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Abstract 
 
We consider Bayesian estimation of the coefficients in a linear regression model, using a conjugate 
prior, when certain additional exact restrictions are placed on these coefficients. The bias and matrix 
mean squared errors of the Bayes and restricted Bayes estimators are compared when these 
restrictions are both true and false. These results are then used to determine the consequences of 
model mis-specification in terms of over-fitting or under-fitting the model. Our results can also be 
applied directly to determine the properties of the “ridge” regression estimator when the model may 
be mis-specified, and other such applications are also suggested. 
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1. Introduction 

Consider the standard linear regression model, 

 

  uXy    ; ),0(~ 2INu   ,            (1) 

 

where X is )( kn and  non-stochastic; β is )1( k ; and u and y are )1( n . For many of our 

results, X need not have full rank, k. This rank condition is noted below when it is required. We 

will consider some of the properties of the Bayes estimator of β, under a natural-conjugate prior 

for the parameters, when the model is mis-specified through the inclusion (exclusion) of 

irrelevant (relevant) regressors. The properties of this estimator when a diffuse (uninformative) 

prior is used are well-known. In this case the Bayes estimator of β coincides with the maximum 

likelihood (and least squares) estimator (MLE). Then, over-fitting the model by including 

extraneous columns in X leaves the Bayes estimator unbiased and weakly consistent, but there is a 

loss of precision in both small and large samples. Accordingly, in finite samples, over-fitting 

increases the mean squared error (MSE) of the estimator of β. Conversely, under-fitting the model 

by wrongly excluding columns from X generally results in an estimator of β that is both biased 

and inconsistent. However, in this case there a gain in precision, and so in some parts of the 

parameter space there will be a reduction in MSE if the model is under-fitted (e.g., Toro-

Vizcarrondo and Wallace, 1968). 

 

In this paper we adopt the natural-conjugate prior p.d.f. for ),(  , and consider some of the 

finite-sample and (large-n) asymptotic consequences of these two types of model mis-

specification for the point estimation of β under a Bayes’ (minimum expected loss) rule when the 

loss function is either quadratic, absolute error, or zero-one in form. Initially, we take a fairly 

general, if slightly unorthodox, formulation of the mis-specification problem by considering 

various features of the posterior p.d.f. when exact linear restrictions are imposed on the elements 

of β. This enables us to make quite general comparisons between “unrestricted” and “restricted” 

Bayes estimators of β. Subsequently, we show that for the particular restrictions of primary 

interest here, this approach is equivalent to working with the joint and conditional posterior 

p.d.f.’s for β. 

 

When the sample size, n, is finite, we maintain a quadratic loss structure and pay special attention 

to the matrix MSE (MMSE) of this Bayes estimator of β under these two types of model mis-
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specification. We show that MMSE is unambiguously worsened if the model is over-fitted, and 

we derive a condition under which the MMSE is actually improved when the model is under-

fitted. The fact that we focus on the sampling properties of Bayes estimators may be seen by 

some as somewhat unorthodox – bias and MSE are, after all, frequentist notions. However, this 

type of analysis has precedents. Bester and Hansen (2005) note that there are interesting 

connections between certain commonly used bias-correction techniques for MLEs and Bayesian 

prior densities. They argue “…that thinking about bias-reduction may offer a potentially useful 

approach to formulating Bayesian priors” (Bester and Hansen, 2005, p.2). There are a number of 

specific studies of the frequentist properties of Bayes estimators. For example, Giles and Rayner 

(1979) compare the natural-conjugate Bayes regression estimator with the least squares estimator 

in a similar manner. Howlader and Weiss (1988) compare the biases and MSEs of the maximum 

likelihood and Bayes estimators of the parameters of the Cauchy distribution; Bolstad (2004, 

pp.151-153) makes similar frequentist comparisons between the MLE and conjugate Bayes 

estimators of a sample proportion; and Rao and Shinozaki (1978) and Rao (2009) evaluate the 

performances of certain empirical Bayes estimators in the same way. While a staunch Bayesian 

reader may question the relevance of such results, we believe in the merits of a flexible approach 

to such matters. 

 

The rest of the paper is constructed as follows. In the next section we provide a framework that 

enables us to incorporate exact restrictions into the natural-conjugate Bayes regression estimator. 

Section 3 compares the restricted and unrestricted Bayes estimators in terms of their asymptotic 

and finite-sample properties, and develops the condition under which the restricted estimator will 

dominate the unrestricted estimator in terms of matrix MMSE, when the restrictions are false. 

These results are then applied, in section 4, to obtain various results relating to the mis-

specification of the model through the omission of relevant regressors, or the inclusion of 

irrelevant ones. Some connections between our analysis and the “ridge” regression estimator are 

noted in section 5, and section 6 concludes. 

 

2. Bayes estimation and exact parametric restrictions 

For our normal likelihood, the natural-conjugate prior p.d.f. for the parameters in (1) is: 

 

)()|(),(  ppp  ,              (2) 

where 

  )]2/()()'exp[()|( 2   Ap k  ; 0|| A           (3) 
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 )]2/(exp[)( 22
00

)1( 0   cp     ; 0, 00 c .         (4) 

 

Then, the marginal posterior p.d.f. for β is well-known to be multivariate Student-t: 

 

 2/)'(2 )])('()'('[)|( knXXAcnyp  


  ,          (5) 

where  

  0'  nn  ; 


)'('''' 2
00

2 XXAAyyccn           (6) 

and    

  )'()'( 1 yXAXXA   


              (7) 

 

is the mean (and mode and median) of )|( yp  . So, 


 is the Bayes estimator of β not only under 

quadratic loss, but also under an absolute error or zero-one loss function, and it is well-defined 

even if kXrank )( . Let us now consider some properties of this estimator that have not been 

discussed previously. 

 

Suppose that we have dogmatic prior information about β in the form of exact linear restrictions, 

rR  , where R is non-stochastic, )( kg  and of rank g; and r is non-stochastic and )1( g . To 

obtain a (quasi-) Bayes estimator of β while taking this dogmatic information into account, we 

can consider the conditional posterior p.d.f., ),|( yrRp  . However, for general R and r this 

p.d.f. is not very convenient to handle, and so initially we adopt an alternative approach to 

deriving as estimator of β that incorporates the information in ),( p  while being consistent 

with the dogmatic restrictions. In section 4 we return to ),|( yrRp   for specific interesting 

choices of R and r. 

 

The restricted (natural-conjugate) Bayes estimator of β may be obtained by determining the 

modal value of )|( yp  , subject to the constraint(s) rR  . To achieve this, we set up the 

Lagrangian 

  )(')])('()'('[ 2/)'(2 rRXXAcna kn   


,          (8) 

 

where a is the normalizing constant for )|( yp  in (5), and   is a non-random )1( g  vector of 

Lagrange multipliers. Taking the first derivative of (8) w.r.t. β  and solving1, we get: 
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  )(]')'([')'(
~ 111 


RrRXXARRXXA   .           (9) 

 

The derivation of ~  (which again does not require that X has full rank) is somewhat unorthodox, 

in that it mixes a dogmatic set of restrictions with the flexible prior p.d.f. used to obtain )|( yp  . 

However, ~  gives us a very general estimator which, for the special case in which we are 

primarily interested, is easily shown to be equivalent to the mode of the appropriate conditional 

posterior p.d.f. for β, and is also equivalent to the appropriate marginal posterior p.d.f.’s mode 

when A and   in )|( p  are assigned values to reflect exact prior information in certain 

dimensions. We now consider and contrast some of the properties of  


 and ~ . 

 

3. Estimators’ sampling properties 

3.1 Asymptotic properties 

 

The (large n asymptotic properties of 


 and ~  are easily dealt with. The former is based on a 

proper prior p.d.f., so it is weakly consistent. Moreover, it is well known (e.g., Zellner, 1971, pp. 

31-33) that under quite general conditions )|( yp   becomes normal, with a mode at the MLE, 

yXXXb ')'( 1 , as n , provided that X has full rank, k. So, 


 is also best asymptotically 

normal (BAN), relative to the information set. Intuitively, it is clear that ~  should also be weakly 

consistent and BAN relative to its own information set, provided that the restrictions, rR  , are 

true. In this case, the partially dogmatic prior information complicates the picture slightly, but the 

asymptotic properties of ~  are easily established. 

 

Theorem 1 If rR  , and )'( 1 XXnLimit
n




  is finite and positive-definite (p.d.) then ~  is 

  weakly consistent for β. 

Proof

))(plim(]')'([']'[)lim(p)
~

lim(p 1111111 


 






rRXXnAnLimitRRXXnAnLimit

nn
. 

Using the consistency of 


, and the positive definiteness of  , 

,

)(]'[')
~

lim(p 111





  RrRRR
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if rR  .         ■ 

 

Theorem 2 ],0[)
~

( 2QNn
d

  , where ])'('[ 11111   RRRRQ , provided  

  that X has full rank, and rR  . 

Proof   

Because b


 as n , it follows that ],0[)( 12   Nn
d

. 

Now, 

rRXXARRXXARRXXARRXXAI 111111 ]')'([')'(]}')'({')'([
~   


, 

 

So, using Theorem 1, ]',0[)
~

( 1*2  JNn
d

 , where ])'('[ 111* RRRRIJ   . 

Finally, note that 

  QRRRRJJ   11111*1* )'('( , 

as required.         ■ 

 

It is clear, then, that asymptotically ~  is equivalent to the restricted MLE, 

  )ˆ(]')'([')'( 111 RrRXXRRXXbbR   ,          (10) 

 

provided that kXrank )( . Accordingly, it is not surprising that there is a gain in asymptotic 

precision when using ~  in favour of 


, even if rR  . Inspection of the asymptotic covariance 

matrices (a.c.m.’s) of these two estimators reveals that their difference, 

)]}
~

(.[..)](.[..{   nmcanmca


 is at least positive semi-definite (p.s.d.). 

 

3.2 Finite sample properties 

Giles and Rayner (1979) note that *)(  AWBias 


, and WXXWV ')( 2 


, where 

1)'(  XXAW , and  )(*   . Turning to the restricted Bayes estimator, we have: 

 

Theorem 3 (i) )()'(')()
~

( 1  RrRWRRWBiasJBias  
 

  (ii) '')
~

( 2 JWXXWJV    , 
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where2 ])'('[ 1RRWRRWIJ  .       (11) 

 

Proof 

(i) Let (.)yE denote expectation over the sample space. Then, from (9), 

 

 

)()'(')(

))(()'(')()'(')(

)]()'('[)(

)]()'('[)
~

(

1

11

1

1









RrRWRRWBiasJ

ERRWRRWRrRWRRWBias

RRRrRWRRWEBias

RrRWRRWEE yy

























 

          ■ 

(ii) Note that rRWRRWJ 1)'('
~  


. So, 

  ''')()
~

( 2 JWXXWJJJVV  


    ■ 

 

It follows that imposing the restrictions, rR  , improves the small-sample precision of the 

Bayes estimator of β, even if these restrictions are false: 

 

Corollary 1 The matrix )]
~

()([  VVD 


 is at least p.s.d., whether or not rR   holds. 

Proof 

Expanding the expression for )
~

(V  in Theorem 3 and comparing it with )(


V , we can form the 

matrix 

  ])'('')'('[])'('[])'('[ 11211 RRWRRWXXWRRWRRRRWRRDRRWRR   , 

 

which is at least p.s.d., So, D itself is at least p.s.d. , as ])'('[ 1RRWRR   has full rank. 

          ■ 

 

Now consider the MMSE’s of 


 and ~ . The latter is  

  MBiasBiasVMMSE
~

)'
~

()
~

()
~

()
~

(   ,           (12) 

 

say. Define MMMSE


)(  analogously. Under quadratic loss, we may say that ~  is “preferred” 

to 


 if )
~

( MM 


 is at least p.s.d.. This strong MSE criterion has been used by a numerous 
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authors, including Toro-Vizcarrondo and Wallace (1968), Swindel (1976), Giles and Rayner 

(1979), Pliskin (1987) and Trenkler (1988). Let us now compare M


 and M
~

, first when rR   

holds, and second when rR  . 

 

Theorem 4 If rR  , then )
~

(* MMD 


 is at least p.s.d.. 

Proof 

  WAAWWXXWM '' **2  


 

  '''
~ **2 JWAAWJJWXXWJM   , 

provided that rR  . So, in this case '
~

JMJM


 , and from (11) it is readily shown that 

''* RMRRRD


 , which is at least p.s.d.. As R has full rank, it follows that *D  itself is also at least 

p.s.d.. 

          ■ 

 

So, imposing valid restrictions on the elements of β never “worsens” the MMSE of the Bayes 

estimator of β. This result is directly analogous to the situation when a diffuse prior p.d.f. is 

adopted (i.e., the case of MLE) – then, imposing valid restrictions leaves the estimator unbiased, 

but never “worsens” its precision or its MMSE. That is, when rR   is true, Rb  is “preferred” to 

b , and ~ is “preferred” to 


, in terms of MMSE. 

 

Now consider the case when false restrictions are imposed on the elements of β. 

 

Theorem 5 When rR  , ~ is “preferred” to 


, in terms of MMSE iff 

  .1)()'()'( 1    RrRMRRr


 

Proof 

WAAWWXXWM '' **2  


, 

and if rR  , necessarily, then from Theorem 3, 

 

')'()'(')'(')'(''
~ *1*11 JWARWRRWWRRWRAWJWRRWRRWRRWJMJM   

, 

where ).(  Rr    
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In terms of MMSE, ~ is “preferred” to 


 iff )
~

( MM 


 is at least p.s.d.. Now, 

'')'(')'(')'(')'(''

)
~

(
*11*11

*

JWARWRRWWRRWRAWJWRRWRRWRRWJMJM

MM

  






 

and so, 

''

''''')'(' ***









RMR

RJWAAWRJRJMJMRRR




 

as 0RJ  . 

 

So, ~  is “preferred” to 


 iff )'( *RR  is at least p.s.d.. That is, iff 

 

  0)''('   RMR


 ; 0  

or, iff 

  1)''/()''(*   RMR


 ; 0 . 

This last inequality holds, for all  , iff 1)(sup *

)(
 


. From Rao (1973, p.60), this necessary 

and sufficient condition is that 1)'(' 1    RMR


. 

          ■ 

 

Note that if rR  , then 10  , and so then ~ is “preferred” to 


 for all possible sample 

data, and all values of the parameters, as in Theorem 4. Theorem 5 indicates that, in general, 

which of ~ or 


 is “preferred” depends on all of the quantities R, r, β, 2 , X, A and  . It does 

not depend on the parameters in the marginal prior p.d.f. for  . 

 

The condition 1  is of some interest when comparing the performances of ~  and 


. The fact 

that   is unobservable invites the question, “can we test to see if the hypothesis 1:0 H  is 

favoured against 1: AH ?” In an analogous situation involving bR and b, Toro-Vizcarrondo 

and Wallace (1978) used the fact that their counterpart to our   is the non-centrality parameter in 

the distribution for the UMP test of the validity of rR  , together with the monotone likelihood 

principle, to construct a classical test of (their counterpart to our) H0. However this type of 
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situation does not arise here, and it is not clear how a useful classical test of H0 could be 

formulated. 

 

Giles and Rayner (1979) also developed a counterpart to our  - criterion in a similar comparison 

of b and 


. They suggested several ways of “testing” H0. Of these, one with a strong Bayesian 

flavour may be mentioned here. Define: 

 

  
.],|1)()'()'Pr[(

),|1Pr()1(

1

,

yRrRMRRr

yF y








  

 

A posteriori, )1(, yF  is a probability associated with a quadratic form in the “random” vector, 

)(  Rr  , where  ]'',)[(),|( 2 RWXXWRRrNyp 


 . 

 

Numerical algorithms such as those proposed by Imhof (1961) or Davies (1980) may be used to 

exploit this normality and compute )1(, yF . Then, the marginal posterior probability that 1  

may be approximated numerically by univariate integration: 

 




0
, )|()1()|1Pr()1(   dypFyF yy , 

 

where, by natural-conjugacy, and using (6): 

 

  )]2/('exp[)|( 22)1'(  cnyp n     . 

 

Given equal prior odds, the posterior odds in favour of 1:0 H  relative to 1: AH  are 

)]1(1/()1([0 yyA FFO  , and for any symmetric loss function over the  -space H0 is favoured 

over HA if O0A > 1. 

 

Whatever method is used to test H0 and subsequently adopt either ~ or 


, a preliminary-test 

strategy is involved and this affects the sampling properties of the final estimator of β (e.g., Giles 

and Giles, 1993). In particular, if one of ~ or 


 is chosen subsequent to a test of H0, then the bias 
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and MMSE expressions derived above will no longer be valid. We do not pursue this point 

further here. 

   

4. Specification analysis 

We now use the general results of the last section to analyze the consequences, for the sampling 

properties of the natural-conjugate Bayes estimator of β, of mis-specifying the model (1) by 

including irrelevant regressors or excluding relevant ones. Let us re-write (1) as 

 

  uXXuXy  2211  ,            (13) 

 

where Xi and i  are )( ikn  and )1( ik  respectively (i = 1, 2). Now set )0,(IR   and 0r . 

So, the restrictions, rR  , are just 01  . If these restrictions are valid, then using ~  amounts 

to estimating β under the appropriate model specification, while using 


 amounts to over-fitting 

the model. On the other hand, if the restrictions are false then ~  is associated with under-fitting 

the model, while 


 is then based on the appropriate model specification3. As we will see in the 

next sub-section, approaching the specification analysis via the results of section 3 is equivalent 

to restricting (or failing to restrict) the prior p.d.f. for  β directly. However, it has the advantages 

of convenience and transparency. 

 

4.1 Posterior analysis 

We can now show that for the above choice of R and r, 2
~  is just the mean (= mode) of the 

conditional posterior p.d.f. for 2 , ),0|( 12 yp  , and of course 0
~

1   by construction. We 

exploit the property of a multivariate Student-t distribution that its conditional4 (and marginal) 

distributions are also Student-t.  We partition A conformably with XX ' , so: 

 

























2212

1211

22221212

21121111

''''

''
)'(

WW

WW
W

XXAXXA

XXAXXA
XXA . 
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Theorem 6 Let )0,(IR   and 0r . In addition let (.)E  denote expectation over the (β 

dimensions of the) parameter space. Then 212
~

),0|(   yE . 

 

Proof 

From Zellner (1971, p.388), and )|( yp   in (5), 

 

  
.

)('),0|(

112
1

222

1112
1

22212








WW

WWyE








          (14) 

 

Also, from (9), in this case: 

  

.
'

0

)'('~

~
~

112
1

2222

1

2

11

2

1

2

1

























































































WW
J

RrRWRRW

          (15) 

So, comparing (14) and (15), we see that 

 

  ),0|(emod),0|(
~

12122 yyE    . 

          ■ 

 

Thus, 2
~  may be viewed either as a restricted variant of 2


, or as an important feature of the 

appropriate conditional posterior p.d.f. for 2 . 

 

Note that unless 01 


 (which is most unlikely), 22
~ 


  iff 012 W . The latter condition is that 

2112 ' XXA  . One way in which this condition would be satisfied, without requiring that the 

prior depend on the X data, is that 0' 2112  XXA . Let us consider the interpretation of the 

condition 012 A . The conditional prior covariance between 1  and 2  is 122 A , where ijA  is 

the (i, j)th block of 1A . So, this conditional prior covariance is 

 

  1
2212

1
12

1
221211

2122 )'(  AAAAAAA  , 
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which is zero iff 012 A , or 0)'( 1
12

1
221211   AAAA . The latter inverse matrix is simply 11A .  Of 

course, one way to impose the (zero) restrictions on 1  directly is by setting 01   and 011 A  

in the (conditional) prior for  , (3).  

 

Further, the marginal prior p.d.f. for   is 

  
2/)(2

00

0

0)])(/()'([

)()|()(













kcA

dppp
 

which is multivariate Student-t, with covariance matrix 1
0

2
00 )]2/([  Ac  . So, the marginal 

prior covariance between 1  and 2 is 

 

  1
2212

1
12

1
2212110

2
00

212
0

2
00

2 )')](2/([)]2/([  AAAAAAcAc  ,       (16) 

 

which again is zero iff 5 012 A  or 0)'( 1
12

1
221211

11   AAAAA . 

 

So, orthogonality of the two sub-sets of regressors and a zero (marginal or conditional) prior 

covariance between 1  and 2  are jointly sufficient for the restricted and unrestricted natural-

conjugate Bayes estimators of   to coincide. Alternatively, this will be achieved if the two sub-

sets of regressors are orthogonal and the conditional prior variance for 1  is set to zero, which 

(together with assigning 01  ) is an obvious way of imposing the exact restrictions directly 

through the prior pd.f. In contrast, recall that in the case of a diffuse prior p.d.f. (or MLE) the 

corresponding condition for the restricted and unrestricted estimators to coincide is simply 

0' 21 XX . 

 

4.2 Asymptotic properties 

The weak consistency of 


 ensures that over-fitting the model still results in a Bayes estimator 

of   that is weakly consistent. Consider the situation when the model is under-fitted. 
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Theorem 7 The natural-conjugate Bayes estimator of 2  in the under-fitted model is weakly 

consistent if  012  , where 










 

 2212

12111

'
)'( XXnLimit

n
. 

Proof 

From the proof of Theorem 1, 

)()'(')
~

lim(p 111  RrRRR   . 

 

Substituting 0r  and )0,(IR  , 

 

  









































112
1

222112
1

22

1

2

1

2

1

'

0

'~

~
limp










. 

 

For the under-fitted model, 01  , so 1
~  is always inconsistent, and 2

~  is consistent iff 

0)'lim(p 21
1

12   XXn . This last condition is precisely that which ensures the weak 

consistency of the Bayes estimator of 2  based on a diffuse prior (the MLE of 2 ) when the 

model is under-fitted. This is as expected, given that Rb~  as n . Similarly, the following 

result is not surprising: 

 

Theorem 8 Over-fitting the model reduces the asymptotic efficiency of the natural-conjugate 

Bayes estimator of 2  unless 012  ; and  under-fitting the model increases the asymptotic 

precision of this estimator unless 012  . 

 

Proof 

From the Proof of Theorem 2, with 0r  and )0,(IR  , 

  1
22

2
22 )]

~
(.[..  nmca  

])'('[)](.[.. 1
2212

1
12

1
22121112

1
22

1
22

2
22

  


nmca . 

 

Clearly, these two a.c.m.’s are equal iff 012  . Otherwise, the matrix difference, 

)]}
~

(.[..)](.[..{ 2222   nmcanmca


is positive-definite. 

          ■ 
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So, the same condition of a zero asymptotic covariance between the two sub-sets of regressors 

applies here as in Theorem 7, and as for the corresponding results based on a diffuse prior p.d.f.6. 

 

4.3 Finite-sample properties 

First, consider the over-fitted model. That is the restrictions rR   are valid but are not 

imposed. In this case, from Theorem 3, )()
~

( 


JBiasBias   and ')()
~

( JJVV 


 . Taking into 

the particular from of R and r here, we have: 

 

Theorem 9 When 01  , )(')()
~

( 112
1

2222 


BiasWWBiasBias  . 

 

(The proof follows immediately from Theorem 3 on making the appropriate substitutions.) 

          

Accordingly, over-fitting the model does affect the bias of the natural-conjugate Bayes estimator 

of 2 , in general. This is in contrast to the situation under a diffuse prior p.d.f. – then, over-

fitting the model leaves the (zero) bias of the estimator of 2  unchanged. Of course, if 

0)( 1 


Bias , then )()
~

( 22 


BiasBias  , but this is very unlikely to arise as it requires that 

11   , which would be a remarkably fortuitous assignment of prior information. Alternatively, 

)()
~

( 22 


BiasBias   if 012 W , but from the proof of Theorem 6 we know that in this extreme 

case 22
~ 


 , anyway. 

 

From Theorem 3 and Corollary 2, we know that over-fitting the model reduces the precision of 

the natural-conjugate Bayes estimator, in general, and from Theorem 4 we know that over-fitting 

the model adversely affects the matrix MSE of this estimator, regardless of the sample values, the 

choice of prior parameters, of the values of the model’s parameters. 

Now consider the under-fitted model. 

 

Theorem 10 When 01  , ])([')()
~

( 1112
1

2222    
BiasWWBiasBias . 

 

(The proof follows immediately from Theorem 3.) 
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So, under-fitting the model affects the bias of the natural-conjugate Bayes estimator of 2  and it 

affects it to a degree that is different from that in the case when the model is over-fitted. Again, 

from Theorem 3 and Corollary 2, we see that under-fitting the model generally improves the 

precision of the natural-conjugate Bayes estimator of 2 , and we also have the following result: 

 

Theorem 11 Under-fitting the model leads to an “improvement” in matrix MSE iff 

 

  1)]([' 1
1

11   


MMSE . 

Proof 

From Theorem 5, the required condition is 

 

  1)(]')([)'( 1    RrRMMSERRr


. 

 

Substituting with 0r  and )0,(IR  , and letting  

  









2212

1211

'
)(

MM

MM
MMMSE 




 , 

we obtain the desired result immediately. 

          ■ 

Note that 111)( MMMSE


  depends on 2 . The sample data, and all of the elements of  , A 

and  . In particular, the value of   does depend on the various factors relating to the wrongly 

omitted part of the model. 

 

5. Relationship to “ridge” regression 

It is well known that the “ridge” regression estimator (Hoerl and Kennard, 1970a, 1970b) can also 

be interpreted as a natural-conjugate Bayes estimator. For example, see Smith and Campbell 

(1980, p.78) and Loesgen (1990).  Some related ideas are discussed by Swindel (1976), Plisken 

(1987) and Trenkler (1988). 

 

The ridge estimator of β is: 

 

  yXXXC ']'[ˆ 1 ,              (17) 
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where C is a known )( kk   positive-definite matrix of rank k. The “ordinary” ridge estimator 

arises when cIC  , for some chosen c > 0. Of course, this estimator is defined even if 

kXrank )( . We see immediately that (17) is simply the Bayes estimator in (7), with CA   and 

0 . The ridge estimator of β “shrinks” the least squares estimator, b, towards the origin, while 

the Bayes estimator shrinks b towards the prior mean,  .  

 

There is a vast literature on ridge regression and its extensions which will not concern us here. An 

early survey of this literature is provided by Vinod (1978), and an excellent critique is given by 

Smith and Campbell (1980) and in the associated discussion. Interestingly, this literature makes 

very little mention of imposing explicit restrictions on the parameters when applying the ridge 

estimator. This possibility is hinted at by Gunst (1980), and Lee (1979), Ohtani (1985) and 

Uemukai (2010) consider some of the effects of under-specifying or over-specifying the regressor 

matrix when applying certain variants of ridge regression. Obviously, if we assign CA   and 

0 in our Bayesian prior, then all of the results established in the present paper apply to ridge 

regression when valid or invalid exact linear restrictions of the form rR   are imposed when 

implementing this estimator of β.  This makes all of our results directly applicable to the very 

large literature on ridge regression.  

 

As an example, consider the condition 012 W , in sub-section 4.1, under which the restricted and 

unrestricted Bayes estimators, ~  and 


, coincide. In the case of the “ordinary” ridge estimator 

for which cIC  , the condition 012 A  is always satisfied and so the equivalence of the 

restricted ridge estimator and ̂  is assured simply if 0' 21 XX , just as in the least squares case.  

 

6. Conclusions 

By working within quite a general framework for mixing exact restrictions with a more flexible 

prior p.d.f., we have shown how the sampling properties of a particular Bayesian regression 

estimator are affected when the model is mis-specified in terms of the regressor matrix. We have 

examined how the bias and matrix mean squared error of the estimator are affected by either 

over-specifying or under-fitting the model. A simple condition has been found under which 

under-fitting will improve the matrix mean squared error of the Bayesian estimator based on a 

natural-conjugate prior for the parameters of the model. Conversely, we have shown that over-

fitting the model will never improve the matrix mean squared error of this estimator. 
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The approach that we have suggested for mixing exact and uncertain prior information about a 

regression model’s parameters has a range of other applications beyond the analysis of under-

specified or over-specified regressions. In addition, our results have implications beyond the 

natural-conjugate Bayes estimator. One example of this that we have provided is the case of the 

ridge regression estimator. Others include the “mixed” regression estimator of Theil and 

Goldberger (1961), for which our framework can be used to generalize the “weak” mean squared 

error results of Kadiyala (1986) to the matrix mean squared error case; the “prior integrated 

mixed” regression estimator proposed by Mittelhammer and Conway (1988); the “weighted 

mixed” estimator of Schaffrin and Toutenburg (1990), Toutenburg et al. (1998) and Heumann 

and Shalabh (2008); and variants of the Liu estimator (Liu, 1993; Hu et al., 2009; Zuo, 2009).  
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Footnotes 

 

* I am very grateful to the late Arnold Zellner for his on-going encouragement over a 

 period of nearly forty years, and for his helpful comments on a much earlier version of 

 this work. 

1. The derivation of ~  is directly analogous to that for the restricted MLE (restricted least 

 squares estimator (e.g., Johnston, 1972, pp. 157-158). 

2. Note that *)lim(p JJ  , as in Theorem 2. 

3. We are assuming that the model is correctly specified in all other respects. 

4. See Zellner (1971, pp. 386-388), and note that in earlier printings equation (B.48) the 

 terms should be subtracted, not added. 

5. We have also used the fact that 0, 00 c  for )(p  to be proper, and that 20   is 

 required for (16) to be defined. 

6. For a more general discussion of the consequences of model mis-specification for the 

 asymptotic properties of Bayes estimators, see Berk (1970). 

 


