
 1

 
Department of Economics 

 
 

 
 
 
 

   
 
 
 

& 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 
 
 

 
  

 
  Econometrics Working Paper EWP0908 

 
ISSN 1485-6441 

Bias of the Maximum Likelihood Estimators of the Two-Parameter 
Gamma Distribution Revisited 

David E. Giles 
Department of Economics, University of Victoria 

Victoria, B.C., Canada V8W 2Y2 

Hui Feng 
Department of Economics, Business & Mathematics 

King’s University College, University of Western Ontario 
London, ON, Canada N6A 2N3 

September, 2009 

Author Contact:  
David E. Giles, Dept. of Economics, University of Victoria, P.O. Box 1700, STN CSC, Victoria, B.C., Canada  
V8W 2Y2; e-mail: dgiles@uvic.ca; Phone: (250) 721-8540; FAX: (250) 721-6214 
 

Abstract 
We consider the quality of the maximum likelihood estimators for the parameters of the two-parameter gamma 

distribution in small samples. We show that the methodology suggested by Cox and Snell (1968) can be used 

very easily to bias-adjust these estimators. A simulation study shows that this analytic correction is frequently 

much more effective than bias-adjusting using the bootstrap – generally by an order of magnitude in 

percentage terms. The two bias-correction methods considered result in increased variability in small samples, 

and the original estimators and their bias-corrected counterparts all have similar percentage mean squared 
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1. Introduction 

 

The gamma, or Pearson (1895) Type III, distribution has been used to model a wide range of data types in 

many disciplines, especially in the context of reliability modeling, life testing and fatigue testing. For example, 

Birnbaum and Saunders (1958) introduced the gamma distribution for modeling the life-length of certain 

materials, and the use of this distribution for various reliability problems is noted by both Herd (1959) and 

Drenick (1960). Gupta and Groll (1961) discuss acceptance sampling based on this distribution, and they 

derive the operating characteristic function, producer’s risk, failure rates and minimum sample sizes for this 

problem.  

 

Empirical applications of the gamma distribution arise in a diverse range of fields. For example, Stoney (1988) 

and Wein and Bajeva (2005) applied this distribution in analyses of human fingerprint data. Segal et al. (2000) 

used it for matching scores in the context of DNA fingerprint genotyping of tuberculosis, and Keaton (1995) 

adopted it for an inventory control problem. The gamma distribution has also been applied in a number of 

studies in the fields of signal processing (e.g., Brehm and Stammler, 1987, Martin, 2002, Jensen et al., 2005, 

and Kim and Stern, 2008), hydrology (e.g., Bobbé and Ashkar, 1991, Stedinger et al., 1993, Askoy, 2000, and 

Bhunya et al., 2007) and meteorology (e.g., Thom, 1958, 1959, and Simpson, 1972).1  

 

The density function for the gamma distribution, with shape and scale parameters α and θ respectively, is: 

   α

θα

θα )(
)(

/1

Γ
=

−− xexxf  ; α, θ > 0 ; x > 0 .    (1) 

It is also common to parameterize (1) in terms of the so-called “rate parameter”, θλ /1= , reflecting the fact 

that if α is integer-valued, the gamma distribution collapses to the Erlang distribution which describes the 

waiting-time until the αth arrival in a Poisson process with rate parameter λ.2  

 

Various estimators of the parameters of the gamma distribution have been used in practice. Historically, and 

notwithstanding the associated computational issues of the day, the maximum likelihood estimator (MLE) was 

an early choice because of its optimal asymptotic properties (e.g., Masuyama and Kuroiwa, 1951; Cohen, 

1953; Raj, 1953; Chapman, 1956; Greenwood and Durand, 1960; Gupta and Groll, 1961; Harter and Moore, 

1965). Fisher (1922) demonstrated the inefficiency of the method of moments (MOM) estimator, relative to 

                                                 
1 As Yue et al. (2001, p.1) note, “A univariate gamma distribution is one of the most commonly adopted statistical 
distributions in hydrological frequency analysis.” 
2 It is well known that the gamma distribution collapses to the exponential distribution with rate parameter λ when α = 1; 
to the chi square distribution with υ degrees of freedom when α = υ/2 and θ = 2; and for large α it can be approximated by 
a normal distribution with mean αθ and variance αθ2. 
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the MLE, for this problem.3 Given its widespread use, often with samples of only modest size, the small-

sample properties of this MLE are of considerable interest. Early Monte Carlo evidence regarding these 

properties was provided by Choi and Wett (1969). They considered sample sizes of n = 40, 120, 200; and 

shape parameter values4 of α = 1, 2, 3, 5, 7. Computational constraints limited their simulation experiment to 

only 100 replications. They found that the MLEs of α and θ are both upward-biased, and they also provided 

measures regarding the variances of these MLEs. Bowman and Shenton (1982) derive analytic approximations 

based on asymptotic expansions, to O(n-6), for the first four moments of the MLEs for the gamma distribution 

parameters.5 Their methodology is discussed briefly in the next section. Among other things, they provided 

extensive tables of the approximate bias, variance, skewness and kurtosis measures for these MLEs. They 

confirmed the signs of the biases noted by Choi and Wett (1969) and formalized by Berman (1981). 

 

In this paper we show that the methodology of Cox and Snell (1968, pp.251-252) provides a very simple way 

of deriving the expressions for the biases (to O(n-1)) of the MLEs for the parameters of the gamma distribution. 

These expressions are identical to those reported by Bowman and Shenton (1982, p.390), and stated by 

Masuyama and Kuroiwa (1951) and Greenwood and Durand (1960). We then go further by investigating the 

effectiveness of “bias-adjusting” the MLEs by subtracting the estimated O(n-1) bias. This does not appear to 

have been considered for this particular estimation problem previously. We also compare this approach with 

the “obvious”, but computationally more burdensome, alternative of using the bootstrapped bias for the 

purpose of bias reduction. Both approaches achieve dramatic reductions in bias, but the analytic approach 

generally out-performs that based on the bootstrap.  

 

The remainder of the paper proceeds as follows. In the next section we briefly summarize some of the analytic 

methods used by Bowman and Shenton, and discuss the simple results due to Cox and Snell (1968) that we use 

to obtain analytical expressions for the biases of the MLEs of the parameters in the gamma distribution. 

Section 3 derives these biases and the corresponding bias-adjusted MLEs. In section 4 a Monte Carlo 

experiment is used to compare the performance of the latter estimators with that of bias-adjusted estimators 

that use the bootstrap to determine finite-sample bias. An empirical example using real data is presented in 

section 5 to illustrate the application, and potential merits, of the analytic bias adjustment. Section 6 concludes. 

                                                 
3 Bowman and Shenton (1982, p.391) note that the O(n-1) bias expressions discussed in the present paper can be derived 
from the first-order covariance terms given by Fisher (1922). 
4 They set θ = 1, but as we show in section 3.1, their results will be invariant to the value of this parameter. 
5 Their results drew on earlier work in Bowman and Shenton (1968, 1970) and Shenton and Bowman (1977). 
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2. Approximating the bias of maximum likelihood estimators 

 

We are concerned with obtaining analytic approximations to the bias of an MLE, even when the likelihood 

equations do not admit a closed-form solution.6 We use a sample of n observations to estimate the p elements 

of the parameter vector,φ , of a distribution whose density is assumed to be regular with respect to all 

derivatives up to and including the third order. Let )(φl be the associated log-likelihood function, satisfying the 

usual regularity conditions, and let φ̂  be  the MLE of φ . 

 

Not surprisingly, considerable attention has been paid to the problem of obtaining analytic approximations to 

the moments of MLEs, beginning with the derivation of the O(n-1) bias when p = 1 by Bartlett (1953a).7 

Haldane and Smith (1956), derived expressions for the first four cumulants to this same order of accuracy, and 

Shenton and Bowman (1963) obtained higher-order approximations for the first four moments of an MLE. 

Bartlett (1953b) and Haldane (1953) explored the bias of an MLE when p = 2, and Shenton and Wallington 

(1962) and Cox and Snell (1968) derived formulae for the O(n-1) bias of an MLE in the multi-parameter case. 

 

Shenton and Bowman (1977, Chap.2) distinguish three general methods for approximating the moments of 

MLEs in terms of expansions using inverse powers of n. The first (e.g., Haldane and Smith, 1956) involves 

applying Lagrange’s expansion to a Taylor series approximation to )ˆ(φl . This method does not lend itself well 

to the case where 2≥p . The second is the method that Shenton and Bowman have adopted in the bulk of their 

own work. It involves an indirect Taylor series approach that involves viewing φ̂ as a function of the 

proportions of the sample observations falling into each of (say) c classes. This method was used by Shenton 

and Bowman (1963), and it extends readily to the multi-parameter case. It has the additional merits that it can 

be used to determine higher-order approximations to higher-order moments (but at the cost of a very large 

number of tedious evaluations). 

 

The third approach is described by Shenton and Bowman (1977, p.35) as “….an adjusted order of magnitude 

process”, and they attribute it to Cox and Snell (1968, pp.251-252). They also claim that it has “….little 

advantage over the Lagrange expansion” (p.40), except that it can be applied in the multi-parameter case. The 

latter case is mentioned only briefly by Shenton and Bowman (1977, p.77). The method of Cox and Snell is, in 

fact, straightforward to apply when 2≥p , especially if only an O(n-1) approximation is desired. To see this we 

define the following cumulants: 
                                                 
6 Fundamentally different approaches could also be considered – e.g., see Firth (1993). 
7 Earlier related results were obtained by Tukey (1949). 
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 )/( 2
jiij lEk φφ ∂∂∂=   ; i, j = 1, 2, …., p      (2) 

)/( 3
ljiijl lEk φφφ ∂∂∂∂=  ; i, j, l = 1, 2, …., p      (3) 

)]/)(/[( 2
, ljilij llEk φφφ ∂∂∂∂∂=  ; i, j, l = 1, 2, …., p .     (4) 

and  

 lij
l

ij kk φ∂∂= /)(    ; i, j, l = 1, 2, …., p.     (5) 

The expressions in (2) – (5) are assumed to be O(n). Cox and Snell showed that when the sample data are 

independent (but not necessarily identically distributed) the bias of the sth element of the MLE of φ  ( φ̂ ) is: 

 ∑ ∑ ∑ ++=
= = =

−p

i

p

j

p

l
lijijl

jlsi
s nOkkkkBias

1 1 1

2
, )(]5.0[)ˆ(φ ;   s = 1, 2, …., p.     (6) 

 

where ijk  is the (i, j)th
 element of the inverse of the (expected) information matrix, }{ ijkK −= . More recently, 

Cordeiro and Klein (1994) observed that (6) holds if the data are non-independent, and they showed that it can 

be re-written in the more convenient form:8 

 ∑ ∑ ∑ +−=
= = =

−
p

i

p

j

p

l

jl
ijl

l
ij

si
s nOkkkkBias

1 1 1

2)( )(]5.0[)ˆ(φ ; s = 1, 2, …., p.    (7) 

Define: )2/()()(
ijl

l
ij

l
ij kka −= , for i, j, l = 1, 2, …., p       

 }{ )()( l
ij

l aA = ; i, j, l = 1, 2, …., p         

 ]|.......||[ )()2()1( pAAAA = .          

Cordeiro and Klein (1994) showed that the bias of  θ̂  can be re-written as:  

)()()ˆ( 211 −−− += nOKvecAKBias φ ,        (8) 

 

and a “bias-corrected” MLE for θ is defined as: 

)ˆ(ˆˆˆ~ 11 −−−= KvecAKφφ ,          (9) 

 

where  φ̂|)(ˆ KK =  and  φ̂|)(ˆ AA = . It can be shown that the bias of φ~  is O(n-2). Clearly, (8) and (9) can be 

evaluated even when the likelihood equation does not admit a closed-form analytic solution, so that the MLE 

has to be obtained by numerical methods.  

                                                 
8 The computational advantage of (7) is that it does not involve terms of the form in (4). 
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The Cox-Snell/Cordeiro-Klein methodology has recently been applied successfully to a range of problems by 

various authors, including Cordeiro and McCullagh (1991), Cordeiro et al. (1996), Cribari-Neto and 

Vasconcellos (2002), Giles (2009) and Giles and Feng (2009). 

 

3. Biased-adjusted MLEs for the gamma distribution 

 

In a series of studies, Bowman and Shenton (1968, 1969, 1982, 1988) and Shenton and Bowman (1970, 1972) 

considered the second type of asymptotic expansion (in inverse powers of n) noted in section 2 to derive 

analytic approximations to the first four moments of the MLEs for α and θ in (1). In addition, Shenton and 

Bowman (1969) and Bowman and Shenton (1970, 1982) considered asymptotic expansions in terms of 

descending powers of the parameter α, in order to obtain alternative approximations to the moments of the 

MLEs for the parameters of the gamma distribution. However, we do not pursue the latter type of expansion 

here as our concern is with small sample asymptotics. 

 

In what follows, we consider two separate cases – one where the distribution is characterized by the shape and 

scale parameters (α and θ), and one where it is characterized by the shape and rate parameters (α and λ = 1/θ). 

In each case, we show that the Cox-Snell/Cordeiro-Klein methodology quickly provides the biases of the 

MLEs to O(n-1), and we construct the associated bias-adjusted estimators. 

 

3.1 Shape and scale parameters 

From (1), the log-likelihood function, based on a sample of n independent observations, is 

 

  ∑ ∑ +Γ−−−=
= =

n

i

n

i
ii nyyl

1 1
)]log())([log(/)()log()1( θααθα .    (10) 

We then have: 

∑ +Ψ−=
∂
∂

=

n

i
i nyl

1
)]log()([)log( θα

α
       (11) 

  ∑
=

−=
∂
∂ n

i
i nyl

1

2/][ θαθ
θ

        (12) 

where )(αΨ  is the usual digamma function:  

∑ −−+−−=Γ=Ψ
∞

=1
))1()(3(/)(log)(

k

kkdd αςγααα ,  
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where ∑ =−=
∞

=∞→ 1
.....57721.0)]ln()1[(

kn
n

k
Limitγ  is the Euler-Mascheroni constant, and ∑=

∞

=

−

1
)()(

n

snsς is the 

Riemann zeta function. In what follows we also need the trigamma and tetragamma functions, these 

being ii
i dd ααα /)()()( Ψ=Ψ ; i = 1, 2. These functions have various representations that are convenient for 

numerical evaluation. 

 

From equations (11) and (12) it is clear that the maximum likelihood estimates of the parameters cannot be 

obtained analytically as solutions to the likelihood equations. Numerical methods must be used, and early 

discussions of some of the associated issues are provided by Gupta and Groll (1961) and by Choi and Wette 

(1969).  

 

Noting that αθ=)( iyE , the following results emerge immediately: 

  )()1(11 αΨ−= nk  

  θ/12 nk −=  

  2
22 /θαnk −=  

  )()2(
)1(

11111 αΨ−== nkk  

  0)1(
12

)2(
11211121112 ===== kkkkk  

  2)1(
22

)2(
12212221122 /θnkkkkk =−====  

  3
222 /4 θαnk =  

  3)2(
22 /2 θαnk = . 

The information matrix is 

 

⎥
⎦

⎤
⎢
⎣

⎡Ψ
= 2

)1(

//1
/1)(
θαθ
θα

nK ,         

and 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

Ψ−
=

0/1
/10

/30
0)(

)2/( 2

2

2
)2(

θ
θ

θ
α

nA .       

 

So, to O(n-1), 
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  2
)1(

)2()1(

]1)([2
]2))()(([

)ˆ(
−Ψ

−Ψ−Ψ
=

αα
αααα

α
n

Bias       (13) 

and 

  2
)1(

)1()2(

]1)([2
)]()([

)ˆ(
−Ψ
Ψ+Ψ

=
αα

αααθ
θ

n
Bias  .       (14) 

 

These bias expressions are identical to those in equation (4.23) of Bowman and Shenton (1982, p.390).9 The 

bias of α̂ , and the percentage biases of both α̂  and θ̂ , are invariant to the value of θ  (and hence λ). In 

addition, α̂  is upward-biased, and θ̂  is downward-biased, to O(n-1), consistent with the analytic results of 

Shenton and Bowman (1977, pp.151-153) and Berman (1981), and the Monte Carlo results of Choi and Wette 

(1969). Bias-adjusted estimators are then obtained as  

 

2
)1(

)2()1(

]1)ˆ(ˆ[2
]2))ˆ(ˆ)ˆ((ˆ[

ˆ~
−Ψ

−Ψ−Ψ
−=

αα

αααα
αα

n
       (15) 

and 

2
)1(

)1()2(

]1)ˆ(ˆ[2
)]ˆ()ˆ(ˆ[ˆ

ˆ~
−Ψ

Ψ+Ψ
−=

αα

αααθ
θθ

n
.        (16) 

   

Apparently, the sampling properties of such bias-adjusted estimators have not been evaluated previously, so 

the evidence that we present in section 4 extends Shenton and Bowman’s results in this direction.  

 

3.2 Shape and rate parameters 

Re-parameterizing the gamma distribution in terms of the rate parameter, θλ /1= , the log-likelihood function 

is 

  ∑−∑−+Γ−=
==

n

i
i

n

i
i yynl

11
)log()1()](loglog[ λααλα .      

and it is easily verified that 

 

  )()1(11 αΨ−= nk  

  λ/12 nk =  

                                                 
9 Also, see Masuyama and Kuroiwa (1951) and Greenwood and Durand (1960). 
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  2
22 /λαnk −=  

  )()2(
)1(

11111 αΨ−== nkk  

  0)1(
12

)2(
11211121112 ===== kkkkk  

  2)2(
12

)1(
22212221122 /λnkkkkk −====  

  3)2(
22222 /2 λαnkk ==  

   

⎥
⎦

⎤
⎢
⎣

⎡
−

−Ψ
= 2

)1(

//1
/1)(
λαλ
λα

nK  

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−Ψ−
=

322

2
)2(

/2/1/10

/100)(
)2/(

λαλλ

λα
nA ,    

and so 

  2
)1(

)2()1(

]1)([2
]2))()(([

)ˆ(
−Ψ

−Ψ−Ψ
=

αα
αααα

α
n

Bias  + O(n-2)       

as in equation (13), and 

  2
)1(

)2()1(
2

)1(

]1)([2
)]()(3))((2[

)ˆ(
−Ψ

Ψ−Ψ−Ψ
=

αα
αααααλ

λ
n

Bias  + O(n-2) .    (17) 

A bias-adjusted estimator for λ  is 

 

2
)1(

)2()1(
2

)1(

]1)ˆ(ˆ[2

)]ˆ(ˆ)ˆ(3))ˆ((2[ˆ
ˆ~

−Ψ

Ψ−Ψ−Ψ
−=

αα

αααααλ
λλ

n
.     (18) 

 

Clearly, the percentage bias of λ̂  is invariant to the value of λ  (and hence θ). It is readily shown that the 

numerator expression in (18) is positive for all α > 0, so λ̂  is unambiguously upward-biased, to O(n-2), which 

is again consistent with the earlier results of Choi and Wette (1969) and Berman (1981).  
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4. Simulation results 

 

The bias expressions in (13), (14) and (17) are valid only to )( 1−nO .10 The actual bias and mean squared error 

(MSE) of the maximum likelihood and bias-corrected maximum likelihood estimators are now compared in a 

Monte Carlo experiment. The maximum likelihood estimates were obtained using the Nelder-Mead algorithm 

in the maxLik package (Toomet and Henningsen, 2008) for the R statistical software environment (R, 2008). 

The R software also includes routines for generating gamma-distributed random variates, and for evaluating 

the digamma, trigamma, and tetragamma functions. An excellent recent discussion of the issues and 

difficulties associated with accurately computing these functions is provided by Ho et al. (2009).11 

 

In addition to α̂ , α~ , θ̂ , θ~ , λ̂  and λ~ , we have also considered the bootstrap-bias-corrected estimator. In the 

case of α , this is obtained as ∑−=
=

BN

j
jBN

1
)( ]ˆ)[/1(ˆ2 ααα( , where )(ˆ jα is the MLE of α obtained from the jth 

of the NB bootstrap samples. Corresponding expressions apply for the estimators of the other two parameters. 

See Efron (1982, p.33). Bootstrap-bias-corrected estimators are also unbiased to )( 2−nO , but it is known that 

that this generally comes at the expense of increased variance. 

 

Each part of the experiment relating to the MLE’s and Cox-Snell biased-corrected MLE’s uses 100,000 Monte 

Carlo replications. In the case of the bootstrap-corrected estimators the number of Monte Carlo replications is 

100,000, with 1,000 bootstrap samples per replication. The results that are reported in Tables 1 are percentage 

biases and MSE’s. The latter are defined as 100× (MSE / α2), etc., and appear in square brackets below the 

corresponding percentage biases.  

 

As the relative biases and mean squared errors are invariant to the value of the scale parameter, θ, and rate 

parameter, λ, these parameters are assigned the value unity in this experiment. Various values of the shape 

parameter, α, are considered, including ones that are consistent with some of the empirical studies discussed in 

section 1. The simulation results for α̂  and θ̂  in Table 1 agree very closely with the analytic results, given to 

O(n-6), in Tables 17 and 21 of Bowman and Shenton (1982), and in particular the directions of all of the biases 

are as anticipated from section 3. The orders of magnitude of the percentage biases and MSEs are relatively 

invariant to the values we have considered for the scale parameter, α. 

                                                 
10 It will be recalled, however, that Bowman and Shenton (1982) provide approximations to O(n-6). 
11 Our numerical evaluations of the relative biases based on (13) and (14) exactly match those in the ‘n-1’ columns of 
Tables 17 and 21 of Bowman and Shenton (1982), to the four decimal places reported by those authors.  
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We see that the MLEs, α̂ , θ̂  and λ̂  can exhibit considerable percentage bias when the sample size is small. 

As the sample size increases, the biases and mean squared errors of these MLEs fall, reflecting the consistency 

of the estimators. The analytic bias adjustment defined in (15) – (17) (resulting in the estimators α~ , θ~  and 

λ~ ) is extremely successful, often reducing the percentage bias by as much as two orders of magnitude in very 

small samples. There is at least one order of magnitude improvement in percentage bias even when n = 250. 

However, this comes at the expense of increased variance, as is seen from the fact that the MSEs of the 

original MLEs and these bias-adjusted MLEs are generally of the same order of magnitude, and in fact often 

very close in value. The consistency of these bias-adjusted estimators is clear from the (overall, but not 

necessarily monotonic) decline in their biases and MSEs as the sample size increases.  

 

Bias-adjusting using the bootstrap also reduces the biases of the MLEs. Often an order of magnitude 

improvement can be obtained in percentage terms for small sample sizes, but again this comes at the expense 

of increased variability in the estimators. Generally, the original MLEs and both the analytically bias-adjusted 

and bootstrap bias-adjusted MLEs have similar percentage MSEs, so any choice between the two 

methodologies may be based on the resultant biases. The overall thrust of the results in Table 1 is that the 

analytical Cox-Snell/Cordeiro-Klein methodology out-performs the use of the bootstrap for bias reduction in 

almost all of the cases considered, and especially if the sample size is less than n = 100. The main exceptions 

arise in parts (a) and (b) of Table 1 when estimating the shape parameter (θ) if the scale parameter exceeds 

unity. Even in these cases, however, analytical bias adjustment performs extremely well, and may be preferred 

on the grounds of simplicity of application. 

 

5. Illustrative example 

 

Simpson (1972) fitted seven distributions, including the gamma distribution, to two small samples of data 

measuring the fourth root of rainfall (in acre-feet) from cumulus clouds in Florida. One sample relates to 

clouds that were “seeded” to induce rainfall, while the other is for a control group of unseeded clouds. In each 

case n = 26. Simpson found that the gamma distribution is the preferred model, on the basis of several criteria. 

In her parameterization of the gamma model, Simpson’s parameters B and C correspond to our (α-1) and λ 

respectively. Using the same software and algorithm as in section 4, we have duplicated Simpson’s MLE’s and 

computed our bias-adjusted estimators. These results appear in the upper part of Table 2.  

 

We know from section 3 that the MLE’s of both the shape and rate parameters are upward biased, which 

accounts for the relative magnitudes of the MLE’s and their bias-adjusted counterparts in Table 2. Adjusting 
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the parameter estimates for the first-order bias has implications for the fitted gamma model, and in the lower 

part of Table 2 these are summarized via the changes in the mean, variance, mode, and coefficient of variation 

(CV) of the distribution. Simpson is especially interested in the latter descriptive statistic. 

 

Simpson (1972, pp.310-311) reported that the seeding of the clouds reduces the CV associated with the fitted 

gamma distribution only slightly.12 In fact there is a reduction of 4.34% as we move from the model estimated 

from the control data to the model estimated from the seeded data. These calculations are based on the 

(unadjusted) MLE’s of the parameters in each case. Using the results for the bias-adjusted MLE’s, as given in 

Table 2, the corresponding reduction in the CV as estimated to be 4.10%. Interestingly, Simpson (1972, p.311, 

fn.1) observes that the sample coefficient of variation is 0.43 for the “unseeded” sample and 0.37 for the 

“seeded” sample of data. From the lower part of Table 2 we see that, in this application, bias-adjusting the 

MLE’s of the parameters of the gamma distribution results in a fitted model that captures certain key 

characteristics of the control data more accurately than is the case if no adjustment for bias is made. However, 

the converse is true for the model fitted to the “seeded” data. 

 

6. Conclusions 

 

The two-parameter gamma distribution is very widely used in many disciplines, and so there is considerable 

interest in the quality of the maximum likelihood estimators for its parameters in small samples. In this paper 

we have shown how the methodology suggested by Cox and Snell (1968) can be used very easily to construct 

a closed-form adjustment to these MLEs that corrects for the O(n-1) bias. This analytic bias correction, wich 

has not previously been evaluated, is found to be much more effective than bias-adjusting using the bootstrap – 

generally by an order of magnitude in percentage terms. Not surprisingly, the two bias-correction methods 

compared in this paper result in increased variability in small samples, the net effect being that the original 

MLEs and their bias-corrected counterparts all have similar percentage mean squared errors. The use of the 

Cox-Snell bias correction is strongly recommended when estimating the parameters of the gamma distribution 

by maximum likelihood. 
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Table 1: Percentage bias [and percentage MSE] of the MLEs and bias-corrected MLEs 

n α̂   α~   α(   θ̂   θ~   θ
(

  λ̂   λ~   λ
(

 

(a): α = 0.5  
10 30.3087  0.0503  -16.9439  -8.3511  -0.9461  -0.0157  62.7715  0.0099  -47.5312 

 [55.0804] [23.7143] [29.9336] [33.0258] [37.2629] [37.9863] [220.2250] [81.5503]         [332.9895] 

15 17.7896  0.0373  -3.6332  -5.4226  -0.3270  -0.1352  35.8608  -0.0249  -9.9794 

 [21.9830] [12.5042] [12.4549] [22.1354] [24.0395] [24.3807] [75.5345] [37.6372]           [41.4609] 

25 9.7018  -0.0595  -0.8303  -3.2462  -0.1188  -0.0426  19.3239  0.0075  -2.0881 

 [9.0589]  [6.4722]  [6.4897]  [13.3633] [14.0513] [13.9947] [27.9439] [18.0135]           [18.0833] 

50 4.5579  -0.0357  -0.1056  -1.6526  -0.0630  -0.0125  8.9467  -0.0074  -0.3896 

 [3.4794]  [2.9360]  [2.9404]  [6.6720]  [6.8424]  [6.8390]  [9.6422]  [7.6525]  [7.7030] 

100 2.2000  -0.0316  -0.0379  -0.7999  0.0016  -0.0174  4.3164  -0.0026  -0.0011 

 [1.5339]  [1.4088]  [1.4149]  [3.3656]  [3.4091]  [3.3863]  [4.0530]  [3.6001]  [2.6861] 

250 0.8721  -0.0058  0.0070  -0.3705  -0.0485  0.0477  1.7449  0.0524  -0.0343 

 [0.5697]  [0.5505]  [0.5521]  [1.3473]  [1.3539]  [1.3500]  [1.4590]  [1.3886]  [1.3703] 

(b): α = 1.0 
10 33.1554  0.1167  -21.0180  -9.3635  -1.1486  -0.4251  50.1401  0.1073  -31.5996 

 [72.2336] [29.7664] [39.3795] [24.7572] [28.0324] [28.2438] [135.6396] [53.4702]           [81.2329] 

15 20.4645  0.0127  -4.6131  -6.0828  -0.3954  -0.3030  28.9366  -0.0886  -7.0535 

 [27.0769] [14.8398] [15.0003] [16.6527] [18.1463] [18.3550] [49.6743] [26.1654]           [26.7053] 

25 11.1739  0.0029  -1.0784  -3.7252  -0.2206  -0.1569  15.8077  0.0037  -1.5510 

 [10.9318] [7.5679]  [7.5833]  [10.0178] [10.5514] [10.5860] [19.2108] [12.8536]           [13.0206] 

50 5.2080  -0.0252  -0.1159  -1.8724  -0.0839  -0.0828  0.0569  0.0207  -0.1999 

 [4.1068]  [3.4064]  [3.4412]  [5.0491]  [5.1835]  [5.2638]  [7.0100]  [5.6886]  [5.6997] 

100 2.4938  -0.0428  -0.0779  -0.8443  0.0599  0.0103  3.5168  -0.0551  -0.0011 

 [1.7757]  [1.6166]  [1.6247]  [2.5651]  [2.6011]  [2.5883]  [2.9996]  [2.7008]  [2.6861] 

250 0.9648  -0.0318  -0.0050  -0.3199  0.0439  -0.30037  1.3562  -0.0458  -0.0146 

 [0.6530]  [0.6290]  [0.6334]  [1.0182]  [1.0240]  [1.0117]  [1.0872]  [1.0425]  [1.0458] 
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Table 1: Percentage bias [and percentage MSE] of the MLEs and bias-corrected MLEs (continued) 

n α̂   α~   α(   θ̂   θ~   θ
(

  λ̂   λ~   λ
(

 

(c): α = 5.0  
10 40.5278  -0.3381  -21.3998  -9.7335  -0.7658  -1.2637  43.3039  -0.4092  -22.9995  

 [92.7209] [37.4035] [47.9748] [19.8566] [22.8109] [22.8425] [103.0552] [41.2993]           [54.8719] 

15 23.6317  -0.2339  -5.5794  -6.4325  -0.2317  -5.9729  25.2575  -0.2729  -6.1081 

 [34.3966] [18.4480] [18.9571] [13.4550] [14.8079] [21.2819] [38.3105] [20.4317]           [21.0530] 

25 12.8723  -0.1564  -1.2765  -3.7893  0.0381  -1.3759  13.7541  -0.1826  -1.3759 

 [13.6023] [9.2535]  [9.4863]  [8.2193]  [9.2535]  [10.5580] [15.2001] [10.3045]           [10.5580] 

50 6.0525  -0.0529  -0.3949  -1.9175  0.0341  0.0991  6.4790  -0.0525  -0.4090 

 [5.0751]  [4.1614]  [4.0927]  [4.1412]  [4.2679]  [4.2062]  [5.6620]  [4.6315]  [4.5541] 

100 2.9164  -0.0138  0.0070  -0.9551  0.0305  -0.0729  3.1382  -0.0273  -0.0078 

 [2.1855]  [1.9727]  [1.9823]  [2.0819]  [2.1138]  [2.0120]  [2.4334]  [2.1986]  [2.1881] 

250 1.1155  -0.0463  0.0169  -0.3599  0.0368  -0.0246  1.2058  -0.0372  0.0171 

 [0.7980]  [0.7669]  [0.7639]  [0.8293]  [0.8346]  [0.8352]  [0.8834]  [0.8481]  [0.8475] 

(d): α = 10.0  
10 41.2198  -0.4895  -18.4343  -9.7259  -0.7134  -1.0217  42.6328  -0.5039  -18.9922 

 [91.9345] [36.7292] [51.7588] [19.3936] [22.3072] [22.1556] [97.3581] [38.7994] [54.747] 

15 24.1024  -0.2806  -5.6652  -6.4683  -0.2421  -1.0217  24.9493  -0.2713  -0.4823 

 [35.3445] [18.9053] [19.4916] [13.1466] [14.4746] [22.1556] [37.3506] [19.9202             [14.4479] 

25 13.1293  -0.1838  -1.2228  -3.7811  0.0624  -0.2527  13.5839  -0.1843  -1.3089 

 [14.1745] [9.6429]  [9.7256]  [8.0392]  [8.5380]  [8.3875]  [15.0086 ] [10.1936] [10.243] 

50 6.1853  -0.0546  -0.2556  -1.9489  0.0096  0.0166  6.4123  -0.0414  -0.3387 

 [5.2329]  [4.2859]  [4.3170]  [4.0407]  [4.1638]  [4.1584]  [5.5386]  [4.5305]  [4.5650] 

100 2.9903  -0.0339  0.0363  -0.9669  0.0222  -0.0971  3.1049  -0.0227  -0.0491 

 [2.2632]  [2.0454]  [2.0406]  [2.0353]  [2.0665]  [2.0556]  [2.3839]  [2.1523]  [2.1277] 

250 1.1410  -0.0465  0.0085  -0.0366  0.0342  -0.0042  1.1950  -0.0331  -0.0387 

 [0.8229]  [0.7906]  [0.7960]  [0.7918]  [0.8210]  [0.8207]  [0.8674]  [0.8328]  [0.8341] 
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Table 2: Estimates of the gamma model for Simpson’s rainfall data 

    

  Seeded Clouds            Unseeded Clouds 

 

α̂   α~   λ̂   λ~    α̂   α~   λ̂   λ~  

 
7.104  6.309  1.831  1.616   6.523  5.795  2.224  1.962 

(1.988)  [2.103]  (0.529)  [0.536]   (1.658)  [1.904]  (0.592)  [0.725] 

  

MLE      Bias-Corrected MLE    MLE       Bias-Corrected MLE 

 

Mean Var. Mode CV Mean Var. Mode CV  Mean Var. Mode CV Mean Var. Mode CV 

 
3.880 2.119 3.334 0.375 3.904 2.416 3.285 0.398  2.933 1.319 2.483 0.392 2.954 1.505 2.444 0.415 

 
Asymptotic standard errors appear in parentheses, and bootstrapped standard errors (based on 1000 re-samples) appear in square brackets. 


