ; 2/1    (24) 

123 )]31)(21([])/([   yyE   ; 3/1    (25) 

122 )]21)(1[(2])/([   yyE   ; 2/1    (26) 

132 )]31)(21)(1([2])/([   yyE  ; 3/1    (27) 

133 )]31)(21)(1[(6])/([   yyE  ; 3/1    (28) 

1)]1)(1[(2)]/()2([   yyyE  ; 11      (29) 

12 )]21[(2])/()2([   yyyE   ; 2/1     (30) 

13 )]31)(1([2])/()2([   yyyE  ; 3/1  .  (31) 

 

Recalling that  /0  y  if 0 , the constraints associated with   in equations (23) to (31) 

ensure the existence and positivity of the various expectations. Collectively, these constraints require 

that 13/1   . To ensure, in addition, the existence of the first two (three) moments of y we require 

that 2/13/1    ( 3/13/1   ). With the change of variable, )/1ln( yz  , and using 

formula 3.381 no. 4 from Gradshteyn and Ryzhik (1965, p.317) with 0 , we also have: 

 

   )]/1[ln( yE  .         (32) 

It is readily shown that (32) also holds for 0 .  
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We can now evaluate the various terms needed to determine the Cox-Snell biases of the MLEs of ξ 

and σ, as discussed in section 2: 

 

)]21)(1/[(211   nk          (33) 

)]21(/[ 2
22   nk           (34) 

)]21)(1(/[12   nk          (35) 

                                    (36) 

)]31(/[4 3
222   nk           (37) 

)]31)(21)(1(/[8 2
112   nk         (38) 

)]31)(21(/[4 2
122   nk          (39) 

])21()1/[()43(2 22)1(
11   nk         (40) 

0)2(
11 k            (41) 

])21(/[2 22)1(
22   nk          (42) 

)]21(/[2 3)2(
22   nk           (43) 

])21()1(/[)43( 22)1(
12   nk         (44) 

)]21)(1(/[ 2)2(
12   nk          (45) 

   

Note that all of (33) to (45) are O(n), as is required for the Cox-Snell result. The information matrix is 

 













)]21(/[1)]21)(1(/[1

)]21)(1(/[1)]21)(1/[(2
2 


nK   .   (46) 

The elements of )1(A are: 

)]31)(21)(1/[(12])21()1/[()43(2 22)1(
11   nna     (47) 

)]31)(21(/[2])21(/[2 222)1(
22   nna       (48) 

)]31)(21)(1(/[4])21()1(/[)43( 222)1(
21

)1(
12   nnaa    ,  (49) 

 

and the corresponding elements of )2(A are: 

)]31)(21)(1(/[4 2)2(
11   na        (50) 

)]31(/[2)]21(/[2 33)2(
22   nna        (51) 

)]31)(21)(1/[(24111   nk
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)]31)(21(/[2)]21)(1(/[ 22)2(
21

)2(
12   nnaa      (52) 

Defining ]|[ )2()1( AAA  , the expression for the biases of the MLEs of ξ and σ to order O(n-1) is  

)(
ˆ

ˆ
11 










 KvecAKBiasB




,         (53) 

which can be evaluated by using (46) to (52), provided that 13/1   .  

 

Noting that all of the )(l
ija terms are of order n, and that (from (46)) 1K  is of order n-1, we see that the 

bias expression in (53) is indeed O(n-1), as required. Finally, a “bias-corrected” MLE for the parameter 

vector can be obtained as 'ˆ)'ˆ,ˆ()'~,
~

( B  , where B̂ is constructed by replacing  and σ in (53) 

with their MLEs. This modified estimator is unbiased to order O(n-2), but should not be used unless 

1ˆ3/1   . 

 

4. Simulation results 

The bias expression in (53) is valid only to )( 1nO . The actual bias and mean squared error (MSE) of 

the maximum likelihood and bias-corrected maximum likelihood estimators have been evaluated in a 

Monte Carlo experiment. The simulations were undertaken using the R statistical software 

environment (R, 2008). Generalized Pareto variates were generated using the evd package 

(Stephenson, 2008), and the log-likelihood function was maximized using the method outlined by 

Grimshaw (1993) using R (2008) code kindly supplied by the latter author.  Grimshaw’s algorithm 

was used as it deals carefully with several known difficulties that arise with MLE in the context of the 

GPD. Earlier simulation experiments that ignore the subtleties associated with this MLE problem 

should be viewed with caution. Each part of our experiment uses 50,000 Monte Carlo replications. 

  

Without loss of generality, we have set 1 . The sample sizes that we consider are motivated by 

practical applications. For example, Brooks et al. (2005) and Brazouskas and Kleefled (2009) deal 

with (effective) sample sizes as small as n = 35, 40, Nadarajah (2008) uses samples ranging from 66 to 

90, while Bali and Neftci (2003) have a sample of n = 300. We report results for several values of   

that are consistent with the validity of our bias correction formula, and with the existence of the first 

two moments of the GPD.  Positive values of   are especially pertinent in the modeling of returns on 

financial assets (e.g., see the results of Klüppelberg, 2002; Bali and Neftci, 2003; Gilli and Këllizi, 

2006; and Gençay and Selçuk, 2006), and extremes in wind gusts (Holmes and Moriarty, 1999). In 
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practice, positive values of ̂  pose no special computational issues when bias-correcting the MLEs of 

the parameters.  Negative values for the shape parameter are also considered, as they arise in other 

areas of application such as hydrology (Van Montfort and Witter, 1986), climatology (Nadarajah, 

2008), metallurgy (Shi et al., 1999), and insurance risk (Brazouskas and Kleefeld, 2009). In this case 

some care must be taken when considering the analytic bias correction.  

 

Specifically, recall the requirement noted at the end of section 3, that 3/1 . As ̂  approaches this 

threshold the value of the bias-corrected estimator, ~ , becomes unbounded. This has implications for 

both the design of our Monte Carlo experiment and for practical applications. With regard to our 

experiment, some preliminary simulation evidence suggested that, to be conservative, ~  should be 

computed only when 2.0ˆ  . Imposing this condition leads to the following “composite” estimators,  

2.0ˆ;ˆ

2.0ˆ;
~~̂








         

and            (54) 

   
.2.0ˆ;ˆ

2.0ˆ;~~̂








 

 

As alternative ways of dealing with the biases of ̂  and ̂  we have also considered the (parametric) 

bootstrap-bias-corrected estimator, as well as Zhang’s (2007) likelihood moment estimator, and the 

quasi-Bayesian estimator of Zhang and Stephens (2009). The bootstrap-bias-corrected estimator is 

obtained as 


BN

j
jBN

1
)( ]ˆ)[/1(ˆ2 


, where )(

ˆ
j is the MLE of   obtained from the jth of the NB (= 

1,000) bootstrap samples, and   is either   or  . See Efron (1982, p.33). This estimator is also 

unbiased to )( 2nO , but it is known that this reduction in bias often comes at the expense of increased 

variance. Zhang’s likelihood moment estimator, denoted LME , and the Zhang and Stephens 

estimator, denoted ZS , are computed using the R code supplied by those authors. These two 

estimators are included in this study given their favourable performances (in terms of both bias and 

efficiency) in the simulation study reported by Zhang and Stephens (2009). In particular, they 

dominated the MLE and the MOM and PWM estimators proposed by Hosking and Wallis (1987), so 

the latter two estimators are not considered here. 
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Table 1(a): Percentage biases [and MSEs] – shape parameter 

n )ˆ(% Bias     )
~̂

(% Bias  )(% 


Bias  )(% LMEBias   )(% ZSBias   

 )]ˆ([% MSE  )]
~̂

([% MSE  )]([% 


MSE  )]([% LMEMSE   )]([% ZSMSE   
      

ξ = 0.4 
50 -11.798 1.016 0.806 -10.270 0.069 
 [30.327] [22.369] [27.635]  [27.135] [24.686] 
      

100 -5.865 -0.016 0.003 -5.264 0.327 
 [13.526]  [11.694]  [12.915] [12.802] [12.142] 
      

200 -3.025 -0.227 -0.202 -2.772 0.029 
 [6.452] [6.028] [6.306] [6.290] [6.094] 
      

500 -1.107 -0.011 -0.009 -1.015 0.093 
 [2.491] [2.428] [2.472] [2.469] [2.435] 
      

ξ = 0.2 
50 -26.267 3.386 1.746 -19.184 5.279 
 [98.886]  [71.104] [85.687]  [85.649] [78.349] 
      

100 -12.531 1.328 0.532 -9.173 3.988 
 [42.339] [33.289] [39.410] [39.553] [37.506] 
      

200 -5.969 0.420 0.316 -5.021 1.732 
 [19.456]  [17.397]  [18.775]  [19.352] [18.516] 
      

500 -2.474 -0.016 -0.019 -1.844 0.872 
 [7.451] [7.141] [7.344] [7.539] [7.249] 
      

ξ = 0.1 
50 -56.502 3.986 3.316 -37.213 14.753 
 [358.213] [283.990] [299.044] [304.59] [278.936] 
      

100 -27.568 3.784 0.511 -18.111 9.909 
 [150.287] [112.202] [136.723] [140.050] [131.547] 
      

200 -12.994 1.456 0.598 -8.435 6.075 
 [68.113] [58.050]  [64.919] [67.579] [63.629] 
      

500 -5.042 0.393 0.292 -3.148 2.711 
 [25.247] [23.816] [24.762] [25.932] [24.515] 
      

ξ = -0.1 
50 -64.681 -27.856 5.419 -33.501 22.755 
 [309.862] [334.545] [233.657] [253.223] [231.229] 
      

100 -32.123 -4.402 1.086 -15.788 14.044 
 [121.356] [122.503] [104.510] [113.853] [103.929] 
      

200 -16.442 1.145 0.191 -7.589 7.647 
 [52.232]  [48.099]  [47.749] [53.413] [47.682] 
      

500 -7.011 0.948 -0.195 -3.017 3.147 
 [18.573]  [16.416] [17.747] [20.341] [17.724] 
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Table 1(a) (continued): Percentage biases [and MSEs] – shape parameter 

n )ˆ(% Bias     )
~̂

(% Bias  )(% 


Bias  )(% LMEBias   )(% ZSBias   

 )]ˆ([% MSE  )]
~̂

([% MSE  )]([% 


MSE  )]([% LMEMSE   )]([% ZSMSE   
      

ξ = -0.15 
50 -45.475 -29.834 3.575 -22.149 15.594 
 [135.604] [148.169] [98.001]  [109.576] [99.272] 
      

100 -22.531 -9.709 0.678 -10.217 9.609 
 [51.776]  [56.667]  [43.771]  [48.365] [43.811] 
      

200 -11.553 -2.507  0.181 -4.769 5.334 
 [21.836]  [23.210]  [19.705] [22.578] [19.798] 
      

500 -4.671 0.329  0.213 -1.558 2.523 
 [7.573] [7.539]  [7.202]  [8.569] [7.229] 
      

ξ = -0.2 
50 -35.708 -30.442 3.090  -16.095 12.257 
 [76.073]  [80.522]  [52.506] [60.185] [54.369] 
      

100 -18.025 -13.347 0.245 -7.413 7.164 
 [28.039] [30.718]  [23.153]  [26.233] [23.377] 
      

200 -9.146 -5.887 0.176 -3.344 4.119 
 [11.625]  [12.959] [10.342] [12.15] [10.460] 
      

500 -3.796 -2.068 0.158 -1.052 1.925 
 [3.961] [4.418] [3.729] [4.588] [3.755] 

 
 

Table 1(b): Percentage biases [and MSEs] – scale parameter 
 

n )ˆ(% Bias  )~̂(% Bias  )(% Bias  )(% LMEBias   )(% ZSBias   

 )]ˆ([% MSE  )]~̂([% MSE  )]([% MSE  )]([% LMEMSE   )]([% ZSMSE   
      

ξ = 0.4 
50 5.770 -1.863 -0.634 4.950 0.697 
 [7.316] [4.069] [6.113] [6.662] [5.787] 
      

100 2.879 -0.203 0.005 2.596 0.323 
 [3.149] [2.432] [2.895] [3.025] [2.793] 
      

200 1.398 0.004 0.039 1.288 0.156 
 [1.485] [1.323] [1.428] [1.458] [1.399] 
      

500 0.557 0.028 0.034 0.519 0.074 
 [0.572] [0.547] [0.563] [0.568] [0.558] 
      

ξ = 0.2 
50 5.993 -2.401 -0.679 4.374 -0.561 
 [6.484] [3.559] [5.234] [5.708] [4.916] 
      

100 2.794 -0.679 -0.165 2.092 -0.562 
 [2.731] [1.887] [2.479] [2.585] [2.372] 
      

200 1.299 -0.184 -0.092 1.118 -0.248 
 [1.286] [1.097] [1.230] [1.282] [1.215] 
      

500 0.537 -0.010 0.000 0.416 -0.135 
 [0.496] [0.468] [0.488] [0.499] [0.482] 
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Table 1(b) (continued): Percentage biases [and MSEs] – scale parameter 

n )ˆ(% Bias  )~̂(% Bias  )(% Bias  )(% LMEBias   )(% ZSBias   

 )]ˆ([% MSE  )]~̂([% MSE  )]([% MSE  )]([% LMEMSE   )]([% ZSMSE   
      

ξ = 0.1 
50 6.147 -2.054 -0.782 4.027 -1.167 
 [6.076] [3.790] [4.780] [5.234] [4.501] 
      

100 2.948 -0.919 -0.129 1.986 -0.835 
 [2.616] [1.704] [2.346] [2.460] [2.245] 
      

200 1.383 -0.256 -0.067 0.942 -0.531 
 [1.203] [0.966] [1.142] [1.188] [1.114] 
      

500 0.566 -0.018 0.006 0.387 -0.211 
 [0.455] [0.423] [0.446] [0.462] [0.440] 
      

ξ = -0.1 
50 6.825 2.756 -1.031 3.554 -1.974 
 [5.577] [5.052] [4.012] [4.566] [3.916] 
      

100 3.304 0.327 -0.149 1.706 -1.294 
 [2.292] [1.952] [1.984] [2.132] [1.918] 
      

200 1.570 -0.289 -0.106 0.733 -0.828 
 [1.032] [0.861] [0.959] [1.025] [0.942] 
      

500 0.693 -0.129 0.019 0.322 -0.321 
 [0.386] [0.336] [0.374] [0.401] [0.370] 
      

ξ = -0.15 
50 6.932 4.689 -1.276 3.306 -2.229 
 [5.441] [5.126] [3.797] [4.403] [3.779] 
      

100 3.304 1.475 -0.276 1.507 -1.477 
 [2.211]  [2.069] [1.901] [2.046] [1.846] 
      

200 1.642 0.330 -0.114 0.684 -0.874 
 [0.994] [0.934] [0.918] [0.989] [0.904] 
      

500 0.675 -0.064 -0.042 0.244 -0.400 
 [0.372] [0.348] [0.359] [0.390] [0.356] 
      

ξ = -0.2 
50 7.214 6.590 -1.450 3.163 -2.350 
 [5.432]  [5.171] [3.619] [4.274] [3.678] 
      

100 3.530 2.872 -0.200 1.476 -1.451 
 [2.145] [2.090] [1.815] [1.972] [1.772] 
      

200 1.722 1.219 -0.123 0.634 -0.906 
 [0.958] [0.960] [0.878] [0.956] [0.868] 
      

500 0.726 0.436 -0.042 0.221 -0.412 
 [0.356] [0.365] [0.342] [0.377] [0.340] 
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Table 1 summarizes the performances of the various estimators in terms of percentage biases and 

MSE’s, the former being defined as 100 (Bias / | ξ |) and 100 (Bias / | σ |), and the latter as 

100 (MSE / ξ2) and 100 (MSE / σ2). We see that the original MLEs of the shape and scale 

parameters are negatively and positively biased, respectively, regardless of the sign of  . The 

percentage bias of ̂   decreases in absolute value as the true absolute value of the shape parameter 

increases. This absolute bias is slightly larger for negative values of   than for positive values of this 

parameter in corresponding situations. On the other hand the percentage bias of ̂  is relatively robust 

to changes in the magnitude and sign of the shape parameter. Of course, these absolute biases decline 

monotonically as the sample size increases.  All of these observations are consistent with the results in 

Table 2 of Hosking and Wallis (1987, p.343), who report that they had difficulties with their Newton-

Raphson maximization algorithm for small sample sizes. Moreover, the numerical values of our biases 

for ̂  and ̂  are very close to those of Hosking and Wallis, once account is taken of the fact that our 

  corresponds to their –k, and that they report actual (rather than percentage) biases. 

 

The analytic bias corrections, in the form of ~̂  and ̂~ , perform extremely well in all cases, and 

generally reduce the percentage biases by at least an order of magnitude when 0 . For 0  

these bias reductions are still substantial, though less so as   becomes increasingly negative. In some 

cases there is an “over-correction” when the bias correction is applied, with the percentage bias 

changing sign. This can been seen in Table 1 when 1.0 , for all values of n considered. Similar 

results are reported by Cribari-Neto and Vaconcellos (2002) in the case of the beta distribution, Giles 

(2011) for the half-logistic distribution, and Giles et al. (2011) for the Lomax distribution. 

 

It is extremely encouraging that the reduction in the relative biases for the (bias-corrected) estimators 

of both   and   is accompanied by a small reduction in relative mean squared error when 0 .  

With only two exceptions (for large n when 2.0 ), the same is true for the estimators of   when 

0 , and in the exceptional cases the %MSE is essentially unchanged by the bias correction. 

Analytically bias-adjusting the MLE for  , when that parameter is negative, can affect the %MSE 

either favourably or unfavourably, but only very modestly.  

 

The results of bootstrap bias-correcting ̂  and ̂  are also very satisfactory, as absolute percentage 

biases are reduced, and so are %MSE’s, in all of the cases considered in Table 1. The same is true for 
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Zhang’s likelihood moment estimator, and the estimator proposed by Zhang and Stephens. Consistent 

with the latter authors’ results, ZS  dominates LME  with respect to both bias and efficiency when 

the scale parameter is positive, and in many of the cases considered when it is negative. The bootstrap 

bias-corrected estimator typically dominates Zhang and Stephens’ estimator in terms of percentage 

bias – often by an order of magnitude. For positive values of the shape parameter, the %MSE of the 

bootstrap estimator is very close to that of the likelihood moment estimator; while it is very close to 

that of Zhang and Stephens’ estimator when 0 . Overall, the bootstrap estimator is dominant 

among these three. However, when both bias and efficiency are taken into account, together with 

computational cost, our composite bias-corrected estimators perform very credibly, especially when 

the shape parameter is positive. 

 

Making comparisons between the effectiveness of our analytical bias correction and that of the other 

three estimators is complicated by the fact that we are proposing “composite” estimators, ~̂  and ̂~ , 

given in (54), in Table 1. If  2.0ˆ  , then the appropriate comparison is that between the  “pure” 

analytically bias-adjusted estimators ( ~  and ~ ), and the alternative estimators (bootstrap-corrected, 

likelihood moment, and Zhang-Stephens). This is facilitated in Table 2 with the measures )
~

,( 


PB  

and )
~

,( 


PM , where )
~

,( 


PB  = |)(%| 


Bias - |)
~

(%| Bias  , and )
~

,( 


PM  = |)(%| 


MSE -

|)
~

(%| MSE  . Corresponding measures are defined for a comparison between   and ~ , and for 

comparisons between our composite estimator and each of the estimators proposed by Zhang (2007) 

and Zhang and Stephens (2009). To provide an alternative perspective to that given in Table 1, the 

values in Table 2 have been computed only for those Monte Carlo replications in which 2.0ˆ  . For 

example, when 2.0 , and n = 100, only 37% of the 50,000 Monte Carlo replications resulted in an 

analytic correction. The corresponding percentages when 1.0  and n = 100, and when 2.0  and 

n = 100, are 75.3% and 99.7% respectively. 

 

In Table 2, positive values imply that the second-named estimator dominates the first-named 

estimator, in terms of either bias or MSE. We see that in terms of the latter criterion, our pure Cox-

Snell correction always dominates the other three bias corrections in terms of %MSE. Comparing the 

various bias corrected estimators of both of the parameters, in terms of percentage bias reduction, we 

see that although the results are somewhat “mixed”, the dominant pattern is that the order of 

preference is LMEZS  
 ~

 (for  , ) when 0 , and ZSLME  



~

 when 0 . 



 16

 

When the MSE reduction and the computational simplicity are taken into account, the Cox-Snell 

analytic bias correction can be recommended unless the MLE for the shape parameter is “too close” to 

its lower threshold value of -1/3. The latter constraint ensures the validity of the Cox-Snell bias 

correction, and it is more than sufficient for the likelihood function to be regular. So, the analytic 

correction is unlikely to be applied when the regularity conditions are violated if our recommendation 

is followed. In contrast, the bootstrap bias correction can be applied even when the regularity 

conditions fail, resulting in modified MLEs that lack their usual desirable asymptotic properties. 

 

Finally, the first and fifth columns of results in Table 2 should not affect the justification for our 

earlier recommendation to use the “composite” estimators, ~̂  and ̂~ . With two (small n) exceptions 

the values of  )
~

,ˆ( PB  and )~,ˆ( PB  are positive when 0 . However, they are negative (with 

one exception) when the shape parameter is negative. The latter result is not surprising, and is due to 

the decision rule of bias-correcting only when 2.0ˆ  . Since the bias of ̂ is negative, bias-

correction tends to make the estimate larger, and when 0 it is likely that only estimates that are 

already too large will meet the decision criteria.  
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Table 2: Comparisons between percentage biases [and MSEs] 

 

n )
~

,ˆ( PB  )
~

,(  ZS
PB  )

~
,(  LME

PB  )
~

,( 


PB  )~,ˆ( PB  )~,(  ZS
PB  )~,(  LME

PB  )~,( PB  

 )
~

,ˆ( PM  )
~

,(  ZS
PM  )

~
,(  LME

PM  )
~

,( 


PM  )~,ˆ( PM    )~,(  ZS
PM  )~,(  LME

PM )~,( PM  

 

ξ = 0.4 

50 8.519  -1.151  7.136  -0.342  3.031  -1.957  2.301  -1.324 
 [8.012]  [2.953]  [5.287]  [5.727]  [3.269]  [1.881]  [2.736]  [2.174] 

100 5.850  0.340  5.250  0.017  2.663  0.108  2.381  -0.208 
 [1.831]  [0.452]  [1.112]  [1.224]  [0.717]  [0.362]  [0.595]  [0.464] 

200 2.798  -0.198  2.545  -0.025  1.394  0.152  1.284  0.035 
 [0.424]  [0.066]  [0.262]  [0.278]  [0.161]  [0.075]  [0.135]  [0.105] 

500 1.096  0.082  1.004  -0.002  0.530  0.046  0.492  0.006 
 [0.062]  [0.007]  [0.041]  [0.044]  [0.024]  [0.011]  [0.021]  [0.016] 

 

ξ = 0.2 

50 3.524  -0.234  -2.437  -3.299  -0.214  -2.513  -1.508  -2.268 
 [28.928]  [17.387]  [21.612]  [22.554]  [3.045]  [1.965]  [2.623]  [2.196] 

100 9.957  2.586  6.664  -0.851  1.888  -0.139  1.204  -0.530 
 [9.076]  [4.568]  [6.587]  [6.363]  [0.846]  [0.503]  [0.715]  [0.606] 

200 6.429  1.567  4.839  -0.105  1.372  0.187  1.055  -0.092 
 [2.182]  [0.883]  [1.719]  [1.379]  [0.197]  [0.105]  [0.173]  [0.133] 

500 2.458  0.856  1.828  0.003  0.526  0.124  0.406  -0.010 
 [0.310]  [0.108]  [0.397]  [0.203]  [0.028]  [0.014]  [0.031]  [0.020] 
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Table 2 (continued): Comparisons between percentage biases [and MSEs] 

 

n )
~

,ˆ( PB  )
~

,(  ZS
PB  )

~
,(  LME

PB  )
~

,( 


PB  )~,ˆ( PB  )~,(  ZS
PB  )~,(  LME

PB  )~,( PB  

 )
~

,ˆ( PM  )
~

,(  ZS
PM  )

~
,(  LME

PM  )
~

,( 


PM  )~,ˆ( PM    )~,(  ZS
PM  )~,(  LME

PM )~,( PM  

 

ξ = 0.1 

50 -22.705  1.279  -37.820  -8.608  -3.638  -2.335  -5.170  -2.516 
 [81.739 ] [69.105]  [67.612]  [74.607]  [2.518]  [1.824]  [2.248]  [1.975] 

100 13.637  5.398  4.678  -3.871  1.020  -0.190  0.125  -0.874 
 [38.653]  [24.985]  [32.372]  [28.580]  [0.926]  [0.619]  [0.821]  [0.701] 

200 11.269  4.608  6.726  -0.866  1.097  0.273  0.658  -0.190 
 [10.067]  [5.658]  [9.643]  [6.922]  [0.226]  [0.139]  [0.213]  [0.167] 

500 4.649  2.317  2.755  -0.102  0.548  0.193  0.370  -0.012 
 [1.431]  [0.699]  [2.115]  [0.945]  [0.033]  [0.018]  [0.039]  [0.023] 
 

 
ξ = -0.1 

50 -60.477  17.752  -40.174  2.987  -6.682  0.324  -4.917  -0.323 
 [-40.537] [72.851]  [-3.083]  [40.594]  [0.861]  [1.573]  [1.117]  [1.477] 

100 -36.826  7.220  -24.198  -5.049  -3.954  0.216  -2.834  -0.022 
 [-1.524]  [25.952]  [14.941]  [14.135]  [0.451]  [0.613]  [0.581]  [0.532] 

200 -19.966  3.672  -12.334  -3.660  -2.111  0.199  -1.421  -0.260 
 [4.692]  [8.827]  [11.528]  [6.289]  [0.195]  [0.207]  [0.252]  [0.161] 

500 1.958  2.031  -1.879  -1.307  0.127  0.172  -0.225  -0.168 
 [2.196]  [1.795]  [4.462]  [1.684]  [0.052]  [0.041]  [0.072]  [0.036] 
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Table 2 (continued): Comparisons between percentage biases [and MSEs] 

 

n )
~

,ˆ( PB  )
~

,(  ZS
PB  )

~
,(  LME

PB  )
~

,( 


PB  )~,ˆ( PB  )~,(  ZS
PB  )~,(  LME

PB  )~,( PB  

 )
~

,ˆ( PM  )
~

,(  ZS
PM  )

~
,(  LME

PM  )
~

,( 


PM  )~,ˆ( PM    )~,(  ZS
PM  )~,(  LME

PM )~,( PM  

 

ξ = -0.15 

50 -32.978  20.615  -17.855  10.080  -4.728  2.196  -2.833  1.477 
 [-26.492] [45.917]  [-1.117]  [25.725]  [0.665]  [1.885]  [1.084]  [1.711] 

100 -22.074  7.988  -12.989  -0.358  -3.149  0.985  -1.979  -0.022 
 [-8.420]  [13.769]  [3.071]  [5.551]  [0.244]  [0.665]  [0.450]  [0.532] 

200 -12.999  3.295  -7.452  -1.737  -1.886  0.446  -1.156  -0.260 
 [-1.974]  [4.059]  [3.198]  [1.581]  [0.086]  [0.209]  [0.187]  [0.161] 

500 -5.839  1.260  -3.144  -1.040  -0.864  0.183  -0.505  -0.168 
 [0.040]  [0.815]  [1.871]  [0.447]  [0.028]  [0.043]  [0.067]  [0.036] 
 
 

ξ = -0.2 

50 -15.583  25.801  -2.316  17.249  -1.846  4.952  0.293  4.153 
 [-13.166] [41.846]  [7.532]  [26.717]  [0.775]  [2.579]  [1.402]  [2.317] 

100 -12.615  10.584  -4.136  4.018  -1.774  2.305  -0.359  1.278 
 [-7.224]  [12.578]  [3.103]  [5.689]  [0.146]  [0.892]  [0.485]  [0.673] 

200 -8.091  4.428  -3.066  0.573  -1.248  1.052  -0.388  0.351 
 [-3.313]  [3.639]  [1.467]  [1.135]  [-0.004]  [0.287]  [0.163]  [0.187]  

500 -3.980  1.504  -1.420  -0.246  -0.668  0.377  -0.218  0.032 
 [-1.054]  [0.718]  [0.754]  [0.091]  [-0.021]  [0.060]  [0.047]  [0.031] 
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5. Empirical examples 

We present some empirical examples based on a variety of real data-sets to illustrate the practical 

impact of using the analytical bias adjustment for the MLEs of the parameters of the GPD. The first 

two examples simply relate to estimates that are already reported in the literature, and are chosen for 

their relatively small sample sizes and the fact that they involve both positive and negative estimates 

of the shape parameter. 

 

5.1 Rainfall data 

Van Montfort and Witter (1986) use the GPD to model Dutch rainfall data. The cases that they 

consider involve a range of sample sizes, and in Table 3 we report their MLEs for their three smallest-

sized samples. The corresponding analytically bias-adjusted estimates are also reported, with 

bootstrapped standard errors based on 20,000 bootstrap samples. We see that the estimates of the 

shape parameter are quite sensitive to the bias adjustment, with a change in sign occurring when n = 

87. 

 

The bootstrapped standard errors for ~  and ~  describe the precision of these estimates. We can also 

test if the bias-adjusted estimates are significantly different from the original MLEs, taking account of 

the fact that the sampling distributions of ~  and ~  are highly non-normal, especially at these sample 

sizes. The bootstrap p-values (p) in Table 3 facilitate this. Consider the results for n = 83, for example. 

There is a probability of only 0.6% that a value as “extreme” as the estimate based on ̂  will occur, 

conditional on the sampling distribution of ~ . In this sense, one concludes that the bias-adjusted 

estimate of   is significantly different from the unadjusted estimate. With a nominal significance 

level of 2%, say, the same result holds for all of the other parameter estimates in Table 3. 

 

 
Table 3: Dutch rainfall data 1 

                                

n ̂   ~   p  ̂   ~   p 

 (a.s.e.)  (b.s.e.)    (a.s.e.)  (b.s.e.) 

     

83 0.091  0.225  0.006  9.142  7.650  0.016 

 (0.123)  (0.117)    (1.508)  (1.027) 

84 0.002  0.160  0.011  7.074  5.673  0.010 
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 (0.129)  (0.108)    (1.200)  (0.746) 

87 -0.031  0.127  0.016  4.994  3.990  0.012 

 (0.116)  (0.105)    (0.805)  (0.518) 

    
1.  “a.s.e.” denotes asymptotic standard error. “b.s.e.” denotes bootstrapped standard error, based on 20,000 

bootstrap samples. 

 

 

5.2 Experimental steels data 

Shi et al. (1999) use maximum likelihood estimation to fit the GPD to data for “inclusions” collected 

on the surfaces of cold crucible re-melted steels. In Table 4 we reproduce the results from their Table 3 

for a selection of thresholds, u, above which the GPD was fitted by MLE using the associated 

exceedances. In all cases, 2.0ˆ  , consistent with the rule of thumb suggested in conjunction with 

equation (54) above. The number of exceedances (n) were reported only graphically by Shi et al. 

(1999) in their Figure 7, and our “reverse engineered” values are provided in Table 4 below. 

Using these data we have bias-adjusted the MLEs for the parameters of the GPD, for two steel types – 

A and B. We see in Table 4 that correcting for bias can alter the point estimates dramatically. This is 

especially so in the case of the shape parameter, where there are many instances of sign changes as we 

move from ̂  to ~ . The effect of these changes on the estimated survival function for the GPD is 

illustrated in Figure 1, for the case of u = 2.8 for Steel B. We see, for example, that the 99th percentile 

of the distribution increases from 4μm to 5μm as a result of bias-correcting the MLEs. The numerical 

effect on the survival function is substantial. 

 

 

Table 4: Experimental steels data1 

 

 

  Steel A                           Steel B 

       

u     ̂      ̂     ~        ~      u     ̂    ̂   ~  ~  

( m )       ( m ) 

[n]              [n] 
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2.0 -0.098 1.616 0.034 1.350  2.0 -0.195 1.420 0.007 1.049 

[78] (0.123) (0.275) (0.125) (0.203)  [72] (0.124) (0.250) (0.130) (0.167) 

2.2 -0.055   1.455 0.057 1.258  2.2 -0.097 1.150 -0.011 1.038 

[70] (0.135) (0.269) (0.218) (0.422)  [69] (0.133) (0.212) (0.230) (0.303) 

2.4 -0.055 1.450 0.071 1.230  2.4 -0.113 1.160 0.004 1.005 

[62] (0.146) (0.289) (0.226) (0.418)  [55] (0.152) (0.246) (0.245) (0.305) 

2.6 -0.062   1.460 0.099 1.175  2.6 -0.060 1.050 0.025 0.957 

[50] (0.168) (0.334) (0.242) (0.414)  [48] (0.172) (0.248) (0.245) (0.280) 

2.8 -0.036   1.370 0.116 1.123  2.8 -0.195 1.300 0.153 0.728 

[45] (0.180) (0.339) (0.251) (0.398)  [36] (0.213) (0.382) (0.244) (0.173) 

3.0 -0.060 1.440 0.136 1.098  3.0 -0.175 1.230 0.099 0.819 

[40] (0.196) (0.386) (0.262) (0.340)  [31] (0.250) (0.441) (0.283) (0.263) 

 
1. Bootstrapped standard errors, based on 20,000 bootstrap samples, are reported in parentheses. Standard errors 
are not reported for the original MLEs by Shi et al. (1999). 
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Figure 1: Survival functions of GPD for experimental Steel data 

(Steel B; u = 2.8) 

 

 

5.3 Stock market data 

Our first new application uses the daily returns (log-differences) of the closing values for the Dow-

Jones Industrial Average share price index between 6 July 2008 and 7 July 2009. Positive and negative 

daily returns were analyzed separately using the peaks-over-threshold technique, to allow for possible 

asymmetries. Both series are stationary and serially independent. Summary statistics appear in part (a) 

of Table 5. Using the graphical aids in the POT package (Ribatet, 2007) for R we determined a 

threshold of u = 3.0% (2%) for the positive (negative) returns, resulting in 24 (66) “exceedances” for 

the positive (negative) returns.  

 

In addition to exploring the numerical impact of bias adjustment on the MLEs of the parameters, we 

also consider the implications for two risk measures – “value-at-risk” (VaR) and “expected shortfall” 

(ES) – that are computed using the estimated parameters. Conceptually, VaRp is the (1-p)th quantile of 
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the distribution. If VaR0.01 = 5, say, there is a 1% probability that the data will exceed the value of 5. 

Similarly, ES0.01 is the (conditional) mean of the data values that exceed the VaR0.01. When the GPD is 

used to model the “exceedances” (defined as uxy ii  , where ix denotes an original observation) 

above the selected threshold, u, in the peaks-over-threshold method (e.g., Coles, 2001, chap. 4) it is 

readily established that 

























1





p
n

N
uVaRp  

and 

)1/()(   uVaRES pp , 

where p is the desired tail probability, N is the original sample size, and n is the number of 

exceedances (McNeill, 1997; Bi and Giles, 2009). 

 

The MLE results and associated estimated risk measures are given in part (b) of Table 5. We see that 

the shape and scale parameter estimates are under-stated and over-stated respectively prior to bias 

adjustment. The implication for the risk measures of failing to bias-adjust the parameter estimates is 

that they are all too conservative. This is especially so in the case of the estimated expected shortfall 

for positive returns.  

 

By way of comparison, Coles (2001, pp.86-90) analyzes a sample of 1,303 daily returns for the Dow 

Jones index. He does not separate positive returns from negative returns, and determines that a 

threshold value of u = 2% is appropriate, yielding n = 37 exceedances. His MLEs (with standard 

errors) are ̂  = 0.288 (0.258) and ̂  = 0.495 (0.150). Using these values we can obtain the bias-

adjusted parameter estimates, ~ = 0.163 (0.218) and ~  = 0.570 (0.156). Although the numerical 

impact of bias adjustment on the parameter estimates is quite marked, this does not carry through to 

the estimates of VaR and ES. Based on Coles’ original MLEs, these estimates are 2.60% and 3.54% 

respectively, and they change to 2.65% and 3.46% when the MLEs are adjusted for bias. 

 

5.4 Billion dollar weather disasters 

Our final example involves fitting a GPD to all of the 58 weather-related disasters in the U.S.A. 

between 1980 and 2003 that resulted in damages in excess of $1Billion. The data are from Ross and 

Lott (2003), and are in real 2002 billions of dollars. The summary statistics for the data appear in 

Table 6, together with the MLEs for the GPD parameters and the estimated 5% values-at-risk and 

expected shortfalls. 
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Table 5: Dow-Jones data (6 July 2008 – 7 July 2009) 

 
(a) Summary statistics 

 

        Positive returns (%)       Negative returns (%) 

 

    Full sample Exceedances  Full sample Exceedances 

 

N = 247  n = 24   N = 258  n = 66 

Mean    1.331  3.192   -1.471  -3.187 

Median    0.803  2.776   -1.113  -2.673 

Maximum (Minimum)  10.508  10.508   (-8.201)  (-8.201) 

Standard deviation  1.462  1.518   1.460  1.387 

Coefficient of variation (%) 109.8971 47.550   99.239  43.514 

Skewness   2.858  2.750   -1.911  -1.873 

Kurtosis   15.19821 12.296   7.670   6.323 

 

(b) Estimation results1 

 

Positive returns    Negative returns  

     

̂  (a.s.e.)   0.388 (0.335)    0.100 (0.167) 

̂  (a.s.e.)   1.080 (0.415)    1.272 (0.263) 

 ~ (b.s.e.)   0.497 (0.343)    0.170 (0.141) 

 ~ (b.s.e.)   0.942 (0.406)     1.171 (0.194) 

  

01.0ˆRaV  ( 01.0
~RaV )  6.94% (6.97%)    6.87% (7.06%) 

01.0ŜE  ( 01.0

~
SE )  11.20% (12.77%)   8.82% (9.51%) 

    
1. “a.s.e.” denotes asymptotic standard error. “b.s.e.” denotes bootstrapped standard error, based on 20,000       
bootstrap samples. 
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Table 6: Weather disasters (1980 - 2003) 

 
(a) Summary statistics (billions of 2002 $’s) 

 

n   58  Order statistics:  1st – 4th  1.1 

Mean   6.03     54th  13.9 

Median   2.45     55th  26.7 

Standard deviation 11.02     56th  35.6 

Skewness  3.70     57th  48.4 

Kurtosis  16.59     58th  61.6 

 

(b) Estimation results1 

     

̂  (a.s.e.) 0.736 (0.223)  ~ (b.s.e.) 0.803 (0.220)   

̂  (a.s.e.) 1.709 (0.410)  ~ (b.s.e.) 1.569 (0.352) 

    

05.0ˆRaV  $19.7 Billion  05.0
~RaV  $20.7 Billion  

05.0ŜE   $78.3 Billion  05.0
~
SE   $109.0 Billion 

   
1. “a.s.e.” denotes asymptotic standard error. “b.s.e.” denotes bootstrapped standard error, based on 20,000 
bootstrap samples. 
 
 
 

We see that in this example the estimates of the shape parameter imply that second and higher-order 

moments of the underlying GPD do not exist. In addition, the effect of bias-correcting the parameter 

estimates is to increase the 5% value-at-risk by $1 Billion, and the associated expected shortfall by 

nearly $31 Billion. It should be noted that in this case the threshold for the latter calculations is $1 

Billion. So, the interpretation of the bias-corrected VaR is that once the damage bill for a weather-

related disaster reaches $1 Billion, there is a 5% probability that it will ultimately reach $20.7 Billion 

or more. The interpretation of the corresponding ES is that, conditional on the damage bill reaching its 

VaR value of $20.7 Billion, we can expect that the final bill will reach $109 Billion. The estimated 

VaR value seems very reasonable when we consider the largest four order statistics given in Table 6 

(a). Four (or 6.9%) of the 58 observations exceed $20.7 Billlion.  
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6. Conclusions 

We have derived analytic expressions for the bias to O(n-1) of the maximum likelihood estimators of 

the parameters of the generalized Pareto distribution. These have then been used to bias-correct the 

original estimators, resulting in modified estimators that are unbiased to order O(n-2). Specifically, we 

have considered “composite” estimators which involve bias correcting in this way only if the MLE of 

the shape parameter is in a specified range. We find that the negative relative bias of the shape 

parameter estimator, and the positive relative bias of the scale parameter estimator are each reduced 

dramatically by using this correction. This reduction is especially noteworthy in the case of the shape 

parameter. Importantly, these gains are usually obtained with a small reduction in relative mean 

squared error when the shape parameter is positive, and only very minimal increases in this measure 

when this parameter is negative, at least for sample sizes of the magnitude likely to be encountered in 

practice.  

 

Using the bootstrap to bias-correct the maximum likelihood estimators of the parameters is also 

extremely effective for this distribution. However, on balance it is inferior to the analytic “composite” 

correction, especially once the effect on mean squared error is considered, and computational costs 

and robustness are taken into account. Alternative estimators for this distribution’s parameters have 

been proposed by Zhang (2007) and by Zhang and Stephens (2009). Although these are not “bias-

adjusted” estimators, they are known to perform well in this respect. However, our simulation results 

support the use of our analytic bias correction (in its “composite” form) for the MLEs, once bias, 

efficiency, and computational cost are taken into account. 

 

While reducing the finite-sample bias of the MLEs of the parameters of the GPD is important in its 

own right, there is also considerable interest in managing the bias of the MLEs of certain functions of 

these parameters, such as the quantiles of the distribution (see Hosking and Wallis, 1987; Moharram et 

al., 1993, for example). Specifically, in risk analysis we are concerned with value at risk (VaR) and 

the expected shortfall (ES), both of which are related to these quantiles. These measures are non-linear 

functions of the shape and scale parameters when the GPD is used in the context of the peaks over 

threshold method. Work in progress addresses this issue by deriving the Cox-Snell O(n-1) biases for 

the maximum likelihood estimators of VaR and ES themselves, and evaluating the bias-corrected 

estimators in a manner similar to that adopted in the present paper. 
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