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Abstract 
Extreme value theory (EVT) measures the behavior of extreme observations on a random variable. EVT in risk 

management, an approach to modeling and measuring risks under rare events, has taken on a prominent role in 

recent years. This paper contributes to the literature in two respects by analyzing an interesting international 

financial data set. First, we apply conditional EVT to examine the Value at Risk (VAR) and the Expected 

Shortfall (ES) for the Chinese and several representative international stock market indices: Hang Seng (Hong 

Kong), TSEC (Taiwan), Nikkei 225 (Japan), Kospi (Korea), BSE (India), STI (Singapore), S&P 500 (US), 

SPTSE (Canada), IPC (Mexico), CAC 40 (France), DAX 30 (Germany), FTSE100 (UK) index. We find that 

China has the highest VaR and ES for negative daily stock returns. Second, we examine the extreme 

dependence between these stock markets, and we find that the Chinese market is asymptotically independent 

of the other stock markets considered.  
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I.  Introduction 

With its rapidly growing economy and increasingly globalized financial market, China has attracted 

significant attention, especially in the recent period of international financial turbulence. However, 

there has been surprisingly little research into the risk level of the Chinese stock market, especially the 

extreme dependence between the Chinese and other major financial markets. This paper uses a data 

set which covers the recent financial crisis to study the financial situation of the Chinese stock market 

in relation to that of thirteen other stock markets from three continents: Asia, North American, and 

Europe. We contribute to the associated literature in two ways: by applying conditional extreme value 

theory (EVT) to estimate and compare Value at Risk (VaR) and Expected Shortfall (ES) for the 

Chinese and other major financial markets; and by examining the extreme dependence between the 

Chinese market and these other markets, to obtain some guidance on possible crisis contagion.  

 

VaR is widely used in measuring market risk, and was first proposed by J.P. Morgan in the late 1980’s. 

VaR itself can tell us how much we can lose over a certain time horizon given a certain probability, 

and is effectively a chosen quantile of the profit and loss (P&L) distribution of a given portfolio over a 

prescribed holding period. VaR became a key risk measure when the Basel Committee required, in 

1996, that the risk capital a bank holds should be enough to cover losses on their trading portfolio 

over a ten-day horizon, 99 percent of the time. For internal risk control, financial firms usually use a 

one-day horizon and 95 percent confidence level. Although VaR has the advantages of simplicity and 

wide applicability as a measure of loss, VaR doesn’t give us any information about the tail of the 

distribution in excess of VaR. This means that it cannot distinguish between two distributions with the 

same VaR, but different tail thicknesses. Consequently, Artzner et al. (1999) proposed Expected 

Shortfall (ES) as a coherent measure of risk. ES measure the expected loss of the excess above VaR. 

Therefore, the two measures together provide a more complete picture of the tail of a distribution. 

Many methods can be applied to estimate VaR and ES. Extreme Value Theory (EVT) has been proved 

by many studies to perform well in modeling the tail behavior of a P&L distribution, for example, 

Gençay, et al. (2003). Two widely used estimation techniques in EVT focus on block maxima and on 

excesses (or “exceedances”) over a high threshold. The latter method is called Peaks over Threshold 

(POT), and uses the data more efficiently than the block maxima method when individual data points 

are available, as is the case with high frequency financial data. However, one requirement in the 
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application of POT is that the data should be independent, and most financial series exhibit extremal 

clustering. Therefore, here we will apply McNeil and Frey’s (2000) suggestion of combining 

autoregressive (AR) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) filters 

with the POT method in order to estimate conditional VaR and ES.  

 

The second contribution of this paper is to study the extreme dependence between the Chinese stock 

market and other major stock markets. One natural approach is to estimate the extreme dependence by 

applying bivariate EVT to two data series, as did Bekiros et al. (2008) and Longin and Solnik (2001), 

for example. However, a problem arises when the two series are asymptotically independent. In this 

case, the bivariate EVT method tends to over-estimate any dependence, because the estimation of 

bivariate EVT is based on the prior assumption that the two series are asymptotically dependent. 

Therefore it is important to first check if the two series are asymptotically independent or not. When 

the extreme values of a pair of series move in sympathy with one another, we term these series 

asymptotically dependent. Otherwise, they are asymptotically independent. However, asymptotic 

independence is not equivalent to pure statistical independence, as it allows a certain level of 

dependence between the two series for finite samples. We will apply two nonparametric measures,   

and   (Poon et al., 2003, 2004) to describe the levels of asymptotic dependence and asymptotic 

independence respectively. Again, one requirement when applying these two measures is that the data 

should be sampled independently. We use a vector autoregressive model to filter for any serial 

correlation, and there Multivariate Garch models (Baba et al., 1990; Engle and Kroner, 1995) to filter 

for any heteroskedasticity, then we calculate   and    for the innovations to study the extreme 

dependence level of two series. The related empirical literature strongly suggests that any extreme 

dependence level is asymmetric in the two tails of the distribution. Generally, there is a greater 

tendency for extreme dependence in the left tail than in the right tail. So, we examine the degree of 

dependence for positive returns and negative returns separately for the various markets that we study.  

 

The rest of the paper is organized as follows. Section II introduces the methodology that we adopt. 

Section III describes our data, and section IV presents and discusses the empirical results. The final 

section summarizes our main findings and conclusions.  
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II.  Methodology 

 

Peaks over threshold method 

 

The Peaks over Threshold (POT) technique is an efficient method to model the behavior of extreme 

values above a high threshold in a distribution of data. Let x1, x2, …, xn  be a sequence of independent 

and identically distributed random variables with the marginal distribution F. Given the threshold u, 

we define the ith excess (or “exceedence”) as yi = (xi – u). Then, dropping subscripts for convenience, 

  
( ) ( ) ( ) ( )

( ) Pr( ) = ,   0
1 ( ) 1 ( )u

F u y F u F x F u
F y x u y x u y

F u F u

  
     

 
    .         (1) 

According to the asymptotics of EVT, for u large enough, Fu(y) converges to the generalized Pareto 

distribution (GPD), whose distribution function is,  

1

1 1     if  0  
( ) ( )

1 e                 if  0 

u

y

y
F y G y





 








          
  

       (2) 

defined on   01 and 0:  yyy , where   is the shape parameter or tail index, and  (> 0) 

is the scale parameter. 

 

From Equation 1,  

 ( )= 1- ( ) ( )+ ( )uF x F u F y F u  .                   (3) 

Substituting Equation 2 into Equation 3 and simplifying, we can obtain   

 

1

1 1      if 0  
( )

1 exp              if 0 

u

u

x u

F x
x u



  


 


             
       

             .         (4) 

If 0  , u x u     ; if 0  , x u . Pr{ }u X u   , which can be estimated by the sample 

proportion of the excesses over u; i.e., ( k n ).  

 

The tail index ξ indicates the heaviness of the tail of the distribution. The larger the value of ξ, the 
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heavier the tail is. In general, financial data have a distribution with a heavy tail, which corresponds to 

a positive tail index, and the summary statistics in section III support this expectation. So in the 

following analysis, we focus only on the case of ξ > 0.  

 

The maximum likelihood estimator is generally favored to estimate the parameters of the GPD 

distribution. However, often the quantities in which we are interested are not the parameters 

themselves, but functions of the parameter, such as VaR and ES. Based on the GPD approximation of 

the distribution function F(x), Equation 4, we can obtain (via “invariance”) the maximum likelihood 

estimates of these two measures as:  

 




























1
)1(ˆ

ˆ
ˆ

̂




qk

n
uRaV q           ,                                                 (5) 

and, 

q q q qES VaR E x VaR x VaR
         

  .     (6) 

The second term in Equation 6 can be obtained from the mean excess function of the GPD (when ξ < 

1 ; a condition that ensures the existence of the mean of the distribution), which is 

1
E x u x u




      
      .   

One well known property of the GPD is that for any valid threshold, the tail index ξ and the 

transformed scale parameter σ* are invariant to changes in the threshold, where  σ* is defined as  

   u        . 

Hence, if we change the threshold to another valid level z, the scale parameter σz has the following 

relationship with σ: 

  z ( )z u      

and 

 
( )

1

z u
E x z x z

 


 
      

  .       (7) 

Therefore, we can estimate ES as  
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ˆˆ + ˆˆ
ˆ ˆ ˆ1 1 1

q
q

q q

VaR u
VaR u

ES VaR
 

 
  




 

       
  

       .    (8)   

One remaining issue is the choice of the threshold value. Several methods can be used, the most 

common of which is based on plots of ξ and σ* against the threshold u; and on the mean residual life 

plot, which plots the mean of the excesses against u. Considering the sampling errors, the rescaled 

parameters σ* and ξ should be statistically stable, and the mean residual life should be approximately 

linear for all the thresholds over u, if u is a valid threshold. However, the interpretation of these plots 

is difficult in practice, so the choice of the threshold is somewhat subjective. In this paper, we apply 

the exponential regression approach proposed by Beirlant et al. (2000) to choose the threshold. 

Further details are provided by Fernandez (2003).  

 

Application of the POT method requires independent observations on the data. The data we examine 

are the daily observations of the log return on a financial asset price. As noted already, financial data 

often exhibit dependence and extreme clustering, so we use McNeil and Frey’s (2000) two-step 

estimation procedure based on an AR-GARCH model to filter out any serial correlation and 

conditional heteroskedasticity before we apply the POT methodology to estimate VaR and ES. 

Specifically, let rt represent the absolute value of the log return, and assume that  

0 1 1t t p t p t tr r r Z          ,      (9) 

where . . .(0,1)tZ i i d～ , and the conditional variance 2
t  follows a GARCH(1,1) process:   

2 2 2
0 1 1 1t t t                (10) 

where 00  , 01   and 0 . The condition for the strict stationarity of (9) is 1+ 1.    

 

We apply a pseudo-maximum-likelihood method to estimate the model, and then generate the 

standardized residuals as  

  1 2
1 2

1 2

ˆˆ ˆ
, , , , , ,

ˆ ˆ ˆ
n

n
n

z z z
 

  
 

  
 

   ,     (11) 

and    0 1 1
ˆ ˆ ˆ ˆ
t t t p t pr r r         .
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We use the Ljung-Box test to examine the independence of the residuals. After choosing an 

appropriate lag number based on Akaike’s information criterion (AIC) for the AR model, the Ljung-

Box test does not reject the null hypothesis of independence for any of the series’ standardized 

residuals. Then we apply the POT method to the standardized residuals in Equation 11, and recover 

the VaR and ES of the raw data for a one-day horizon as follows: 

0 1 1 1
ˆ ˆ ˆ ˆVaR VaR( )q t p t p t qr r Z   

 

           (12) 

and 

0 1 1 1
ˆ ˆ ˆ ˆES ( )q t p t p t qr r ES Z   

 

            (13) 

 

where 2 2 2
+1 0 1

ˆ ˆ ˆ ˆˆ ˆt t t       , and ˆ ( )qVaR Z  and SÊ  are given by Equations 5 and 8. 

     

Dependence estimation 

 

As discussed above, the bivariate extreme value distribution tends to overestimate the extreme 

dependence between pairs of series. So, we apply two non-parametric measures to examine the 

extreme dependence between pairs of stock returns series. Suppose that the variables S and T are on a 

common scale. The events {S > s} and {T > s}, as s → ∞, correspond to equally extreme events for 

each variable. The first nonparametric measure of dependence,  , is defined as  

  

)|Pr( sSsTLim
s




 ,  0 1    .   (14) 

When 0  , S and T are said to be asymptotically dependent, and perfectly asymptotically 

dependent if 1 . When 0 , S and T are asymptotically independent. Recall, however, that two 

series may show some degree of dependence for finite levels of S, even though they are 

asymptotically independent. There may be significant dependence between values of the paired series, 

but no co-movement in their very large values.  

 

Coles et al. (1999) define a complementary measure,  , that can be used to measure the degree of 
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(finite) dependence when the variables are asymptotically independent, that is when 0 .   is 

defined as 

     
  

  
2log Pr

= 1
log Pr ,s

S s
Lim

T s S s







 
,  -1< 1                     (15) 

and it measures the rate at which  Pr T s S s  →0. Values of 0  , 0  and 0   

correspond to positive dependence, exact independence and negative dependence respectively.  

 

The pair (  ,  ) provides all of the necessary information regarding the degree of dependence for any 

two series. For asymptotically dependent variables, 1 , and the degree of dependence is measured 

by  . For asymptotically independent variables, 0 , and the degree of dependence is measured 

by  . Therefore, it is important to test if 1 , before we draw any conclusions based on  . 

Estimates of   and   can be obtained by the Hill estimator, which we now discuss. 

  

The tail of a Fréchet-type univariate variable Z above threshold u can be modeled by  

   1/Pr( ) ~ ( )Z z L z z      for z > u               ,      (16) 

where L(z) is a slowly varying function of z. If we treat L(z) as constant c and assume that the data are 

independent, then the MLEs of   (known as the Hill estimator) and c are 

( )

1

1ˆ= log
un

j

ju

z

n u




 
 
 

 ,        (17) 

ˆ1ĉ= un
u

n
 ,                                  (18) 

where (1) ( )unz z， ，  are the nu observations of Z above the threshold u. The asymptotic variances of 

̂  and ĉ  are 
2

un


 and  

2 2

2 2

log ( )un u u

n




 , respectively. 

 

Now we show how the calculation of   and   can be used to complement the previous estimation 

process. First we transform the bivariate returns (X, Y), with marginal cumulative distribution 

functions FX and FY respectively, into unit Fréchet marginals (S, T) as follows: 
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1

log ( )X

S
F X

   and 
1

log ( )Y

T
F Y

  ,   S > 0, T > 0 .    (19) 

The variables (S , T) have the same dependence structure as the variables (X, Y).  

 

Ledford and Tawn (1996, 1998) showed that under weak conditions 

     1Pr , ~ ( )S s T s L s s     ;   as s → ∞ ,    (20) 

where 0 1  is a constant and L(s) is a slowly varying function. After transformation, S and T then 

have unit Fréchet marginals, and it follows that  

    1Pr Pr ~S s T s s      ;  as s → ∞ .                (21) 

Based on these results and Equation 15, we have 

ˆ 2 1     . 

Let Z = min(S, T), then  

      1Pr Pr min( , ) Pr , ( )Z z S T z S z T z L z z         for z > u.           (22) 

So, we can use the Hill estimator to estimate   and its variance: 

( )

1

2ˆ = log 1
un

j

ju

z

n u




 
 

 
             (23) 

and   
2ˆ( 1)ˆvar( )

un

 
 .  

When two variables are asymptotically dependent, ˆ 1  , i.e., 1  , then  

   
  1Pr , ~ ( )S s T s L s s    ;   as s → ∞    

            
   

 
Pr ,

= Pr ( )
Prs s

S s T s
Lim T s S s Lim L s c

S s


 

 
    


   . 

Therefore,      

ˆ= un
u

n
          (24) 

and   
3

( )
ˆvar( ) u uun n n

n
 

 . 
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In any empirical application, first we need to test if   is significantly less than 1; that is, if 

1)ˆvar(645.1ˆ   , for a 5% significance level, say. For the model in Equation 16, the choice of 

the optimal threshold is also achieved by using the exponential regression approach. 

 

In order to obtain independent data, we use a vector autoregressive (VAR) model for the mean, and a 

multivariate GARCH (MGARCH) model for the innovation, to filter out any serial correlation and 

conditional heteroskedasticity before we examine the dependence between any two variables. To 

estimate the dependence level we proceed as follows: 

(i) Apply VAR and MGARCH models to the raw data set (X, Y), and obtain the 

standardized residuals, ˆ ˆ ˆ( , )X Yv v v . 

(ii) Estimate the empirical distribution of X̂  and Y̂ : ( )
Xv XF v  and )( YY

F  . 

(iii) Transform the variables into Fréchet-distributed variates, 1 log ( )
Xv XS F v  , and 

1 log ( )
Yv YT F v  . 

(iv) Apply (  ,  ) to (S, T ) to check for extreme dependence. 

 

III.  Empirical Results 

 

Data 

 

Our data are the logarithmic daily returns for the following equity indices: SSE (China), Hang Seng 

(Hong Kong), TSEC (Taiwan), Nikkei 225 (Japan), Kospi (Korea), SENSEX30 (India), STI 

(Singapore), S&P500 (US), GSPTSE (Canada), IPC (Mexico), CAC40 (France), DAX (Germany) 

and FTSE100 (UK). These indices are the most representative ones for the Asian, European and North 

American continents, which in turn include China’s major trading regions and countries. Our data 

cover the period 4 January 2000 to 16 April 2010. For the univariate analysis, we delete all of the zero 

returns. For the extremal dependence analysis, we retain the data when pairs of indices are both non-

zero.     
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Table 1 shows the descriptive statistics for our data. These are similar across markets, and in each case 

the mean return is essentially zero, as expected. Of the various markets, that for Korea is the most 

volatile. All of the returns’ distributions are negatively skewed except for Mexico, France and 

Germany, and all have kurtosis measures that are much greater than three. The excess kurtosis could 

be caused by clustering of extremes or by clusters of volatility. Not surprisingly, the Jarque-Bera test 

indicates that none of the returns series are normally distributed. The Ljung-Box Q-statistic is applied 

to test for the serial independence of each index up to order of sixteen lags. We strongly reject this 

hypothesis for all cases except for Korea. Therefore, we apply AR-GARCH for the univariate series, 

and VAR-MGARCH for the pairs of indices to filter the series to further analysis. 

 

Table 1. Summary statistics for all stock markets’ daily returns  
 Min. Max. Mean Stdev. Skewness Kurtosis JB LB 

Asia         
China -0.0926 0.0940 0.0003 0.0173 -0.0877 6.8997 0.0000 0.0109
Hong Kong -0.1358 0.1341 0.0001 0.0170 -0.0407 10.4946 0.0000 0.0411
Taiwan -0.0994 0.0652 0.0000 0.0164 -0.2115 5.2495 0.0000 0.0033
Korea -0.1280 0.1128 0.0002 0.0186 -0.5174 7.5604 0.0000 0.1630
Japan -0.1211 0.1323 -0.0002 0.0163 -0.2993 9.2488 0.0000 0.0076
India -0.1181 0.1599 0.0005 0.0177 -0.1992 8.8110 0.0000 0.0001
Singapore -0.0922 0.0753 0.0001 0.0134 -0.4080 8.4561 0.0000 0.0080
North America    
US -0.0947 0.1096 -0.0001 0.0139 -0.1149 10.7135 0.0000 0.0000
Canada -0.0979 0.0937 0.0001 0.0131 -0.6955 11.4431 0.0000 0.0003
Mexico -0.0827 0.1044 0.0006 0.0153 0.0568 6.9575 0.0000 0.0000
Europe 
France -0.0947 0.1059 -0.0001 0.0157 0.0189 7.9518 0.0000 0.0000
Germany -0.0743 0.1080 0.0000 0.0166 0.0664 7.1371 0.0000 0.0033
UK -0.0926 0.0938 -0.0001 0.0133 -0.1128 9.1614 0.0000 0.0000
 
Notes: JB is the Jarque-Bera statistic for testing the hypothesis of normality. LB is the Ljung-Box Q-statistic for 

the independence hypothesis up to a lag-order of 16 (days). 

 

 

Univariate Analysis 

 

Next, we apply the conditional POT method introduced in section II to estimate VaR and ES for the 

logarithmic returns of each index. Applying the Ljung-Box Q-statistics, the filtered residuals from the 

AR process are i.i.d., at least at the 20% significance level. Given the asymmetry of the data, we 
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examine the risk levels separately for positive and negative returns, for each stock index.  

 

Based on the estimates of VaR and ES, at the 5% and 1% levels, we can compare the risk levels 

among the various indices. Table 2 shows that VaR and ES of the stock indices in Asian countries are 

generally higher than in Canada, the US, Germany and the UK, for both tails of the returns 

distributions. Except for Singapore, France and Hong Kong, the VaRs for positive returns are all 

smaller than for negative returns. Similar results hold for ES except for India, France, Germany and 

Hong Kong. For negative returns, the VaR and ES of the Chinese stock index are higher than those of 

all other indices we considered. In the case of positive returns, the risk for the Chinese market is also 

higher than most of the other markets, exceptions being Hong Kong and India. This may reflect the 

relative immaturity of the Chinese stock market. On the other hand, the UK market exhibits the 

smallest VaR and ES. This suggests that more developed markets may be more stable than developing 

or undeveloped markets. These results are robust to the choice of threshold.  

 

We also calculate the risk measures over two non-overlapping sub-periods: January 2000 to December 

2005; and January 2006 to mid-April 2010, with the recent global financial turmoil occurring in the 

second sub-period. More specifically, the Chinese stock market experienced a dramatic boom during 

2006 and the first part of 2007, with the SSE peaking at around 6,000 points. This was then followed 

by a “meltdown” in the second half of 2007, with the SSE losing approximately 75% of its peak value, 

with a subsequent slow recovery, so that the SSE stood at about 3,000 points by the end of our overall 

sample. From Table 3, we see that except China, the US, Mexico, Taiwan and France, the VaRs of the 

stock indices are higher for negative returns than for positive returns before the financial turmoil, at 

least at the 1% significance level. In the second sub-period, most countries or regions had similar 

experiences, except Hong Kong, Singapore, Mexico and France. The behavior of  the Chinese, Hong 

Kong, Taiwan, US and UK markets changed significantly across these two sub-periods. The 

experiences of the stock markets in Singapore, Mexico and France were quite different from those in 

other countries in both periods, which had a larger risk level for the positive returns than negative 

returns. As expected, most of the countries and regions in this study saw the risk in their stock markets 

increasing during the period of financial turmoil, with respect to both negative and positive returns. 

However, (positive and negative) VaR in the Korean and Japanese stock markets fell during the period 
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of turbulence. China and Taiwan are two interesting cases here: their VaR increased during the period 

of financial turmoil only with respect to negative returns. For positive daily returns, the risk actually 

decreased. 

 

Table 2. VaR and ES estimates for the market returns  (full sample period)    

 Negative Tail  Positive Tail 

VaR ES VaR ES 
  5% 1%   5% 1%  5% 1%   5% 1% 

Asia   

0.0326 0.0449 0.0403 0.0532 0.0278 0.0427 0.0377 0.0572 

China  (0.001) (0.002) (0.002) (0.004) (0.001) (0.003) (0.003) (0.001)

0.0254 0.038 0.0338 0.0498 0.0314 0.0430 0.0390 0.0528 Hong 
Kong  (0.001) (0.003) (0.003) (0.006) (0.001) (0.002) (0.002) (0.005)

0.0319 0.0438 0.0396 0.054 0.0243 0.0329 0.0297 0.0387 

Taiwan  (0.001) (0.002) (0.002) (0.005) (0.001) (0.001) (0.001) (0.003)

0.0272 0.0386 0.0346 0.0483 0.0225 0.0314 0.0284 0.0394 

Japan  (0.001) (0.002) (0.002) (0.005) (0.001) (0.002) (0.002) (0.004)

0.0281 0.0428 0.0381 0.0582 0.0235 0.0339 0.0300 0.0410 

Korea  (0.001) (0.003) (0.004) (0.009) (0.001) (0.002) (0.002) (0.003)

0.0290 0.0384 0.0347 0.0429 0.0282 0.0406 0.0362 0.0512 

India  (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.002) (0.005)

0.0224 0.0326 0.0293 0.0426 0.0232 0.0317 0.0285 0.0367 

Singapore  (0.001) (0.002)   (0.002) (0.005)  (0.001) (0.001)   (0.001) (0.002)

North America  

0.0203 0.0278 0.0251 0.0335 0.0196 0.0255 0.0232 0.0276 

US (0.001) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001) (0.001)

0.0196 0.0297 0.0264 0.0396 0.0173 0.0249 0.0221 0.0302 

Canada  (0.001) (0.002) (0.002) (0.005) (0.001) (0.001) (0.001) (0.002)

0.0263 0.0372 0.0330 0.0433 0.0236 0.0334 0.0297 0.0393 

Mexico  (0.001) (0.002)   (0.002) (0.003)  (0.001) (0.001)   (0.001) (0.003)

Europe  

0.0226 0.0324 0.0290 0.0408 0.0270 0.0367 0.0331 0.0433 

France  (0.001) (0.002) (0.002) (0.004) (0.001) (0.002) (0.001) (0.003)

0.0220 0.0305 0.0274 0.0373 0.0217 0.0308 0.0277 0.0390 

Germany  (0.001) (0.002) (0.001) (0.003) (0.001) (0.002) (0.002) (0.004)

0.0196 0.0254 0.0231 0.0274 0.0161 0.0211 0.0192 0.024 

UK  (0.001) (0.001)   (0.001) (0.001)  (0.000) (0.001)   (0.001) (0.001)

Note: Asymptotic standard errors appear in parentheses. 



13 
 

Table 3. VaR estimates for the market returns 

Period 1: 05/01/2000 – 30/12/2005 Period 2: 04/01/2006 – 16/04/2010 
Negative Tail   Positive Tail Negative Tail   Positive Tail 

  5% 1%   5% 1%   5% 1%   5% 1% 

Asia  
0.0267 0.0383 0.0312 0.0425 0.0417 0.0528 0.0302 0.0468

China  (0.001) (0.004) (0.002) (0.003) (0.002) (0.004) (0.002) (0.007)
0.0242 0.0361 0.0185 0.0239 0.0269 0.0355 0.0359 0.0491Hong 

Kong  (0.001) (0.004) (0.001) (0.002) (0.001) (0.003) (0.002) (0.004)
0.0233 0.0346 0.0280 0.0374 0.0318 0.0388 0.0175 0.0223

Taiwan  (0.001) (0.004) (0.001) (0.003) (0.001) (0.002) (0.001) (0.001)
0.0319 0.0453 0.0283 0.0357 0.0278 0.0365 0.0223 0.0344

Japan  (0.001) (0.004) (0.001) (0.002) (0.001) (0.003) (0.001) (0.005)
0.0322 0.0489 0.0282 0.0371 0.0259 0.0343 0.0218 0.0313

Korea  (0.002) (0.006) (0.001) (0.002) (0.001) (0.003) (0.001) (0.003)
0.0333 0.0464 0.0269 0.0399 0.0317 0.0427 0.0296 0.0394

India  (0.002) (0.004) (0.001) (0.004) (0.002) (0.004) (0.001) (0.003)
0.0171 0.0252 0.0180 0.0252 0.0249 0.0362 0.0302 0.0395

Singapore (0.001) (0.002)   (0.001) (0.002)   (0.001) (0.003)   (0.001) (0.002)

North America 
0.0154 0.0209 0.0157 0.0206 0.0210 0.0281 0.0195 0.0259

US (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.002)
0.0197 0.0318 0.0153 0.0205 0.0206 0.0261 0.0175 0.0279

Canada  (0.001) (0.004) (0.001) (0.001) (0.001) (0.002) (0.001) (0.004)
0.0244 0.0340 0.0256 0.0324 0.0276 0.0377 0.0285 0.0418

Mexico  (0.001) (0.002)   (0.001) (0.001)   (0.002) (0.003)   (0.002) (0.005)

Europe  
0.0176 0.0256 0.0197 0.0260 0.0231 0.0333 0.0247 0.0305

France  (0.001) (0.002) (0.001) (0.001) (0.001) (0.004) (0.001) (0.002)
0.0200 0.0252 0.0163 0.0222 0.0241 0.0365 0.0230 0.0330

Germany  (0.001) (0.001) (0.001) (0.002) (0.001) (0.005) (0.001) (0.003)
0.0140 0.0190 0.0142 0.0188 0.0203 0.0298 0.0152 0.0188

UK  (0.000) (0.001)   (0.001) (0.001)   (0.001) (0.004)   (0.001) (0.001)

Note: Asymptotic standard errors appear in parentheses. 
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Table 4. ES estimates for the market returns 

Period 1: 05/01/2000 – 30/12/2005 Period 2: 04/01/2006 – 16/04/2010 
Negative Tail   Positive Tail Negative Tail   Positive Tail 

  5% 1%   5% 1%   5% 1%   5% 1% 

Asia  
0.0342 0.0481 0.0380 0.0478 0.0485 0.0584 0.0415 0.0645

China  (0.003) (0.009) (0.002) (0.004) (0.003) (0.006) (0.006) (0.018)
0.0322 0.0477 0.0219 0.0275 0.0322 0.0402 0.0441 0.0577Hong 

Kong  (0.003) (0.010) (0.001) (0.003) (0.002) (0.004) (0.003) (0.007)
0.0308 0.0454 0.0338 0.0433 0.0361 0.0422 0.0205 0.0250

Taiwan  (0.003) (0.009) (0.002) (0.005) (0.002) (0.003) (0.001) (0.002)
0.0406 0.0566 0.0330 0.0413 0.0332 0.0417 0.0304 0.0463

Japan  (0.003) (0.009) (0.002) (0.004) (0.002) (0.005) (0.004) (0.012)
0.0433 0.0652 0.0337 0.0422 0.0310 0.0391 0.0278 0.0384

Korea  (0.005) (0.014) (0.002) (0.004) (0.002) (0.005) (0.003) (0.007)
0.0414 0.0542 0.0355 0.0523 0.0385 0.0489 0.0358 0.0465

India  (0.003) (0.006) (0.003) (0.010) (0.003) (0.006) (0.002) (0.006)
0.0224 0.0326 0.0225 0.0299 0.0323 0.0465 0.0358 0.0465

Singapore (0.002) (0.006)   (0.002) (0.004)   (0.004) (0.010)   (0.002) (0.006)

North America 
0.0188 0.0245 0.0187 0.0231 0.0255 0.0329 0.0234 0.0296

US (0.001) (0.003) (0.001) (0.001) (0.002) (0.004) (0.001) (0.004)
0.0281 0.0459 0.0185 0.0233 0.0239 0.0289 0.0246 0.0395

Canada  (0.004) (0.012) (0.001) (0.002) (0.001) (0.004) (0.004) (0.012)
0.0304 0.0398 0.0297 0.0347 0.0339 0.0439 0.0372 0.0536

Mexico  (0.002) (0.004)   (0.001) (0.002)   (0.003) (0.006)   (0.004) (0.012)

Europe  
0.0227 0.0318 0.0235 0.0289 0.0298 0.0421 0.0283 0.0344

France  (0.002) (0.005) (0.001) (0.002) (0.003) (0.009) (0.002) (0.004)
0.0232 0.0283 0.0200 0.0264 0.0323 0.0478 0.0295 0.0412

Germany  (0.001) (0.003) (0.001) (0.003) (0.004) (0.011) (0.003) (0.007)
0.0175 0.0224 0.0171 0.0216 0.0264 0.0371 0.0174 0.0205

UK  (0.001) (0.003)   (0.001) (0.003)   (0.003) (0.010)   (0.001) (0.002)

Note: Asymptotic standard errors appear in parentheses. 

 

The results for expected shortfall in Table 4 are similar to those in Table 3. When we compare ES 

before and during the financial turmoil in different countries, we find that the majority of countries 

experienced higher ES for positive returns during the financial turmoil. Japan and Korea again 

experienced decreasing ES in both tails of the returns distribution after the onset of the financial 

turmoil. However, China, Hong Kong, Singapore, the US and Mexico saw their ES in the stock 

market rise in both tails. Overall, although there is no strong indication that the risk associated with 

negative returns is consistently higher than that for positive returns, we see that risk levels for 
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negative returns increased (as expected) in our second sub-period for most countries and regions.  

  

Dependence Analysis 

 

Next, we examine the tail dependence of pairs of stock indices – in particular, pairs involving China 

and each of the other countries under consideration. Tables 5 and 6 report the tail dependence 

estimates  and their standard errors over different periods. In all of the cases, the estimates of  and 

their standard errors indicate that the pairs of stock index returns are asymptotically independent, so 

  is not reported in any case. These tables report the dependence results for the unfiltered stock 

returns, and the filtered stock returns derived from three types of MGARCH models: constant 

conditional correlation (CCC) MGARCH, dynamic conditional correlation (DCC) MGARCH, and the 

Glosten et al. (1993) (GJR) MGARCH model, which includes the dynamic and asymmetric cases. We 

also checked the independence of the filtered residuals based on the Ljung-Box Q-statistics, and found 

that the dependence condition can be satisfied for all of the indices at the 20% significance level. 

 

Table 5 reports the tail dependence between the Chinese and other stock markets for positive and 

negative returns over the whole period, with filtered and unfiltered data sets. In all cases, the tail 

dependence is positive and the Chinese market is asymptotically independent of all of the other stock 

markets under consideration. So, although there is significant dependence between the Chinese and 

other stock markets, this dependence doesn’t apply for extremely large returns values. Given the size 

of the US stock market, and the fact that it is the last one to close each trading day, it is reasonable to 

assume that this market has a major influence on other markets (e.g., the Chinese market) the next 

trading day. So, we examine the extremal dependence between the Chinese stock index and another 

form of the US stock index – an “adjusted index” obtained by moving the closing price back by one 

day. We then find that the extremal dependence between the Chinese and US stock markets is less 

using the original index than with the adjusted index, implying that the US stock market in the 

previous day has a larger effect on the Chinese stock market than in the same calendar day for 

unfiltered data. For MGJR and DCC filtered residuals, the dependence level increases for the adjusted 

index in the left tail, but decreases n the right tail. For CCC filtered residuals, this pattern is reversed. 

The larger US effect from the previous day significantly decreases once we filter for serial correlation 
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and conditional heteroskedasticity.    

 

Comparing the unfiltered results with the filtered ones, we find that except for a few cases, the 

extremal dependence of the Chinese stock market with those of the other countries and regions 

decreases for the filtered cases, and the results are generally consistent among the different MGARCH 

models (using different filters). Comparing the dependence level between the left and right tails, there 

is no strong reason to believe that joint crashes between China and other stock markets are more likely 

to happen than are simultaneous booms. This finding is not consistent with others in the literature, 

such as Poon et al. (2003), Martens and Poon (2001) and Longin and Solnik (2000), who found the 

dependence level in the left tail tends to be larger than in the right tail for most other countries.  

 

Again, a possible explanation lies in the immaturity of the stock market, and the limitation of the 

investment channels, in China. Basically in China, there are only two ways for private individuals to 

invest their money: stocks and real estate. The amount required to invest in real estate is relatively 

large, making it inaccessible for most people. So when people have excess cash, they generally 

deposit it in savings accounts or buy stocks. However, any Chinese stockholders have limited 

knowledge of the stocks in which they invest, so they can be quite irrational. In particular, they tend to 

exaggerate positive information. Therefore, in the Chinese market, we may not be able to observe the 

anticipated risk asymmetry between positive and negative returns. Further, comparing the various 

results based on the filtered data, we find that when markets decline, the Canadian stock market seems 

to have a larger influence on the Chinese stock market than do the markets for the other countries and 

regions (especially France). When markets are booming, the Chinese stock market seems to move 

closely with the Hong Kong, Japanese, German and Mexican markets, and less closely with the 

markets in Taiwan, Singapore and Korea.  

 

One possible explanation for the markets of France, Singapore, Korea and Taiwan having less 

extremal influence on the Chinese stock market than do some other financial markets is that they are 

small compared with those of the other countries in this study. Two large Asian financial markets - 

Hong Kong and Japan - seem to have greater importance than others in generating large fluctuations 

in the Chinese market, especially during strong upswings. Closer and closer trading ties between 
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Canada and China have put Canada at the top of influential countries for the Chinese stock market 

when markets are down, but interestingly this relationship is less apparent when markets are booming.  

 

 

Table 5. Asymptotic dependence estimates for Chinese and other stock indices 

 

Unfiltered Data            MGJR filtered residuals 

 

Negative Tail Positive Tail             Negative Tail       Positive Tail 

              a.s.e.           a.s.e.              a.s.e.                a.s.e. 

China-Hong Kong 0.5561  0.1339  0.6761 0.0934  0.3755 0.0942 0.4304  0.0969  
China-Taiwan 0.3295  0.1180  0.2162 0.0897  0.3736 0.0957 0.2150  0.0844  
China-Korea 0.5132  0.1016  0.4696 0.0913  0.3604 0.0977 0.2533  0.1075  
China-Japan 0.5079  0.1153  0.4600 0.0982  0.3392 0.1055 0.4674  0.1109  
China-India 0.5669  0.1001  0.5357 0.0936  0.3855 0.1053 0.3695  0.0849  
China-Singapore 0.5411  0.1056  0.4802 0.0902  0.4761 0.0951 0.3074  0.0809  
China-US 0.1421  0.1142  0.3881 0.0907  0.3465 0.0916 0.3955  0.0912  
China-US(adjusted) 0.4024  0.1149  0.4748 0.0881  0.3626 0.1002 0.3031  0.0926  
China-Canada 0.6422  0.0978  0.3415 0.0824  0.6275 0.1042 0.2472  0.0927  
China-Mexico 0.4548  0.1037  0.4335 0.0905  0.3856 0.1113 0.3865  0.0832  
China-France 0.3778  0.0972  0.2745 0.0871  0.2185 0.1015 0.3349  0.0979  
China-Germany 0.2902  0.1083  0.3340 0.0802  0.2292 0.1141 0.4384  0.0968  
China-UK 0.4854  0.1056  0.2374 0.0960  0.4131 0.1244 0.3748  0.1058  
 

DCC filtered residuals                       CCC filtered residuals 
 

Negative Tail Positive Tail             Negative Tail       Positive Tail 
                a.s.e.           a.s.e.                  a.s.e.                 a.s.e. 

China-Hong Kong 0.3783  0.0915  0.5218 0.0961  0.3566 0.0967 0.5381  0.1008  
China-Taiwan 0.2850  0.0974  0.1910 0.0908  0.3075 0.0918 0.2316  0.0817  
China-Korea 0.2873  0.0990  0.2526 0.1066  0.2451 0.1000 0.2363  0.1060  
China-Japan 0.3780  0.0927  0.4880 0.0926  0.3876 0.0944 0.4272  0.0947  
China-India 0.2489  0.1052  0.2932 0.0853  0.2845 0.1028 0.2905  0.0842  
China-Singapore 0.2377  0.0900  0.1714 0.0845  0.2483 0.0880 0.1958  0.0948  
China-US 0.0457  0.1084  0.2619 0.0873  0.2119 0.1093 0.2060  0.0950  
China-US(adjusted) 0.2798  0.0867  0.1630 0.0940  0.2075 0.0961 0.3018  0.0872  
China-Canada 0.3945  0.0991  0.2879 0.0831  0.3477 0.1062 0.2769  0.0809  
China-Mexico 0.1956  0.1033  0.3411 0.0821  0.4553 0.1032 0.3372  0.0842  
China-France 0.2331  0.1090  0.3022 0.0886  0.1623 0.1040 0.2882  0.0893  
China-Germany 0.2750  0.1159  0.3510 0.0897  0.2690 0.1275 0.3570  0.0939  
China-UK 0.3451  0.1166  0.1709 0.0990  0.2810 0.1174 0.1864  0.0982  
          

Note: “a.s.e” denotes asymptotic standard error.  
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Table 6. Asymptotic dependence estimates for Chinese and other stock indices over two  

sub-periods  

 

Subperiod 1: 5 January 2000 – 30 December 2005  

 

                      MGJR Filtered residuals                              DCC Filtered residuals 

 

   Negative Tail      Positive Tail             Negative Tail       Positive Tail  

                  a.s.e.                     a.s.e.                  a.s.e.                    a.s.e.  

Note: “a.s.e” denotes asymptotic standard error. 

 

 

 

China-Hong Kong 0.2522  0.1183 0.4899 0.1174 0.1932 0.1170  0.3581  0.1215 
China-Taiwan 0.2735  0.1121 0.0632 0.1058 0.1915 0.1152  0.0952  0.1426 
China-Korea 0.3566  0.1185 0.2098 0.1241 0.3301 0.1194  0.2946  0.1365 
China-Japan 0.3879  0.1177 0.4605 0.1333 0.3154 0.1108  0.3960  0.1375 
China-India 0.3034  0.1254 0.2994 0.1015 0.3610 0.1242  0.3095  0.1080 
China-Singapore 0.2670  0.1382 0.1289 0.1164 0.1037 0.1250  0.1594  0.1086 
China-US 0.1089  0.1653 0.1507 0.1139 0.0427 0.1138  0.1551  0.1112 
China-US(adjusted) 0.1505  0.2256 0.2777 0.1386 0.2663 0.1133  0.1013  0.1272 
China-Canada 0.1236  0.1272 0.2037 0.1148 0.0094 0.1272  0.1504  0.1064 
China-Mexico 0.2634  0.1289 0.2306 0.1173 0.1961 0.1184  0.2495  0.1118 
China-France 0.1723  0.1311 0.1121 0.1065 0.1482 0.1224  0.2302  0.1152 
China-Germany 0.3442  0.1365 0.2269 0.1203 0.1834 0.1284  0.2492  0.1186 
China-UK 0.4390  0.1292 0.1475 0.1237 0.4415 0.1289  0.1915  0.1152 
 
 
Subperiod 2: 4 January 2006 – 16 April 2010 
 
                    MGJR Filtered residuals                            DCC Filtered residuals 
 

Negative Tail   Positive Tail                   Negative Tail       Positive Tail             a.s.e.                a.s.e.                            a.s.e.                   a.s.e.  

China-Hong Kong 0.4420  0.1512 0.6030 0.1244 0.5128 0.1423  0.5042  0.1309 
China-Taiwan 0.3593  0.1483 0.3256 0.1186 0.3939 0.1354  0.3012  0.1133 
China-Korea 0.2419  0.1406 0.5442 0.1291 0.3837 0.1475  0.3231  0.1310 
China-Japan 0.4287  0.1401 0.4615 0.1201 0.5008 0.1412  0.3893  0.1187 
China-India 0.3601  0.1467 0.4000 0.1209 0.4732 0.1520  0.3303  0.1195 
China-Singapore 0.4713  0.1262 0.3087 0.1072 0.3470 0.1235  0.1986  0.1113 
China-US 0.2773  0.1722 0.4690 0.1304 0.2312 0.1603  0.4442  0.1229 
China-US(adjusted) 0.3792  0.1648 0.3660 0.1359 0.2815 0.1602  0.3393  0.1307 
China-Canada 0.5559  0.1605 0.5127 0.1265 0.5238 0.1643  0.4446  0.1267 
China-Mexico 0.5799  0.1745 0.5702 0.1282 0.2996 0.1838  0.4432  0.1286 
China-France 0.2687  0.1368 0.3022 0.1309 0.1646 0.1402  0.2339  0.1273 
China-Germany 0.2646  0.1522 0.4435 0.1389 0.1780 0.1484  0.4339  0.1221 
China-UK 0.2020  0.1480 0.4664 0.1301 0.2376 0.1559  0.5470  0.1367 
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Based on the Ljung–Box test, we strongly reject the null hypothesis of independence for all pairs of 

the unfiltered data, but we cannot reject the independence hypothesis for all pairs of the filtered data 

at least at the 20% significance level. This suggests that the estimates based on the dependent data set 

may give us some misleading results about the tail dependence. So, we turn to the results based on the 

filtered data sets to check the stability of dependence across the two sub-periods that we examined 

before. The results based on the three MGARCH models are quite similar, so we just report those 

based on the MGJR and DCC MGARCH models to conserve space. The results in Table 6 are 

consistent with the findings in Table 5: in general, the markets in Hong Kong, Japan, Canada and 

Mexico all have closer ties with the Chinese stock market after the onset of the period of financial 

turmoil, than before. On the other hand, the influence of India and the three European countries 

studied here on the Chinese stock market was as weak, or weaker, after 2006 than before. Overall, we 

can see that the extremal dependence between the Chinese and most other stock markets has increased 

over time with respect to both positive and negative returns.  

 

IV.  Conclusions 

In this paper we have applied conditional extreme value theory to estimate the Value at Risk and 

Expected Shortfall of thirteen stock indices. We find that the Chinese market has the highest VaR and 

ES for negative returns, and the third highest level of risk for positive returns. The UK market has the 

lowest such measures in both tails of the returns distribution. In addition, the risk level tends to 

increase for most indices over time. From our extremal dependence analysis, we find that fluctuations 

in the Chinese stock market are positively correlated with those in all other countries or regions. 

However, these movements are asymptotically independent of those in all other stock markets, 

implying that there is no dependence between extremely large values of these fluctuations when the 

Chinese and other stock markets are compared in a pair-wise manner.  
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