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Abstract 

We examine inference for Generalized Entropy and Atkinson inequality measures with complex survey data, 

using Wald statistics with variance-covariance matrices estimated from a linearization approximation method.  

Testing the equality of two or more inequality measures, including sub-group decomposition indices and 

group shares, are covered.  We illustrate with Indian data from three surveys, examining pre-school children’s 

height, an anthropometric measure that can indicate long-term malnutrition.  Sampling involved an urban/rural 

stratification with clustering before selection of households.  We compare the linearization complex survey 

outcomes with those from an incorrect independently and identically distributed (iid) assumption and a 

bootstrap that accounts for the survey design.  For our samples, the results from the easy to implement 

linearization method and the more computationally burdensome bootstrap are in close agreement.  This finding 

is of interest to applied researchers, as bootstrapping is currently the method that is most commonly used for 

undertaking statistical inference in this literature. 
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1. INTRODUCTION 

Studying inequality, especially for income, has been regaining attention since the late 1980s, 

after a period of relative neglect.  As Atkinson (1997, p. 297) points out “For much of this 

century, it (the subject of income distribution) has been very much out in the cold”.  This 

revival has led to a growing literature on measuring inequality, as well as analysis of the 

statistical properties of such measures.  However, gaps still remain between theoretical 

developments and empirical applications.  A key manifestation of this gap is that much of the 

applied inequality research does not undertake statistical inference.   Many such studies use 

inequality measures to make inter-temporal or inter-regional comparisons and/or for studying 

policy impacts (e.g., to examine the effect of a tax policy) with conclusions usually based on 

comparing numerical estimates rather than on formal statistical testing; e.g., Ram (2006).   

One argument (see Maasoumi, 1997) used by investigators to support such practices has 

been that their large samples do not warrant concern about precision but large standard errors 

can still arise with such data sets.  Furthermore, as the majority of the statistical theory in this 

area is based on large sample or asymptotic approximations, the use of large samples actually 

makes it more meaningful to report standard errors and undertake statistical tests.  So, why 

the common lack of statistical inference?  We believe two factors are perhaps at play – 

applicability of current theoretical results and ease of use of relevant theory.  

On the first factor, many theoretical papers consider approximate asymptotic inference 

for inequality measures; e.g., to name only a few, Cowell (1989), Binder and Kovačević 

(1995), Van de gaer et al. (1999), Schluter and Trede (2002), Biewen and Jenkins (2006), 

Davidson and Flachaire (2007), Bhattacharya (2007) and Davidson (2009).  Most focus on an 

iid framework, whereas data commonly arise from complex surveys.  Although some of the 

iid papers consider weights, these take on a different role than in a complex survey.  For 

instance, Cowell (1989) examines inference for decomposable inequality measures with 

random household weights that convert the observed household distribution into a personal 

distribution.   Schluter and Trede (2002) allow for contemporaneous dependencies within 

households, but assume that households are iid.  Correlation is also introduced by Van de 

gaer et al. (1999) but it is temporal dependence rather than correlations arising from the 

survey design.   That a complex sampling design produces the sample data leads to 

(asymptotic) variances and covariances for inequality measures that differ from those under 

simple random sampling (SRS) or iid with weights.  Consequently, to date, much of the 

theoretical work does not pertain to the data often used by empirical researchers. 
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In economics, data obtained under a complex survey design involves both stratification 

and clustering, undertaken to ensure adequate representation of groups of interest, in addition 

to minimizing costs.  Stratification, which reduces survey costs for a given level of precision, 

results in the breakdown of the “identical” part of an iid assumption – even when members 

are independent within a stratum, they are unlikely to come from the same distribution across 

strata.  Moreover, sample observations are likely correlated when the survey design involves 

clustering, so violating the “independent” part of an iid assumption.  Clustering, such as 

interviewing several households on the same block or from the same village, likely introduces 

a common unobserved cluster-specific effect, which needs to be taken into account. 

Relevant theoretical contributions that do incorporate such effects include Binder and 

Kovačević (1995), Biewen and Jenkins (2006) and Bhattacharya (2007).   Each provides 

ways to obtain (at least) asymptotic variances for various inequality measures under complex 

sampling.  Binder and Kovačević (1995) use linearization methods based on estimating 

equations to obtain variance estimators for a few inequality measures (Gini coefficient, 

coefficient of variation, an “exponential measure” and Lorenz curve ordinates).  Asymptotic 

inference for the Lorenz curve and the Gini coefficient is also considered by Bhattacharya 

(2007).  Our paper extends the work of Biewen and Jenkins (2006) who, based on Woodruff 

(1971), use a linearization method to obtain asymptotic variances for the Atkinson (1970) and 

Generalized Entropy measures with complex survey data.  This type of linearization method 

involves using a Taylor series approximation, as is standard, but its novelty is in the 

reordering of the components of the resulting sums, simplifying evaluations computationally.   

This feature of the variance expressions of Biewen and Jenkins (2006) addresses the 

second factor we identified above for the possible lack of statistical inference in applied 

research – ease of use.  This factor has been identified by others (e.g., Giles, 2004 and 

Davidson, 2009), in explaining the lack of use of asymptotic variance formulae and 

subsequent hypothesis testing in applied research.  However, Biewen and Jenkins, as well as 

the other cited references that account for complex sampling, do not consider the elements 

arising from a decomposition analysis, such as the “between” and “within” components or 

any share measures that may be generated from these parts.  Decomposing inequality 

measures is standard applied practice.  In addition, Biewen and Jenkins do not indicate how 

to extend the approach to test hypotheses involving two or more inequality measures. 

Our goal is to provide these missing pieces.  For the Atkinson and Generalized Entropy 

families, we give linearization variance expressions for sub-group decomposition measures, 

the between and within components and for sub-group shares of overall inequality.   In 
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addition, we extend the method to calculate asymptotic variance-covariance matrices 

enabling Wald statistics to be formed to test hypotheses involving two or more inequality 

measures.  In particular, we cover testing the equivalence of inequality measures that may be 

simple inequality indices, sub-group decomposition indices, between and within measures 

and group shares of overall inequality.  As in Biewen and Jenkins (2006), our expressions are 

applicable to the study of inequality of not just income but many other well-being variables 

such as wages, years of schooling, heights of children etc.  Consequently, the results should 

be of interest to a wide range of empirical researchers in various fields. 

We illustrate using Indian data from three National Family and Health Surveys (1992/93 

(NFHS-1), 1998/99 (NFHS-2) and 2005/06 (NFHS-3)), examining children’s height, an 

anthropometric measure that can indicate growth retardation and cumulative growth deficits, 

suggestive of long-term malnutrition.  The sampling design involved an urban/rural 

stratification with one or two stages of clustering prior to the selection of households.  In 

addition to providing variances for inequality indices, sub-group decomposition measures and 

sub-group shares of overall inequality, based on the urban/rural split, we test equality of these 

measures across the three surveys.  A brief examination of gender differences in inequality is 

also provided.  India has been experiencing rapid economic growth since the 1990s along 

with poverty reduction.  However, this has been accompanied by rising economic inequality 

within urban areas and also between urban and rural sectors.  But as Deaton and Drèze (2002, 

p.3744) rightly ask “What about other types of social inequality, involving other dimensions 

of well-being........?”.  Health is an important dimension of well-being and health inequality 

among children is a worthy issue to explore.   

Others have studied health inequality, convincingly arguing that such measures are 

important in their own right, not just because of possible correlation between income and 

health.  Ram (2006) estimates cross-country inequality in life expectancy. Gini coefficients 

using Latin American children’s height data and data on years of schooling for women aged 

22-30 are calculated by Sahn and Younger (2006).  Height inequality among adults in Sub-

Saharan Africa is considered by Moradi and Baten (2005). Pradhan et al. (2003) decompose 

world health inequality, as measured by height inequality among pre-school children, into 

within-country and between-country inequality using one of Theil’s (1967) measures.  

Neither Ram (2006), Moradi and Baten (2005) nor Pradhan et al. (2003) report standard 

errors associated with their inequality measures and despite concluding differences in the 

numerical estimates, they do not undertake formal hypothesis testing.  While Sahn and 
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Younger (2006) report standard errors and undertake significance testing, they do not 

mention how these have been obtained.  Our work is directly relevant to such studies.   

As bootstrapping offers a viable alternative, albeit less computationally friendly, we also 

provide standard error estimates and hypothesis test p-values from a bootstrap experiment 

that allows for the complex sampling design.1   Undertaking inference for inequality 

measures via bootstrapping was proposed by Mills and Zandvakili (1997), who examine the 

Gini coefficient along with the two Theil (1967) measures, and extended to all Generalized 

Entropy and Atkinson indices by Biewen (2002).  Applications of bootstrapping include 

Barrett et al. (2000), Gray et al. (2003a), Mills and Zandvakili (2004) and Davidson (2009).  

Some of these studies use complex survey data that is not accounted for in the bootstrap 

experiments, leading to incorrect standard errors and p-values.  We expect the bootstrap and 

linearization approaches to provide similar variance estimates, given the large sample size, 

which makes a case for using the linearization method, given its lower programming 

demands.  Finally, we use the linearization method to calculate variance-covariance matrices 

(and subsequent test statistics) under a false iid with weights assumption.  Although this last 

case misinterprets the role weights play under an iid assumption for our data, it is a useful 

illustration of an error that might inadvertently arise in applied research.    

This paper is organized as follows.  Section 2 reviews our considered inequality 

measures.  Estimators of the variance-covariance matrices are presented in section 3.  Section 

4 describes our setup for the bootstrap experiment for the application.  The setting, data and 

results from the empirical illustration are detailed in section 5 and section 6 concludes.  

Relevant formulae are provided in an appendix.   

 
 

2. INEQUALITY MEASURES 

Many measures, or indices, of inequality can be obtained from a population, each with a 

different sensitivity to inequality in the upper or lower tail of the distribution.  We examine 

the Generalized Entropy (GE), , and Atkinson (A), , classes of indices. Theil’s (1967) 

two information indices are special cases: the Theil-1 index, IT1, arises when , whereas 

the Theil-2

α
GEI ε

AI

1→α
2 index, IT2, results by letting 0→α .  In addition, setting α = 2 gives half of the 

coefficient of variation squared.   Accordingly, α determines the sensitivity of the index to 

inequality; changes in the distribution’s upper tail are more important for larger positive α 

                                                 
1 A novel feature of our work compared with that of Biewen and Jenkins (2006). 
2 Also often termed the mean logarithmic deviation. 
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while a greater response to inequality in the lower tail occurs when α becomes more negative.   

The parameter ε (≥0) for the Atkinson indices is often called the inequality aversion 

parameter (or preference for equality parameter), as larger values lead to greater sensitivity to 

inequality in the lower tail (or more aversion to inequality).  Each member of the Atkinson 

family has an ordinally equivalent member of the GE family (but not vice versa). 

We adopt the basic setup of Biewen and Jenkins (2006), where each inequality measure 

is written in terms of population totals of the variable of interest (denoted as y) that captures 

some aspect of well-being:  and , 

summed over the stages of the complex survey sampling design, assumed to involve 

h=1,…,L strata, i=1,…,Nh clusters in stratum h and j=1,…,Mi individuals in cluster i.  The 

parameter θ is predetermined by which particular index is adopted, being either 0 or 1 for the 

T totals and 0,1, α or (1-ε) for the U totals.  Note that U0 is the finite population size. Further 

stages of sampling beyond the initial stratification and clustering do not matter, as the 

nonparametric variance estimator is computed from the quantities from the Nh clusters; e.g., 

Skinner et al. (1989).  

∑ ∑∑
= = =

θ
θ =

L

1h

N

1i

M

1j
hij

h i
)y(U )y(log)y(T hij

L

1h

N

1i

M

1j
hij

h i

∑∑∑
= = =

θ
θ =

The population inequality indices we examine3 are then 

 ( )1UUU)(I 1
1

0
12

GE −α−α= α
α−−α−α , }1,0{\ℜ∈α     (1) 

 ( ) 1,UUlogUTI 1
01

1
111T →α−= −−       (2) 

 ( ) 0,UUlogUTI 1
01

1
002T →α+−= −−       (3) 

      (4) 1,0,UUU1I )1/(1
1

1
1

)1/(
0A ≠ε≥ε−= ε−

ε−
−ε−ε−ε

 ( ) .1,UTexpUU1I 1
00

1
10

1
A →ε−= −−       (5) 

Estimators, , , , and , are generated by using the complex survey 

sample totals: and where 

nh is the number of sampled first stage clusters and mi is the number of sampled units in 

cluster i.  As the complex survey design results in units with (usually) different probabilities 

of being sampled, the weight, whij, is included to account for such differential sampling rates, 

in addition to any adjustments for non-response and inadequate frame coverage.  

α
GEÎ

θ =Û

1TÎ

∑∑
L

1h

n

i

2TÎ

∑
= = =1

m

1j

h i

ε
AÎ

hijw

1
AÎ

θ
hij)y( )y(log)y(wT̂ hij

L

1h

n

1i

m

1j
hijhij

h i

∑∑∑
= = =

θ
θ =

                                                 
3 See, for instance, Cowell (1989). 
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Our focus, as is the case with most empirical applications exploring inequality, is on 

decomposing a population’s overall inequality into that for sub-groups (e.g., age, region, 

gender, regions, educational levels and so on).  Total inequality then arises from that 

“between” the sub-groups and that “within” each sub-group.  Being able to quantify the 

relative contributions of population characteristics contributing to inequality (and changes in) 

is informative and may aid the design of policy seeking to address inequality concerns.  

Specifically, we suppose the population comprises G mutually exclusive and exhaustive sub-

groups (g=1,…,G) with sub-group population totals: and 

where gDhij is a dummy variable that is 1 when unit 

hij belongs to sub-group g, 0 otherwise.   Then, the sub-group inequality measures are 

∑∑∑
= = =

θ
θ =

L

1h

N

1i

M

1j
hijhijgg

h i
)y(DU

)y(log)y(DT hij

L

1h

N

1i

M

1j
hijhijgg

h i

∑∑∑
= = =

θ
θ =

 ( )1)U)(U)(U()(I g1g
1

0g
12

GEg −α−α= α
α−−α−α , }1,0{\ℜ∈α   (6) 

 ( ) 1,)U)(U(log)U)(T(I 1
0g1g

1
1g1g1Tg →α−= −−     (7) 

 ( ) 0,)U)(U(log)U)(T(I 1
0g1g

1
0g0g2Tg →α+−= −−    (8) 

    (9) 1,0,)U)(U)(U(1I )1/(1
1g

1
1g

)1/(
0gAg ≠ε≥ε−= ε−

ε−
−ε−ε−ε

 ( ) .1,)U)(T(exp)U)(U(1I 1
0g0g

1
1g0g

1
Ag →ε−= −−     (10)  

To examine how sub-group inequality contributes to overall inequality, we need to define the 

between-group and within-group contributions and how these two parts combine.  Addressing 

these issues has led to a lengthy literature, as the method adopted to breakdown inequality 

into its components may well alter the relative significance of the between- and within-group 

parts; see, among many others, Bourguignon (1979), Cowell (1980), Shorrocks (1980, 1984), 

Blackorby et al. (1981), Das and Parikh (1981), Cowell and Jenkins (1995), Foster and 

Shneyerov (1999), Lasso de la Vega and Urrutia (2008). Our goal is not to add to this debate, 

but merely to provide straightforward formulae for obtaining variance-covariance estimators 

for two inequality-decompositions used in empirical research.   

One popular decomposition, for GE indices, is to hypothetically view the population as 

one whereby each sub-group member has the same well-being (the arithmetic mean), leading 

to the between-group component (say ீܤா) measuring the inequality across sub-group means; 

i.e., the between-group component is the value of the inequality index when there is no 

within-group inequalities.  The within-group component (say ீܹா) is a weighted sum of the 
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sub-group inequality measures, with the weights depending only on sub-group and population 

totals.4  Total inequality is then the sum of the between-group and within-group inequality 

measures; i.e., for a generic GE inequality index IGE, this results in ீܫ ா ൌ ீܹா ൅ ாீܤ ൌ

∑ ௚߱௚ ܫீ ா௚ ൅ ܫீ :ா, where for the g’th sub-group (g=1,…,G)ீܤ ா௚ is a GE sub-group 

inequality index and ௚߱ is the weight.  Inequality indices that decompose this way are 

additively decomposable.  GE measures fall into this class, whereas A indices do not.5   

Although Atkinson indices are not additively decomposable, they do belong to the class 

of generally decomposable or aggregative indices (Shorrocks, 1984), for which total 

inequality only depends on the sizes, group means and inequality values of the sub-groups.  

Then, a suitable transformation can convert such indices into an additively decomposable 

inequality measure, with the feature that the transformed measure and the original index will 

be ordinally equivalent in that they result in the same rankings of distributions.  Various 

studies propose multiplicative decompositions of A indices, with the measure of total equality 

(one minus the inequality index) being the product of the within- and between-group equality 

measures; i.e., for a generic A index ܫ஺, we have ሺ1 െ ஺ሻܫ ൌ ሺ1 െ ஺ܹሻሺ1 െ  ,.஺ሻ ; e.gܤ

Blackorby et al. (1981), de la Vega and Urrutia (2003, 2008).  Here, we consider a 

multiplicative decomposition proposed by Blackorby et al. (1981), for which the between-

group inequality is that arising when each unit has the sub-group’s equally-distributed-

equivalent income, as opposed to the sub-group’s mean well-being.   

For the decompositions we consider, Table 1 provides the weights for the within 

component and the between measure for each of our considered inequality indices.  Here on, 

we denote the within components as , , , and , and the between 

components as , , , and .  Point estimates are obtained by replacing 

the population totals with their sample counterparts – we denote the estimators as , 

, , , , B , , , and . Empirically, interest also lies 

with the shares of these components to total inequality.  Specifically: the contribution of the 

α
GEW

ε
AB

1 2TB̂

1TW

1
AB

ε
AB̂

2TW

1
AB̂

ε
AW 1

AW

α
GEB

ε
AŴ

1TB

1
AŴ ˆ

2TB

α
GE

α
GEŴ

1TŴ 2TŴ TB̂

                                                 
4 This breakdown does not imply independence of between-group and within-group terms because, 
conditional on index, the weights for the within-group part can be affected by the change in group 
means.  Independence of B and W (as with IT2) leads to the property that elimination of between-group 
inequality will reduce total inequality by the same amount. This is not the case otherwise (e.g., for IT1).  
See, for instance, Shorrocks (1980).   
5 Decomposing using the arithmetic mean has been criticized and extended; e.g., Foster and Shneyerov 
(1999).  We leave the examination of other such inequality-decomposition methods for future work. 
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between component to overall inequality ( , , , and ) where, 

generically, SB = B/I; the share of the within component to overall inequality ( , 

, , and ) where, generically, SW = W/I; and the proportion of total 

inequality taken by the within-group component of sub-group g ( g , , 

, and ) where, generically, gSW = gW/I with .  

Estimators of these shares, denoted with a circumflex, are formed using the relevant sample 

counterparts.   Note that SB+SW = 1 for the GE indices, but not for the A measures.  Despite 

this shortcoming for the latter indices, the share information still provides guidance on how 

inequality is changing from, for example, one survey to another. 

α
B,GES B,1TS B,2TS ε

B,AS

α
W,GES

W

1
B,AS

α
,GES

W,1TgS

∑
=

G

1
gW

W

W,1TS

W,2TgS

W,2TS

ε
,AgS

ε
W,AS

W g

1
W,AS

W,
1
AS =

g

INSERT TABLE 1 HERE 

 We now obtain variance estimators for the inequality statistics, along with an estimator of 

the variance-covariance matrix of any linear combination of two or more of these statistics, as 

needed for hypothesis tests.   

 

3. LINEARIZATION VARIANCE ESTIMATORS 

Having estimated sample inequality measures, we turn to estimating sampling variability 

along with undertaking hypothesis tests involving two or more inequality measures, allowing 

for the complex survey design.  Questions might include:  Are sub-group indices equal?  Has 

inequality changed across surveys?  Do the sub-groups have equal within shares?  Are the 

shares equal across two or more surveys?  To address such questions, we make use of a 

linearization estimator, formed via a first-order Taylor series approximation, of the relevant 

variance-covariance matrix.  This method, which straightforwardly accommodates the 

complex survey design, avoids complicated covariance calculations (e.g., Cowell, 1989; 

Schluter and Trede, 2002; Van de gaer et al., 1999; Bhattacharya, 2007).   

To be general, let ],...,[ K1 ′ϑϑ=Ω be a K-dimensional vector of inequality quantities; e.g., Ω 

might contain sub-group inequality measures for a survey or consist of inequality indices for 

several surveys.  We consider testing the null hypothesis H0:RΩ = r against a two-sided 

alternative hypothesis using a Wald statistic, where R is a nonstochastic q×K matrix and r is a 

nonstochastic q-dimensional vector.  Let be the estimator of Ω formed using 

the relevant inequality estimators defined in section 2.  The Wald statistic is: 

]ˆ,....,ˆ[ˆ K1 ′ϑϑ=Ω
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( ) [ ] ( )rˆR)rˆR(râVrˆRWT
1

−Ω−Ω
′

−Ω=
−

)ˆ(râV Ω

, where =  is an 

estimator of the asymptotic variance-covariance matrix of .  Obtaining the 

linearization rule for is our focus; we denote this estimator as . Our results 

extend those of Biewen and Jenkins (2006) to the vector case.   It is based on Woodruff 

(1971), who extended some results due to Keyfitz (1957).  Each inequality measure in is a 

nonlinear function of relevant population totals , ,  and  - we suppose there 

are P distinct population totals used in forming 
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)r

)ˆ(râV L Ω
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Ω , placed in a vector ]P ′φ,.....[ 1φ=Φ ; i.e., 

.  To make this notation concrete, as an illustration, suppose 

we wish to test the equality of three sub-group Theil-1 indices; i.e., .  

Then, K=3, q=2, P=9,

])(f,),(f[)(f K1 ′ΦΦ=Φ=Ω K

]III[ 1T31T21T1
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P
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 and .  Let Φ  be a 

consistent estimator of Φ and assume f(.) is appropriately differentiable.  A first-order Taylor 

series approximation is , where is 

a K-dimensional vector of partial derivatives.  The asymptotic variance-covariance matrix of 

is approximated by  = Var

]′ ⎢
⎣

⎡ −
=

1
1

R

]U03 ′

p )(f =Φ

ÎÎÎ[ 1T31T21T1

UU 02011
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 where F(Φ) is the K×P derivative 

matrix.  Noting that  = leads to an estimator that requires 

evaluation of the PxP variance-covariance matrix of 

)ˆ)(F(Var ΦΦ Var)(F Φ

Φ̂

⎟
⎟

⎠

⎞
hij,pt

, which can be difficult with a 

complex survey design.  Woodruff’s approach avoids calculating this matrix.  Specifically, as

, where thij is a P-dimensional vector with p’th element tp,hij, we have∑∑∑
= = =

=Φ
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∑
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hijw

 
6 For our illustration, thij = [1Dhij(yhij)(log yhij)  2Dhij(yhij)(log yhij)  3Dhij(yhij)(log yhij)  1Dhij(yhij)  2Dhij(yhij) 
2Dhij(yhij)  1Dhij  2Dhij  3Dhij]′.   
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where .  Within each stratum, we assume (e.g., Skinner et al., 1989, pp 

46-48; Williams, 2000): (i) initial clusters selected are uncorrelated, but there may be 

heteroskedasticity, both between and within clusters, and there may be arbitrary dependence 

among observations within a cluster (permitting other layers of sampling design); (ii) with 

replacement cluster sampling;
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7 and (iii) nh ≥ 2.  Then, the linearization estimator is 
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where we use  to replaceΦ  in the formulae forΦ̂ hijγ  to give hijγ̂ ; we denote the k’th 

element of hijγ̂ as hij,kγ̂ , k=1,…,K.   Switching the summation order has reduced the problem 

to one of obtaining a variance-covariance matrix for a survey total.  We use standard survey 

literature formulae to estimate the between-cluster variance (e.g., Skinner et al., 1989, p47) to 

give the linearization method estimator of the variance-covariance matrix  
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           (12) 

 The elements of this matrix provide variances for each inequality measure on the 

diagonal and covariances on the off-diagonals.  Standard software packages can be used; for 

instance, with Stata (StataCorp., 2005) after defining the survey’s strata, ultimate cluster and 

                                                 
7 This assumption is usually always violated with surveys, in which case the formula generally leads to 
overestimation. An alternative assumption is that the nh clusters within stratum h form a simple random 
sample without replacement from the stratum, h=1,…,L; see, e.g., Kalton (1977).  This results in 
adding a finite population correction involving the factor (nh/Nh).  The correction adds little when this 
factor is small, as is often the case.  The critical assumption is that the observations between clusters 
are uncorrelated. 
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weight variables, along with providing each element of the vector hijγ̂ , use of the svy: total 

command generates the matrix.  To use this, we need formulae to create hij,kγ̂ .   We provide 

these in the appendix.  For consistency we also report the formulae for the total inequality 

indices obtained by Biewens and Jenkins (2006).  The rest, to our knowledge, are new. Note 

that we do not provide explicit formulae for generating the linearization method variances for 

the estimated between component shares for members of the GE family because they are the 

same as for the within components.  This is not so for Atkinson indices. 

 A substantial body of research exists on asymptotic properties of complex survey 

estimators of totals, smooth/nonsmooth linear/nonlinear functions of totals, and the 

corresponding linearization variance/covariance estimators; e.g., Krewski and Rao (1981) and 

Rao and Wu (1988).  Unlike classical iid asymptotics, however, there is no single appropriate 

framework with a complex survey design, as the analysis requires specifying not just what is 

happening as a sequence of samples increases in size, but also a sequence of finite 

populations, in addition to sizes of strata, clusters and so on.  Different setups may lead to 

different results.8  For instance, Krewski and Rao (1981) examine the consistency of, 

amongst other things, linearization variance estimators of statistics that are nonlinear 

functions of population totals, as L →∞, assuming a sequence of finite populations with fixed 

stratum sample sizes. Their results are valid for any stratified multistage design in which the 

primary sampling units are selected with replacement and independent subsampling within 

those units selected more than once.   Key is that there are no isolated, influential, values in 

the clusters.  Applying these results to without replacement sampling typically follows 

directly when the sampling fraction fh=nh/Nh is small, as is usual with the surveys used to 

generate inequality measures.  Assuming that the number of strata L is fixed with nh→∞ is 

considered by, for instance, Dippo and Walter (1984), Williams (2000) and Bhattacharya 

(2005, 2007).    Accordingly, we assume that our inequality estimators are consistent and 

asymptotically normal with the linearization method variance estimator also consistent.  So, 

WT using , denoted as WTL, is approximately under its null hypothesis.    )ˆ(râV L Ω 2
qχ

 To end this section, we comment on the applicability of our results to two other situations 

often met when inequality measures are considered.  The first is a sampling scheme that 

draws units from the finite population using simple random sampling with replacement 

                                                 
8 This is analogous to asymptotic theory in a panel framework, where asymptotics may consider the 
time dimension increasing, while fixing the number of cross-sectional units, or the converse case, or 
allow both dimensions to increase without bound. 
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(SRSWR).9  The second case assumes an underlying infinite population under an iid 

approach with, for the i’th unit, the variable of well-being, yi, and weight, wi, viewed as iid 

draws from a population (y, w).  Our results are easily modified to handle both cases.  Under 

SRSWR, a sampling design that assigns equal probability to each possible sample with each 

population unit having an equal probability of being selected into the sample, the formulae in 

the appendix apply with the sampling weights either ignored or set to 1 for all units, and the 

summation is over i=1,….,n rather than over the various stages of the complex survey design.  

The iid framework regards the inequality measure as a function of population moments rather 

than population totals, with the treatment of the weights being different than under a complex 

survey design; e.g., Cowell (1989), Van de gaer et al. (1999), Biewen and Jenkins (2006).  

Despite these disparities, the numerical estimates of linearization variance-covariance 

matrices can be obtained using the formulae in the appendix with the summation being over 

i=1,…,n rather than over the stages of the complex survey design.    

 

4. INFERENCE USING BOOTSTRAPPING 

Maintaining the general notation from the previous section, we first outline how we obtained 

a bootstrap variance-covariance estimator for the nonlinear estimator ; we denote 

this estimator as .  The method, which involves the following steps for each 

bootstrap sample, guarantees that the replicate sample has the same sampling design as the 

parent sample; see e.g., Rao and Wu, 1988; Rao et al. (1992), Rust and Rao, 1996 and Shao 

and Tu (1995, chapter 6) for discussion on the properties of variance estimators obtained 

from this, so-called, rescaling bootstrapping.  The steps, V1 through V5, are: 

)ˆ(fˆ Φ=Ω

)ˆ(râV BT Ω

V1. Draw a simple random sample of nh clusters with replacement from the clusters within 

stratum h independently for each stratum (h=1,…,L).10   

V2. When a cluster is selected into the bootstrap replicate, all secondary and successive units 

from the selected cluster are retained, along with their corresponding sampling weights. 

                                                 
9 Although most survey sampling is undertaken without replacement, sampling without replacement is 
similar to sampling with replacement when the population is very large.  Sampling with replacement 
leads to a sample that is close to the iid approach situation in large data sets; e.g., Lehtonen and 
Pahkinen (1995). 
10 Undertaking the resampling with replacement simplifies the procedure and should not be an issue 
with most surveys used to generate inequality measures.  Although the number of clusters to be 
resampled is often chosen to be (nh-1) to ensure unbiased estimation (at least asymptotically), it is 
computationally easier with Stata to select nh clusters from each strata.  The effect of this is minimal in 
our case given the large number of clusters in the surveys. 
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V3. Let be the number of times that cluster i from stratum j is included in 

bootstrap replicate b.  The bootstrap sampling weight is then   

)nr0(r h
b
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so that if cluster i is not selected in the b’th bootstrap sample. 0wb
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V4. Let  be the estimated Φ using the p’th bootstrap totals formed from replicate b.  
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 Then form the bootstrap copy of Ω, .   )ˆ(fˆ bb Φ=Ω

V5. Repeat steps V1-V4 BV times to give BV bootstrap estimators of Ω, , and 

compute the bootstrap estimator of the variance-covariance matrix: 

VB1 ˆ,ˆ ΩΩ K
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V )  . We set BV = 200. Aside from providing 

standard errors, this rule is used to form a bootstrapped sample value of any Wald 

statistics for inference; specifically, we form ( ) [ ]R)ˆ(râ
1

BT ′Ω ( )rˆRRVrˆRWTBT −Ω
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Turning to bootstrapping p-values, we undertake a double bootstrap with the following steps. 

W1.Undertake steps V1 to V4 above to give the first (b=1) bootstrap sample with its 

estimator of Ω, .   )ˆ(fˆ 11 Φ=Ω

W2.Treating this first bootstrap replicate as the parent sample, repeat steps V1 to V4 again to 

give BV estimates of Ω, .  Form the estimator of the variance-covariance 

matrix for this first replicate sample: 
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where, recall, Ω  is the original sample’s estimate of Ω and is used to so-call centre the 

statistic because our data may not have been drawn from a population that satisfies H0; 

see, e.g., Hall and Wilson (1991).  

ˆ

W4.Repeat steps W1 through W3 BW times to obtain BW values of WT: .  

We choose BW = 99 to correspond with a nominal 10% or 5%  level.

WB
BT
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5. EMPIRICAL EXAMPLE: HEIGHT INEQUALITY  

AMONG INDIAN CHILDREN 

Here we apply some of our results to study health inequality among Indian children, based on 

the anthropometric measure height.  While we recognize that it is not possible to capture the 

overall health status of an individual by any one indicator of health, height of pre-schoolers 

has been used by researchers interested in studying health inequality; e.g., Pradhan et al. 

(2003), Sahn and Younger (2006).  The appropriateness of height of young children as one 

possible but arguably a good measure of their health is based on numerous evidence from 

medical and public health research; e.g., WHO (1995a,b).  Given this, we use the terms 

“height inequality” and “health inequality” interchangeably in the following discussion.  As a 

detailed analysis of height inequality among Indian children is beyond our scope, our 

example illustrates the usefulness of statistical testing involving the simple inequality indices 

or their decompositions, as well as the effectiveness of our proposed methods compared to 

the computationally burdensome bootstrapping procedure.  For space reasons, we only report 

results using the Theil-1 measures; outcomes for other statistics are available on request.   

We provide standard errors for total inequality indices and sub-group decomposition 

measures based on an urban/rural split, as well as undertake tests for equality of these across 

two or three surveys.  Whether rural and urban regions differ in health inequality is of interest 

given the strong evidence of varying economic inequality across these regions (e.g., Deaton 

and Drèze, 2002).  We also examine gender differences in height inequality, of concern given 

the debate on whether girls and boys are equally well cared for due to the preference for sons, 

                                                 
11 Given a nominal level for the test of αW, a choice of BW that leads to αW(BW+1) being an integer 
results in an exact Monte Carlo test when the statistic is pivotal; Dufour and Kiviet (1998).  For a 
nonpivotal statistic (as is ours) it is not necessary to choose BW in such a way, but, as advocated by (for 
example) Davidson and MacKinnon (2000), it would seem reasonable to still follow such a practice. 
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particularly in rural districts12.  In particular, we test whether the health inequality, arising 

from non-natural causes, is the same across both groups.  It might be the case that there is less 

variability in the boys’ height distribution, given male bias, than the girls’ distribution as the 

degree of care that girls receive may vary more widely than that for boys.  For example, a girl 

in a poor rural family with a number of female siblings may receive very different care 

compared to a single girl child in an urban household. 

For each case, we compare the linearization outcomes with those from two other 

scenarios: (i) assuming (incorrectly) that the standardized heights and the sample weights are 

iid draws from a common population; and (ii) from using the bootstrap procedure described 

in section 4, designed to account for the complex survey design.   

 

5.1 Survey design and data characteristics 

Our data are from the three Indian National Family Health Surveys (NFHS), conducted under 

the agency of the International Institute for Population Sciences (IIPS): NFHS-1 (1992/93), 

NFHS-2 (1998/99) and NFHS-3 (2005/06).  Due to differences across surveys, our sample 

includes children (i) whose mothers were interviewed with the Women’s Questionnaire, (ii) 

who are less than three years of age and (iii) who lived in states other than Sikkim, Andhra 

Pradesh, Himachal Pradesh, Madhya Pradesh, Tamil Nadu and West Bengal.  This resulted in 

sample sizes of 20,410 for NFHS-1, 18,520 for NFHS-2 and 18,146 for NFHS-3. 

Stratified multi-stage cluster sampling was used with the design being roughly similar for 

each survey.  We sketch out the key stages for NFHS-3; see IIPS (2007a,b; 2000; 1995). Each 

state was sampled separately with urban and rural areas forming the first stage strata.  Two 

phases of cluster sampling came next for rural regions: random selection of villages followed 

by households.  A three-stage procedure was adopted for urban areas: selection of wards 

followed by census enumeration blocks followed by households.  On average, 30 households 

were targeted for interviewing from each village or census enumeration block.  There are 559 

clusters for NFHS-1, 549 for NFHS-2 and 2719 for NFHS-3. The survey method also ensured 

self-weighting at the domain level (i.e., the urban and rural areas of each state) so that each 

child in the same domain has a common sampling weight. 

Prior to estimating height inequalities, we account for natural/biological median height 

differences of children across gender and age by converting the individual heights into 

                                                 
12 For instance, Kadi et al. (1996) and Tarozzi and Mahajan (2007) report that girls are more 
nutritionally deprived compared to boys.  In contrast, Griffiths et al. (2002) and Marcoux (2002), 
among others, find little evidence of gender differentials in food consumption. 
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percent-of-median, which is simply the height of an individual child relative to the median 

height of comparable children in a reference population, expressed as a percentage; e.g., 

Gershwin et al. (2000, pp. 7-8).  Studies that use percent-of-median include Prudhon et al. 

(1996) and Zainah et al. (2001). The current reference population group is the World Health 

Organization’s (WHO) Child Growth Standards (WHO Multicentre Growth Reference Study 

Group, 2006; WHO, 2006), formed from a multiethnic sample of healthy children; we refer to 

this as the WHO-MGRS standard.  Specifically, let higa be the height of the ith Indian child of 

gender g and aged month a (g=1 when the child is a boy, 2 when the child is a girl; 

a=0,…,35).  Let Mdga be the median from the WHO-MGRS standard for a child of gender g 

and age a in months.  The percent-of-median is Piga = 100(higa/Mdga); when gender and age is 

not of issue, we denote this as Pi.  For example, if a 6-month old boy’s height is 65.3cms then 

his Pi=96.6% as the WHO-MGRS median height is 67.6236cms for a 6-month old boy. 

Using percent-of-median does not account for the natural variability in height around the 

median height that differs across and within age and gender groups.  Natural variability refers 

to variation in height that is not due to environmental reasons (e.g. availability of food, clean 

water, medical care) but arises only from genetic variation.  Not accounting for natural 

inequality is likely not an issue when examining total inequality over surveys, as it seems 

reasonable to assume that the natural inequality in the children is fairly stable over the time 

frame of our study and across regions.  However, this is not so when considering gender 

differences in inequality, as natural inequality varies across boys and girls, dependent on age.  

For this case, we estimate the natural inequality by taking appropriate draws of children’s 

height from the WHO-MGRS reference growth curves.  We now turn to our results.    

 

5.2 Overall inequality  

Table 2 provides the estimated inequality indices, IT1, along with standard errors.  For each 

case, we report three standard error estimates based on: the linearization method, a (false) iid 

assumption with weights and the bootstrap approach; these are denoted as seL, seIID and seBT 

respectively.  We see that inequality has declined over the three surveys, with the change 

between NFHS-2 and NFHS-3 being far more than the decline that occurred between NFHS-

2 and NFHS-1.  That the standard errors allowing for the complex survey design are larger 

than those under the false iid assumption (by, approximately, 9% to 24%) highlights the 

importance of taking account of the design when estimating standard errors, the heterogeneity 

between and within clusters increasing the variance from the iid case.  Typically, the 

linearization and bootstrap standard errors are in close agreement.   
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INSERT TABLE 2 HERE 

How do these outcomes compare with those from a sample of “healthy” children?  To 

examine this, we drew random samples of children’s height from the distributions that 

generated the WHO MGRS growth curves, with samples constructed to match the age/gender 

structure of each NFHS survey, ensuring that we allow for appropriate natural differences 

around the median height across age-gender groups.  The corresponding NFHS-3 Theil-1 

index is 6.169E-04 with that for the other surveys being minimally different.  The inequality 

for Indian children is over four times that of the natural inequality of healthy children, 

providing an indication of the disparities in health of Indian children and the relevance of 

examining whether inequality has changed.   

Returning back to the results in Table 2, having standard error estimates enables us to ask 

whether the changes in the indices are statistically significant.  Outcomes from hypothesis 

tests to address this question are given in Table 3.  We provide Wald statistics, associated χ2 

and bootstrapped p-values from four tests: the first three test equality of indices across two 

surveys while the fourth test is for equality of the indices across the three surveys.  Results 

are reported using the three different approaches to estimating variances.  We denote Wald 

statistics by WTL, WIID and WTBT and associated p-values by pL, pIID and pBT.  We assume 

that the samples across surveys are independent, allowing the variance of the difference in 

inequality indices to be the sum of the variances from each individual survey.  This is a 

reasonable assumption, as the clusters are sampled independently from one survey to another.   

INSERT TABLE 3 HERE 

Turning to the test outcomes, the change between NFHS-1 and NFHS-2 is not 

statistically significant, while that between NFHS-2 and NFHS-3, and NFHS-1 and NFHS-3 

are statistically significant.  The bootstrap and linearization methods are in close agreement, 

again supporting use of the linearization approach over the more computationally intensive 

bootstrap.  Using the iid outcomes does not qualitatively change the results.  Our findings 

perhaps suggest that the high income growth observed in India has taken time to impact 

health inequality of children, as there is no significant change between NFHS-1 and NFHS-2 

but there are strong declines in overall health inequality between NFHS-2 and NFHS-3.  One 

possibility for the delayed impact could be habit persistence in food consumption, as it may 

take time for any income increase to lead to consumption of more nutritious food. 
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5.3 Inequality by place of residence and gender 

This subsection contains results based on various sub-groups (sector- or gender- specific) and 

on the decomposition of the overall inequality by place of residence (rural or urban).  Turning 

first to the urban sector, Table 4 provides estimated Theil 1 indices, their percentage changes 

and standard errors from the three methods, and Table 5 reports on tests across surveys.   

INSERT TABLE 4 HERE 

The results in Table 4 highlight the importance of sector-specific analysis, as the 

observed decline in health inequality of children occurred between NFHS-1 and NFHS-2 for 

this sector, with minimal change (indeed a nominal increase) in inequality between NFHS-2 

and NFHS-3.  This contrasts with the findings observed for overall inequality.  In terms of 

standard errors, those under the false iid assumption are again smaller than those that account 

for the complex survey design, more so for NFHS-1 than for the other two surveys. We again 

observe that the bootstrap and linearization standard errors are in close agreement. 

INERT TABLE 5 HERE 

The outcomes provided in Table 5 support the statistical significance of the inequality 

change between the first two surveys but not between NFHS-2 and NFHS-3, with results 

qualitatively consistent across the three variance methods.  Our findings on urban health 

inequality contrast with those on urban income inequality (at least for the 1990s); e.g., Deaton 

and Drèze (2002), which highlights the importance of exploring the impact of economic 

reforms on not just income inequality but also on other social inequality measures such as 

children’s health inequality.  Aside from examining sub-group inequality measures by region 

of residence, it is also of interest to ascertain the contribution of the between component to 

total inequality and how this share has changed across surveys.  We report this information in 

Tables 6 and 7; Table 6 provides estimates of shares along with standard errors using the 

three variance methods and Table 7 details outcomes from hypothesis tests.   

INSERT TABLE 6 HERE 

Around one per cent of total health inequality arises from inequality between the rural 

and urban sectors, implying that the majority of inequality arises from within each sector.  

This between component is significantly different from zero.  This small between component 

contrasts with most income inequality studies, where the between component often 

contributes more to overall inequality than the within component.13  Our finding is similar to 

                                                 
13 An example of an exception is Gray et al. (2003b), who report a one per cent between-group 
inequality share when comparing incomes of those born in Canada, immigrants who arrived before 
1981, and immigrants who arrived after 1981.   
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that of, for instance, Pradhan et al. (2003), who, using children’s height data, find that the 

within country health inequality component dominates world health inequality.  Here, we find 

that this holds even within regions for an intra-country study.  Whether this is a common 

finding for health inequality remains to be seen.  At least at the 5% level, there is no evidence 

that the between group shares differ across surveys when using the complex survey 

linearization or bootstrap variance estimates, but not so under the false iid assumption in two 

of the four cases, highlighting, yet again, the importance of allowing for the sampling design.   

INSERT TABLE 7 HERE 

The final set of results we provide are given in Table 8, based on gender-specific 

inequality. Health inequality indices for boys and girls are reported, along with outcomes 

from hypothesis tests that examine whether height inequality for girls is the same as that for 

boys.  Examining the estimated values, inequality for girls is higher than for boys, with the 

two-sided hypothesis tests indicating that this difference is statistically significant.14  

However, these results do not allow for the natural inequality within each gender group, 

which varies across groups.  To estimate this, we drew random samples of healthy children’s 

height from the distributions used to generate the WHO-MGRS growth curves, with the 

samples constructed to have the same age/gender structure as our NFHS samples.  The boys 

and girls natural inequality Theil-1 estimates from these simulated samples of healthy 

children, denoted  and  respectively, are reported in the bottom part of Table 8, 

along with the differences ( - ) and ( - ), so-called adjusted inequalities, 

that estimate the inequality in children’s height due to poor health and nutrition.  The genetic 

natural inequality in the heights of healthy girls (as represented by percent-of-median) 

exceeds that of boys, mitigating much of the observed inequality differences between our 

Indian boys and girls when we do not account for natural inequality.  Indeed, although not 

reported in the table, tests of the hypothesis that ( - ) = ( - ) confirm that 

we cannot reject equality of these adjusted inequality measures, suggesting that these samples 

do not support gender differences in health inequality, at least at the national level.   

N
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INSERT TABLE 8  HERE 

 

 
                                                 
14 Interestingly, we see an example (NFHS-2 boys) where the linearization and bootstrap standard 
errors are marginally smaller than the iid standard error.   
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6. CONCLUDING COMMENTS 

We have considered undertaking inference on GE and Atkinson inequality indices when data 

are drawn under a complex survey design.  Variance-covariance matrices are obtained via a 

linearization method that avoids the calculation of often cumbersome covariance expressions.  

One of our key contributions is to obtain expressions that enable inference for the 

components of common decompositions of the inequality measures, including “between” and 

“within” elements and any subsequent share measures generated from these.  A key benefit of 

using these expressions for inference is ease of coding in standard software packages (e.g., 

Stata), in contrast to the coding that must be undertaken to bootstrap variances and p-values. 

Our illustrative application using height data on Indian children highlights the importance 

of accounting for the stratified multi-stage cluster sampling design and the (typically) similar 

outcomes obtained using the linearization and bootstrap methods.  This latter finding is 

particularly encouraging for applied researchers.  Although it is unclear as to whether our 

findings can be broadly generalized, it is clear that the linearization approach to inference 

provides a user friendly way to undertake inference for inequality measures.   
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Appendix A: Formulae for hij,kγ̂  15 
 
A.1 Sample total indices 
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15 The expressions given in subsections A.2 to A.7 are our contributions whereas those in A.1 are from 
Biewen and Jenkins (2006). 
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   ( ) ;y)D)(Û)(Û(y)D( hijhijg1g
1

0g
12

hijhijg
αα−−α−

α−α+
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Ag Î : hij,kγ̂ =  ( ) ×+ε−ε −ε−ε−ε−

ε−
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] ( ) ( )( )[ ]})1yÛ/Û1)Û)(Û(Û)D(Ûy hij101g
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( )( ) ×+−+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+− −

=
∑ 1

0100

G

1g
0g1g0g0g ))Û/Ûlog(ÛT̂(Û/Ûlog)Û()T̂(
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W,AŜ : hij,kγ̂ = ( ) ( )

⎩
⎨
⎧
⎢⎣
⎡ −−−

−ε−
ε−

ε−ε−−ε−
ε−

ε−ε− 1)1/(1
1

)1/(
01

1)1/(1
1

)1/(
01 ÛÛÛ1ÛÛÛ × 
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+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+−

−

=

ε−
ε−

ε−ε−ε−
ε−

ε−ε− ∑ hij

1
G

1g

)1/(1
1g

)1/(
0g

)1/(1
1

)1/(
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A.7 Sample sub-group within shares 
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( )( ) ( )( ) 1
01000g1g0g0g Û/ÛlogÛT̂Û/Ûlog)Û(T̂
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Table 1. GE and A indices: between component and weights 

for the within component 
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Table 2. Estimates of overall height inequality using Theil-1 and standard errors 

 NFHS-1 
(1992/93) 

NFHS-2 
(1998/99) 

NFHS-3 
(2005/06) 

% change 
NFHS-2 
/NFHS-1 

% change 
NFHS-3 
/NFHS-1 

% change 
NFHS-3 
/NFHS-2 

1TÎ  2.655E-03 2.609E-03 2.263E-03 -1.73% -14.76% -13.26% 

seL 4.635E-05 3.919E-05 3.734E-05    

seIID 3.543E-05 3.405E-05 3.414E-05    

seBT 4.772E-05 3.644E-05 3.944E-05    

Note: The standard error obtained via the linearization method is denoted by seL, that from 

the linearization approach assuming (falsely) that sampling is iid with weights as seIID and 

that from the bootstrap method by seBT. 

 

 

Table 3. Testing whether overall inequality has changed across surveys using Theil-1 

 Hypothesis test 

NFHS-1= 
NFHS-2 

NFHS-2= 
NFHS-3 

NFHS-1= 
NFHS-3 

NFHS-1= 
NFHS-2= 
NFHS-3 

WTL (pL) 0.586 (0.444) 40.956 (0.000) 43.573 (0.000) 59.019 (0.000) 

WTIID (pIID) 0.894 (0.344) 51.617 (0.000) 63.764 (0.000) 77.785 (0.000) 

WTBT (pBT) 0.599 (0.500) 41.625 (0.010) 40.281 (0.010) 55.803 (0.010) 

Notes: The table reports Wald statistics and associated p-values for equality of indices.  The 

subscripts are: L = complex survey linearization; IID = iid with weights linearization; BT= 

complex survey bootstrap.   
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Table 4. Urban sector: estimates of height inequality and standard errors for Theil-1 

 NFHS-1 
(1992/93) 

NFHS-2 
(1998/99) 

NFHS-3 
(2005/06) 

% change 
NFHS-2 
/NFHS-1 

% change 
NFHS-3 
/NFHS-1 

% change 
NFHS-3 
/NFHS-2 

1TU Î  2.445E-03 2.140E-03 2.160E-03 -12.47% -11.66% 0.93% 

seL 8.297E-05 6.444E-05 6.830E-05    

seIID 6.458E-05 5.721E-05 6.268E-05    

seBT 8.953E-05 6.6290E-05 6.430E-05    

Notes: The standard error obtained via the linearization method  is denoted by seL, that from 

the linearization approach assuming (falsely) that sampling is iid with weights as seIID and 

that from the bootstrap method by seBT.  The subscript U in  indicates index estimates 

for the urban sector. 

1TU Î

 

 

 

Table 5. Testing whether height inequality of urban children has changed using Theil-1 

 Hypothesis test 

NFHS-1= 
NFHS-2 

NFHS-2= 
NFHS-3 

NFHS-1= 
NFHS-3 

NFHS-1= 
NFHS-2= 
NFHS-3 

WTL (pL) 8.428 (0.004) 0.047 (0.828) 7.011 (0.008) 9.654 (0.008) 

WTIID (pIID) 12.496 (0.000) 0.058 (0.810) 9.997 (0.002) 14.738 (0.001) 

WTBT (pBT) 7.495 (0.040) 0.049 (0.800) 6.664 (0.020) 8.594 (0.030) 

Notes: The table reports Wald statistics and associated p-values for equality of urban indices.  

The subscripts are: L = complex survey linearization; IID = iid with weights linearization; 

BT= complex survey bootstrap.   
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Table 6. Urban-rural between component shares and standard errors (%’s) 

 NFHS-1 
(1992/93) 

NFHS-2 
(1998/99) 

NFHS-3 
(2005/06) 

B,1TŜ  0.50% 1.04% 0.75% 

seL 0.19% 0.22% 0.18% 

seIID 0.11% 0.16% 0.15% 

seBT 0.23% 0.22% 0.17% 

Note: The standard error obtained via the linearization method is denoted by seL, that from 
the linearization approach assuming (falsely) that sampling is iid with weights as seIID and 
that from the bootstrap method by seBT.   

 

 

Table 7. Testing whether the Theil-1 between group (urban/rural) share has changed 

 Hypothesis test 

NFHS-1= 
NFHS-2 

NFHS-2= 
NFHS-3 

NFHS-1= 
NFHS-3 

NFHS-1= 
NFHS-2= 
NFHS-3 

ST1,B 

WTL (pL) 3.346 (0.067) 1.023 (0.312) 0.891 (0.345) 3.351 (0.187) 

WTIID (pIID) 7.328 (0.007) 1.688 (0.194) 1.691 (0.193) 7.465 (0.024) 

WTBT (pBT) 2.864 (0.100) 1.108 (0.290) 0.754 (0.320) 2.892 (0.240) 

Note: The table reports Wald statistics and associated p-values for equality of urban/rural 

between shares.  .  The subscripts are: L = complex survey linearization; IID = iid with 

weights linearization; BT= complex survey bootstrap.   
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Table 8. Boys and girls: height inequality and standard errors using Theil-1 

 NFHS-1 
(1992/93) 

NFHS-2 
(1998/99) 

NFHS-3 
(2005/06) 

% 
change 
NFHS-2 
/NFHS-1 

% 
change 
NFHS-3 
/NFHS-1 

% 
change 
NFHS-3 
/NFHS-2 

1TB Î  2.561E-03 2.472E-03 2.153E-03 -3.48% -15.93% -12.90% 

seL 5.655E-05 4.278E-05 4.595E-05    

seIID 4.880E-05 4.326E-05 4.323E-05    

seBT 5.696E-05 3.816E-05 4.784E-05    

       
1TG Î  2.752E-03 2.758E-03 2.383E-03 0.22% -13.41% -13.60% 

seL 5.792E-05 5.956E-05 5.569E-05    

seIID 5.140E-05 5.335E-05 5.363E-05    

seBT 5.935E-05 5.867E-05 5.980E-05    

boys=girls 
WTL  

(pL) 

8.061 

(0.005) 

17.984 

(0.000) 

11.152 

(0.001) 

   

WTIID  

(pIID) 

7.311 

(0.007) 

17.333 

(0.000) 

11.168 

(0.001) 

   

WTBT  

(pBT) 

8.248 

(0.010) 

18.911 

(0.010) 

9.883 

(0.010) 

   

natural inequality 
N

1TB Î  5.851E-04 5.788E-04 5.703E-04    

N
1TG Î  6.673E-04 6.706E-04 6.673E-04    

adjusted inequality 

)ÎÎ( N
1TB1TB −

 

1.976E-04 1.893E-04 1.583E-04    

)ÎÎ( N
1TG1TG −

 
2.085E-04 2.087E-04 1.716E-04    

Notes: The subscript L denotes use of the linearization method (accounting for the complex 

survey) to form variances, IID implies that the variances are obtained using the linearization 

approach under a false iid assumption with weights, and BT refers to the bootstrap method 

that accommodates the complex survey design.  The subscript B and G in and , and 

 and , indicate Theil-1 index estimates for boys and girls respectively. 

1TB Î 1TG Î

N
1TB Î N

1TG Î
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