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Abstract 
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1. Introduction 

The problem of modeling “count” data arises frequently in economics. The data are non-negative integers, 

so the linear regression model is discarded in favor of an appropriate discrete probability distribution and 

covariates are introduced through its mean. The simplest and most widely used count model is based on 

the Poisson distribution, despite the limitations implied by the equivalence of its mean and variance. 

Cameron and Trivedi (1998) and Winkelman (2000) provide excellent discussions of modeling count 

data. 

 

Although the maximum likelihood estimator (MLE) possesses its usual desirable asymptotic properties 

for such models, surprisingly little is known about its finite-sample properties, once covariates are 

introduced into the model. Using Monte Carlo simulation experiments, for models with one covariate, 

Breslow (1990, p.568) reports biases in the range 1.2% to 1.9% when n = 36, 72; and Brännäs (1991, 234-

235) reports biases in the range -2% to 1% when n = 50. Recently, Chen and Giles (2009) derived 

analytic approximations for the bias and mean squared error (MSE) for the MLE in this context when the 

regressors are stochastic. However, their approach yields expressions that are quite unwieldy, and are not 

readily simplifed to the case of non-random covariates. Here, we develop a simple analytic expression for 

the bias, to O(n-1), of the MLE in the Poisson regression model with non-random covariates. We then use 

the estimated bias to “bias-correct” the MLE. The methodology is based on work by Cox and Snell (1968) 

and others, and is fundamentally different from that used by Chen and Giles (2009). We find that 

dramatic reductions in bias can be achieved in small samples, without any increase in MSE. 

 

Section 2 summarizes the methodology used to determine the finite-sample bias of the MLE, and this is 

applied to the Poisson regression model in section 3. Section 4 provides simulation evidence relating to 

the quality of the “bias-corrected” MLE, and an empirical example is given in section 5.  

 

2. Bias reduction  

Let )(θl  be a log-likelihood function that is regular with respect to all derivatives up to and including the 

third order, and is based on a sample of n observations and a )1( ×p  parameter vector, θ. The joint 

cumulants of the derivatives of )(θl , which are assumed to be O(n), are: 

 )/( 2
jiij lEk θθ ∂∂∂=   ; i, j = 1, 2, …., p     (1) 

)/( 3
ljiijl lEk θθθ ∂∂∂∂=   ; i, j, l = 1, 2, …., p    (2) 

)]/)(/[( 2
, ljilij llEk θθθ ∂∂∂∂∂=  ; i, j, l = 1, 2, …., p     (3) 
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and denote: 

 lij
l

ij kk θ∂∂= /)(    ; i, j, l = 1, 2, …., p.    (4) 

 

Cox and Snell (1968) showed that when the sample data are independent (but not necessarily identically 

distributed) the bias of the sth element of the MLE of θ ( )θ̂ is: 
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where kij is the (i,j)th element of the inverse of the information matrix, }{ ijkK −= . This result extends 

earlier work by Bartlett (1953), Haldane and Smith (1956), Shenton and Bowman (1963) and others. 

Equation (5) also holds for non-independent data, and can be written as: 

 

  )()()ˆ( 211 −−− += nOKvecAKBias θ ,      (6) 

where  

  ]|.......||[ )()2()1( pAAAA =        (7) 
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and 

)2/()()(
ijl

l
ij

l
ij kka −= , for i, j, l = 1, 2, …., p.     (9) 

A “bias-corrected” MLE for θ is: 

 

)ˆ(ˆˆˆ~ 11 −−−= KvecAKθθ ,         (10) 

 

where  θ̂|)(ˆ KK =  and  θ̂|)(ˆ AA = . The estimator θ~  is “almost unbiased” - its bias is O(n-2). 

 

3. The Poisson regression model 

The Poisson regression model assumes that the count data (yi) follow the Poisson distribution: 

 

 !/]|.[Pr i
y
iii yexyY iiλλ−==  ; yi = 0, 1, 2, 3, …….     

where   

 )'exp( βλ ii x=    ; i = 1, 2, …, n      
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and ix  is a )1( ×p vector of covariates, ix .   

 

Assuming independent sampling, the log-likelihood is 

 ∑ −+−=
=

n

i
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1
)]log('[ βλ ,         

the likelihood equations are 
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and  
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with typical element         
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As (12) does not involve the y data,  
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and the information matrix is 

∑=
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i
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There is no closed form solution to (11), so the MLE for β must be obtained numerically. However, as the 

Hessian is negative definite for all x and β, the MLE ( β̂ ) is unique, if it exists. From (12) and (13): 
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To make matters more transparent, consider the case of a single covariate and an intercept. Then xi is a 

scalar observation and  
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From (9) and (14) – (16) 
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These biases may be positive or negative, depending on the sample data and the true parameter values. 

Bias-corrected MLEs are  

)ˆ(ˆˆ~
sss saBi βββ −=  ;  s = 1, 2 
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where )ˆ(ˆ ssaBi β  is obtained by replacing iλ  by  )ˆˆexp(ˆ
21 ii xββλ += in (17) and (18). If the conditional 

mean is a function of two covariates and an intercept, 
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The biases of the MLEs, and the bias-adjusted estimators, follow from (6) and (10). 

 

4. Numerical evaluations 

We report the results of a Monte Carlo experiment that investigates the usefulness of our bias corrections, 

which are valid only to )( 1−nO . The actual biases and MSEs of the MLEs and bias-corrected MLEs have 

been simulated using code written for the R statistical software environment (R, 2008). The log-likelihood 

function was maximized using the Newton-Raphson method in the maxLik package (Toomet and 

Henningsen, 2008). Each part of our experiment uses 100,000 Monte Carlo replications, and we limit 

attention to the univariate and bivariate (with intercept) models. In the two-covariate case we consider 

various degrees of correlation (ρ) between the regressors. The results in Tables 1 to 3 are percentage 

biases, defined as 100× (Bias / | βs |), and percentage MSEs, defined as 100× (MSE / βs
2).  

 

The magnitudes of the reported biases for the (uncorrected) MLEs are consistent with those reported by 

other authors in simulation experiments, as discussed in section 1. They are quite small, except for very 

small sample sizes. The effectiveness of our bias correction is clear in all of the cases tabulated. The 

percentage biases themselves are substantially reduced – often by one or two orders of magnitude. 
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Although this gain comes at the expense of increased variability, the percentage MSEs are either 

slightly reduced or essentially unaltered by bias-adjusting the estimators. 

 

5. Empirical application 

We present a simple illustration of the application of our proposed bias correction by modeling 

the number of banking crises in a sub-sample of 32 IMF-member countries over the period 1970 

to 1999. The data for the banking crises are from Ghosh et al. (2002). From the raw data we have 

constructed a data-set for the number of such crises, and other indicators, for each country. This is 

available on request. The variables used are the number of banking crises (BCRISES); the number of 

currency crises (CCRISES); a dummy variable (DPEG) which is unity if there were one or more banking 

crises under a (de jure) pegged exchange rate regime; and a dummy variable (DINCHI) which is unity if 

the observation is for an upper or upper-middle income country. The sample characteristics and the 

Poisson regression results are in Table 4. Banking crises are significantly more prevalent under pegged 

exchange rates than under floating rates. (This also holds for the full sample of 167 countries, in contrast 

to the descriptive results of Ghosh et al., 2002, p.169.) Here, the bias adjustments modify the point 

estimates of the coefficients by 10.8%, 12.3% and -12.7% respectively. 

 

6. Conclusions 

We have derived an analytic expression for the first-order bias of the MLE in a Poisson regression model. 

Almost-unbiased MLEs for the coefficients are then constructed by subtracting the estimated biases from 

the original MLEs. Monte Carlo evidence shows that this results in dramatic reductions in bias in small 

samples, and although it increases the variability of the estimators, the MSE is not adversely affected. 

This analytic bias correction is recommended for the Poisson regression model with a sample of size 200 

or less. 
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Table 1: Percentage biases and MSEs of the MLEs and bias-corrected MLEs – 

intercept and one regressor 

 

n )ˆ(% 1βBias  )~(% 1βBias   )ˆ(% 2βBias  )~(% 2βBias  

[ )ˆ(% 1βMSE ] [ )~(% 1βMSE ]  [ )ˆ(% 2βMSE ] [ )~(% 2βMSE ]  

 

 

(a) Standard normal regressor: β1 = 1, β2 = 0.5 

 

10 -3.8408  -0.0703   2.3409  0.1265 

 [6.0244] [5.5523]  [10.8055] [10.5440] 

25 -1.4891  -0.0514   0.8831  0.1469 

 [1.9747] [1.9061]  [4.7102] [4.6645] 

50 -0.7269  -0.0053   0.3854  0.0107 

 [0.9268] [0.9104]  [2.8139] [2.8042] 

100 -0.2792  0.0035   -0.0223  0.0016 

 [0.4382] [0.4360]  [1.0186] [1.0199] 

200 -0.1312  0.0113   -0.0385  -0.0171     

 [0.2137] [0.2132]  [0.5105] [0.5106] 

 

(b) Standard normal regressor: β1 = 1, β2 = -0.5 

 

10 -4.1469  0.0538   -0.9386  0.0582 

 [4.8242] [4.2403]  [10.9303] [10.3340] 

25 -1.5336  -0.0046   -0.2357  0.1412 

 [1.6930] [1.6184]  [4.7186] [4.6419] 

50 -0.7079  0.0161   -0.0695  0.0106 

 [0.8140] [0.7977]  [2.4986] [2.4819] 

100 -0.3646  -0.0007   -0.0301  0.0325 

 [0.4023] [0.3982]  [1.2859] [1.2832] 

200 -0.1764  0.0029   -0.0546  -0.0185 

 [0.2003] [0.1993]  [0.6744] [0.6739] 
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Table 2: Percentage biases and MSEs of the MLEs and bias-corrected MLEs – 

intercept and one regressor 

 

n )ˆ(% 1βBias  )~(% 1βBias   )ˆ(% 2βBias  )~(% 2βBias   

[ )ˆ(% 1βMSE ] [ )~(% 1βMSE ]  [ )~(% 2βMSE ] [ )(% 2β
(

MSE ] 

 

 

(a) Uniform (0,1) regressor: β1 = 1, β2 = 0.5 

 

10 -2.0161  0.1518   -4.2240  -0.4868 

 [13.3546] [12.6881]  [171.7988] [162.4338] 

25 -1.2173  -0.0122   0.1425  0.0183 

 [4.5360] [4.4315]  [49.1741] [48.2918] 

50 -0.6460  0.0809   0.3245  -0.2397 

 [2.5416] [2.5093]  [22.4297] [22.2247] 

100 -0.2867  0.0601   0.0217  -0.2093   

 [1.2957] [1.2884]  [11.9973] [11.9481] 

200 -0.1835  0.0009   0.1795  0.0252 

 [0.6854] [0.6834]  [6.1290] [6.1167] 

  

(b) Uniform (0,1) regressor: β1 = 1, β2 = -0.5 

 

10 -1.4781  0.2296   -16.8178 -0.6932 

 [19.2841] [17.9263]  [345.0662] [304.6385] 

25 -1.2899  0.0220   -2.9498  -0.1476 

 [5.7814] [5.6152]  [85.8775] [83.0689] 

50 -0.7636  0.0752   -0.8159  -0.2868 

 [3.2593] [3.2054]  [37.9555] [37.3819] 

100 -0.3379  0.0706   -0.5556  -0.2675 

 [1.6804] [1.6679]  [20.2826] [20.1425] 

200 -0.2300  -0.0038   -0.0002  0.0557 

 [0.8900] [0.8864]  [10.2080] [10.1758] 
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Table 3: Percentage biases and MSEs of the MLEs and bias-corrected MLEs – 

intercept and two regressors 

 

n )ˆ(% 1βBias  )~(% 1βBias  )ˆ(% 2βBias  )~(% 2βBias  )ˆ(% 3βBias  )~(% 3βBias  

[ )ˆ(% 1βMSE ] [ )~(% 1βMSE ] [ )ˆ(% 2βMSE ] [ )~(% 2βMSE ] [ )ˆ(% 3βMSE ] [ )~(% 3βMSE ] 

 

 

(a) Standard normal regressors: β1 = 1, β2 = 0.5, β3 = 0.5, ρ = 0.1 

 

10 -5.4984  -0.0506  -1.8594  0.0248  3.7403  0.1129 

 [7.6977] [6.8300] [5.7465] [5.5245] [17.5002] [16.6353] 

25 -1.9800  -0.0695  1.4561  0.0965  0.1200  0.0327 

 [2.3178] [2.1990] [5.6222] [5.4589] [2.8013] [2.7645] 

50 -0.9785  -0.0244  0.3678  0.0475  0.3463  -0.0076 

 [1.0203] [0.9980] [1.9837] [1.9766] [2.6724] [2.6769] 

100 -0.3575  -0.0041  0.0408  -0.0008  -0.0420  0.0040 

 [0.4692] [0.4660] [1.0499] [1.0491] [0.6926] [0.6921] 

200 -0.1705  0.0053  -0.0589  -0.0024  0.0075  -0.0214 

 [0.2221  [0.2213] [0.5039] [0.5052] [0.4687] [0.4690] 

 

(b) Standard normal regressors: β1 = 1, β2 = 0.5, β3 = 0.5, ρ = 0.9 

 

10 -4.6490  0.0068  -0.5608  -0.2005  3.4684  0.2322 

 [7.6072] [6.9995] [29.5010] [25.8512] [56.3052] [54.6193] 

25 -1.8510  -0.0604  2.5693  0.1463  -1.1418  -0.0510 

 [2.4696] [2.3565] [18.5975] [18.1754] [11.1513] [11.0251] 

50 -0.8136  -0.0023  0.2679  0.0137  0.1354  -0.0374 

 [1.0489] [1.0335] [8.1901] [8.1873] [9.5613] [9.5766] 

100 -0.2673  0.0191  0.0848  -0.0229  -0.0794  0.0002 

 [0.4627] [0.4605] [4.2837] [4.2821] [3.1600] [3.1581] 

200 -0.1407  -0.0038  -0.0563  0.0480  0.0545  -0.0401 

[0.2170] [0.2165] [2.2196] [2.2208] [2.1409] [2.1421] 
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Table 4: Banking crisis application 

 

(a) Data characteristics 

 BCRISES:  0 1 2 3 Mean: 0.875; variance: 0.760 

 Frequency: 13 11 7 1 

(b) Poisson regression results (z-statistics in parentheses; bias-adjusted estimates in bold)  

E[BCRISES] = -0.7659 + 0.2561[CCRISES×DINCHI] + 0.8727 DPEG ;  R2 = 0.4454 

  (-2.45)    (2.00)    (2.15) 

   -0.6831    0.2875    0.7616 
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