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1. Introduction 
 

The Poisson regression model is widely used to study count data in many disciplines, and is 

generally fitted using the maximum likelihood estimator (MLE). The likelihood function for 

the Poisson model is strictly concave, and satisfies the usual regularity conditions. So, the 

MLE for the Poisson regression model has all of the usual desirable asymptotic properties 

(Gourieroux et al., 1984). Surprisingly, however, the finite sample properties of the MLE for 

this model have been studied only for a limited number of particular models, only for the case 

of non-random covariates, and only using simulation methods. King (1988) and Brännäs 

(1991) used Monte Carlo experiments to examine the finite sample properties of MLE of the 

Poisson regression model. The evidence provided by the first of these authors must be treated 

cautiously, as his Monte Carlo experiment involved only 100 replications. However, for a 

model with two covariates, King (1988: 850) reports biases as large as -13.4%, 16.4% and 

-3.7% for sample sizes of n = 10, 50 and 100 respectively. From more reliable experiments, 

Breslow (1990: 568) reports biases in the range 1.2% to 1.9% when n = 36, 72; and Brännäs 

(1991: 234-235) reports biases in the range -2% to 1% when n = 50. These last two studies 

involve a Poisson regression model with a single covariate. The present paper is the first to 

derive analytic expressions for the first-order bias and second-order mean squared error (MSE) 

of the MLE for the Poisson regression model, and the first to consider these properties in the 

context of random covariates. The latter are likely to arise when the model is estimated from 

survey data, and there is no reason to presume that the relatively small biases noted above will 

be applicable in this case.  

 

Now, suppose Y is a series of count data, and follows a Poisson distribution with mean (and 

variance) λ: 

Pr .[ ] exp( ) / !iy
i i i iY y yλ λ= = − ;  yi = 0, 1, 2, … ;  i = 1,2, … , n.  (1) 

 

The Poisson regression model arises when we make the mean a (non-negative) function of 

certain covariates: 

)'exp( βλ ii x= ;     i = 1, 2, 3, … , n.        (2) 
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The MLE for the parameter vector in (2) can be derived as the solution of the following 

log-likelihood equations: 

0)(/)(log
1

=−=∂∂ ∑
=

n

i
iii xyL λββ              (3) 

and the Hessian matrix is: 

2

1
log ( ) / '

n

i i i
i

L x xβ β β λ
=

′∂ ∂ ∂ = −∑ .         (4) 

This Hessian matrix is negative-definite for all x and β, so there is a unique solution to the 

likelihood equations. However, as (3) is non-linear in the parameters, the MLE has to be 

solved numerically. Evaluation of the finite-sample properties of the MLE is also complicated 

by the fact that the estimator cannot be expressed in closed form. In this paper, we apply 

results from Rilstone et al. (RSU) (1996), as corrected by Rilstone and Ullah (2005), to derive 

analytic expressions for the first-order bias and second-order MSE functions for the MLE in 

the Poisson regression model with stochastic covariates that follow quite general distributions. 

We also present some numerical evaluations of the analytic bias and MSE expressions, and 

we explore the effectiveness of bias-adjusting the MLE. 

  

In the next section, we apply the methods of RSU to derive the finite-sample properties of the 

MLE for the Poisson regression model. Section 3 presents some numerical evaluations of the 

rather complex analytic expressions derived in section 2, and in section 4 we discuss the 

results of a Monte Carlo experiment that focuses on bias-adjusting this MLE when the model 

has a single covariate. Section 5 provides our conclusions.  

 

2. Analytic bias and mean squared error expressions 

 

RSU (1996) provide a general framework that allows us to derive the first-order bias and 

second-order MSE of a fairly wide class of nonlinear estimators. There are several 

well-known methods for examining the finite-sample properties of statistics, such as the 

Edgeworth expansion, the bootstrap and the jackknife methods. Compared with these 

methods, that discussed by RSU has some particular strengths. First, it provides us with 
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analytic, rather than numerical, results. In addition, it is much simpler to derive than the 

Edgeworth expansion, especially for the nonlinear case. RSU’s method focuses on statistics 

which can be expressed as a function of the data in the following way:  

∑ ==
=

n

i
in g

n 1
0)ˆ(1)ˆ( θθψ  ,         (5) 

where θ̂  is the estimator of interest; ),()( θθ iii zgg =  is a 1×k  vector involving the 

known variables zi and the parameters θ ; and 0)]([ =θigE  only for the true value of the 

parameter vector, 0θ .  

 

This paper applies RSU’s method to derive our analytic results. Recently, corresponding 

results for the binary logit model have been obtained by Chen and Giles (2009). For the 

Poisson model, we set iiii xyg )( λ−= . So, E(gi│xi) = 0 and the law of iterated expectations 

implies that E(gi) = 0. There are certain assumptions about the behavior of ( )ig θ  that are 

needed in order for the results of RSU to hold (Ullah, 2004: 31): 

 

Assumption 1  

The sth order derivatives of )(θig exist in a neighborhood of 0θ  and ∞<∇
2

0)(θi
sgE , 

where A  = trace 2/1][ AA ′  denotes the usual norm of the matrix A; and )(θAs∇  is the 

matrix of sth order partial derivations of the matrix )(θA  with respect to θ , obtained 

recursively. 

 

Assumption 2  

For some neighborhood of 0θ , )1())(( 1
pn O=∇ −θψ . 

 

Assumption 3  

ii
s

i
s Mgg 00 )()( θθθθ −≤∇−∇  for some neighborhood of 0θ , where Mi satisfies the 

condition ∞<≤ CME i , K 2, ,1=i  
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To simplify the following notation we will suppress the argument for any function where this 

can be done without confusion. So, )( 0θig is written as ig , for example. The structure of gi  

for the Poisson regression model can easily be shown to satisfy the above three assumptions. 

We will use the following two results, corrected here as indicated by Rilstone and Ullah 

(2005). 

 

Lemma 1 (Proposition 3.2, RSU, 1996; Ullah 2004: 32) 

Let Assumptions 1-3 hold for some 2≥s . Then the bias of θ̂  to )( 1−nO  is  

⎭
⎬
⎫

⎩
⎨
⎧ ⊗−= ][

2
11)ˆ( 11211 ddHdVQ

n
B θ  ,                       (6) 

where 
_______

i
j

j gH ∇= , 1
_______

][ −∇= igQ ,  ][
_______

iii ggV ∇−∇= , and ii Qgd = . (A bar over a 

function indicates its expectation, so that ][
_______

ii gEg ∇=∇ .)  

 

Lemma 2 (Proposition 3.4, RSU, 1996; Ullah 2004: 32) 

If Assumptions 1-3 hold for some 3≥s , then the MSE of θ̂  to )( 2−nO  is  

)(1)(11)ˆ( 44322221 Π′+Π+Π+Π′+Π+Π=
nnn

MSE θ   ,       (7)  

where  

111 dd ′=Π  

{ }11122
1

1112 ][ dddHddVQ ′⊗+′−=Π  

{ }QVddVVddVVddVQ  1221212122113 ′′+′′+′′=Π

 { } QHddddddddddddHQ 212212121221124
1  ]][[]][[][][  ′′⊗′⊗+′⊗′⊗+′⊗′⊗+

 { } QHdddVdddVdddVQ 21221212122112
1  ][][ ′′⊗′+′⊗′+′⊗′−

 { }QVdddVdddVdddHQ  ][][ 12212121221122
1 ′′⊗+′′⊗+′′⊗−  

{ }1221212122114  ddQVVddQVVddQVVQ ′+′+′=Π

 { }1222121221221212
1 ][][][ dddHQVdddHQVdddHQVQ ′⊗+′⊗+′⊗−
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 { }1221212122112
1 ][][][ dddWdddWdddWQ ′⊗+′⊗+′⊗+

 { }12212121221122
1 ][][][ ddQVdddQVdddQVdHQ ′⊗+′⊗+′⊗−

 { }12221212212212124
1 ][][][  dddHQddddHQddddHQdHQ ′⊗⊗+′⊗⊗+′⊗⊗+

 { }12212121221122
1 ][][][ dddQVdddQVdddQVHQ ′⊗+′⊗+′⊗−                 

{ }12212212122211224
1 ]][[]][[]][[ ddddHQddddHQddddHQHQ ′⊗⊗+′⊗⊗+′⊗⊗+

 { }12212121221136
1 ][][][ ddddddddddddHQ ′⊗⊗+′⊗⊗+′⊗⊗−              (8)  

and ][
_______

22
iii ggW ∇−∇= . 

 

It is readily shown that for the Poisson regression model we have the following expressions: 

)ˆ(1)ˆ( ββ ∑=Ψ in g
n

 

iiii xxg ′−=∇ λ  ;          )(
_____

1 iiii xxEgH ′−=∇= λ  

)(2
iiiii xxxg ′⊗′−=∇ λ  ;      )]([

______
2

2 iiiii xxxEgH ′⊗′−=∇= λ  

)(3
iiiiii xxxxg ′⊗′⊗′−=∇ λ  ;     )]([

_______
3

3 iiiiii xxxxEgH ′⊗′⊗′−=∇= λ  

1
_____

)( −−∇=′+′−=∇−∇= QgxxExxggV iiiiiiiiii λλ  

)]([)(
_______

22
iiiiiiiiiii xxxExxxggW ′⊗′+′⊗′−=∇−∇= λλ  

1
1
−= HQ    ;       ii Qgd =  . 

 

Then, applying RSU’s method we can derive the following theorems and corollaries. 

 

Theorem 1 

For the Poisson regression model, the bias of the MLE to order )( 1−nO  is 

2
1ˆ( ) ( )
2

Bias QH vec Q
n

β =  , 

and the MSE of MLE to order )( 2−nO  is  
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1 2 2 3 4 42 2

1 1 1ˆ( ) ( ) ( )MSE
n n n

β ′ ′= Π + Π + Π + Π + Π + Π  

where  

1 QΠ = −  

{ }{ }1
2 1 1 1 1 2 1 1 1 12( ) [ ( )]Q E V QX X Q H E vec QX X Q X Qλ λ′ ′ ′Π = − +  

{ }
{ }{ }

3 1 2 2 2 1

1
2 1 2 1 2 1 2 24

[ ( ) ]  

         ( )( ) ( ) ( ) [( )( ) ] ( )  

Q E V Q X X QV Q

QH vecQ vecQ Q Q Q Q E vec X X vec X X Q Q H Q

λ

λ λ

′ ′Π =

′ ′ ′ ′ ′+ + ⊗ + ⊗ ⊗

1 2 1 2 2 1 2
4

1 2 2 2 2 1

1 2 2 1 1 2 2 2 2 1 1 21
24

2 2 1 2 1

1 2 1 11
36

 ( ){[ ( )]
=

[ ( )] [ ( )] }

 {[ ( ) ] [ ( ) ]
[ ( ) ] }

{ [ (

X H vec QX X Q X
Q

vec QX X Q X vec QX X Q X

QH vec QX X Q QX X QH vec QX X Q QX X
QH E Q

QH vec QX X Q QX X

vec QX X
QH E

λ λ

λ λ

λ λ

′ ′⎧ ⎫⊗
Π ⎨ ⎬′ ′ ′ ′+ +⎩ ⎭

′ ′ ′ ′⎧ ⎫⊗ + ⊗ +⎪ ⎪+ ⎨ ⎬
′ ′⊗⎪ ⎪⎩ ⎭
′

− 2 2 2 1 1 2

2 1 2 1

) ] [ ( ) ]
[ ( ) ] }

Q QX X vec QX X Q QX X
Q

vec QX X Q QX X
′ ′ ′⊗ + ⊗⎧ ⎫

⎨ ⎬′ ′+ ⊗⎩ ⎭

 

 

When the model contains only one covariate, the expressions in Theorem 1 simplify 

considerably. Corollary 1 reports the general result for the one-regressor case, no matter what 

distribution the random covariate follows. The other corollaries report the bias and MSE 

expressions when the random regressor follows a normal, uniform or chi-square distribution.  

 

Corollary 1 

For the Poisson regression model, the bias of the MLE to order )( 1−nO  is 

22

3

)]([
)(

2
1)ˆ(

ii

ii

xE
xE

n
Bias

λ
λβ −=  

and the MSE of MLE to order )( 2−nO  is 

3 2
2 4 41 1

1 1 1 12 2 2 2 3 2
1 1 1 1 1 1

19[ ( )]1 1 1 1ˆ( ) = ( ) ( )  
( ) [ ( )] 4 ( )

E XMSE E X E X
n n E X n E X E X

λβ λ λ
λ λ λ

⎧ ⎫⎛ ⎞− + + −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭

 

Corollary 2 

In the Poisson regression model, when the single covariate follows a normal distribution with 

mean u and variance σ 2, the )( 1−nO  order bias of the MLE is 
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( )

2 2 2 2

22 2 2 2 2

( ) 3 ( )ˆ( )
2 ( ) exp 0.5

Bias
n

μ σ β σ μ σ β
β

σ μ σ β μβ σ β

⎡ ⎤+ + +⎣ ⎦= −
⎡ ⎤+ + +⎣ ⎦

 , 

and the )( 2−nO  order MSE is 

( )

( )
( )

{ }

2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 4 2 2 2 2 4

22 2 2 2
4 2 2 2 2

2 2 2

ˆ( )
1 1 1=

( ) exp 0.5

1
[ ( ) exp 0.5 ]

exp 1.5 3 6 ( 2 ) 2( 2 )

19 ( ) 3 ( )
3 6 ( ) 2( )

4 ( )

MSE

n n

n

β

σ μ σ β μβ σ β

σ μ σ β μβ σ β

μβ σ β σ σ μ σ β μ σ β

μ σ β σ μ σ β
σ σ μ σ β μ σ β

σ μ σ β

⎛ ⎞−⎜ ⎟ ⎡ ⎤+ + +⎝ ⎠ ⎣ ⎦

+
⎡ ⎤+ + +⎣ ⎦

⎡ ⎤ ⎡ ⎤+ + + + +⎣ ⎦⎣ ⎦

⎡ ⎤+ + +⎣ ⎦+ − + + + +
⎡ ⎤+ +⎣ ⎦

4

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

 

Corollary 3 

In the Poisson regression model, when the only covariate follows a uniform distribution on 

the interval [a, b], the )( 1−nO  order bias of the MLE is 

3

2 2

( )1ˆ( )
2 [ ( )]

i i

i i

E xBias
n E x

λβ
λ

= −  , 

and the )( 2−nO  order MSE is 

3 2
2 4 41 1

1 1 1 12 2 2 2 3 2
1 1 1 1 1 1

19[ ( )]1 1 1 1ˆ( ) = ( ) ( )  
( ) [ ( )] 4 ( )

E XMSE E X E X
n n E X n E X E X

λβ λ λ
λ λ λ

⎧ ⎫⎛ ⎞− + + −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭

 

where 

[ ] [ ]2 2
2

2 3

exp( ) exp( ) 2 exp( ) exp( ) 2 exp( ) exp( )
( )

( ) ( ) ( )i i

b b a a b b a a b a
E x

b a b a b a
β β β β β β

λ
β β β

⎡ ⎤− − −⎣ ⎦= − +
− − −

 

[ ]
β
λ

β
ββλ

)(3
)(

)exp()exp()(
233

3 ii
ii

xE
ab

aabbxE −
−

−
=  

[ ]
β
λ

β
ββλ

)(4
)(

)exp()exp()(
344

4 ii
ii

xE
ab

aabbxE −
−

−
=  
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[ ] [ ]

4 4 3 3
2 4

2

2 2

3 4 5

exp(2 ) exp(2 ) exp(2 ) exp(2 )
( )

2 ( ) ( )

3 exp(2 ) exp(2 ) 3 exp(2 ) exp(2 ) 3 exp(2 ) exp(2 )
                 

2 ( ) 2 ( ) 4 ( )

i i

b b a a b b a a
E x

b a b a

b b a a b b a a b a
b a b a b a

β β β β
λ

β β

β β β β β β
β β β

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦= −
− −

⎡ ⎤− − −⎣ ⎦+ − +
− − −

 

 

Corollary 4 

In the Poisson regression model, when the only covariate follows a 2χ distribution with r 

degrees of freedom, the )( 1−nO  order bias of the MLE is 

)2(2
)21)(4()ˆ(

12/

+
−+

−=
+

rnr
rBias

rββ , 

and the )( 2−nO  order MSE is 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++⎥
⎦

⎤
⎢
⎣

⎡
−
−

+
+

+−
+

+
−

⎟
⎠
⎞

⎜
⎝
⎛ −=

+++

13
4

15
)41(
)21()6(

)2(
)4()21(

)2(
)21(11)ˆ(

42/

222

222/

2 rr
rrn

r
rrnn

MSE
rrr

β
ββββ

 

The proofs of Theorem 1 and the various corollaries follow directly from the results provided 

by RSU (1996), Rilstone and Ullah (2005), and Chen and Giles (2009). 

 

Although the direction of the bias of the MLE when the covariate is uniformly distributed is 

difficult to discern from Corollary 3, we see immediately from Corollary 2 that if the 

regressor is normally distributed then the bias will be positive if and only if 2/σμβ −< . 

From Corollary 4, if the covariate follows a chi-square distribution with r degrees of freedom 

then the bias will be positive if and only if β > ½ and r is a multiple of 4. 

 

Using the results from Corollaries 1 to 4, two bias-adjusted estimators, BCβ̂  and BCβ~ , can be 

defined as follows: 

    ˆ ˆ ˆ( )BC Biasβ β β= − ,                  (9) 

    ˆ ˆ( )BC Biasβ β β
∧

= −% ,                   (10) 
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where ˆ( )Bias β  is the bias we derived in the Theorem 1 and the corollaries, and ˆ( )Bias β
∧

 

is the corresponding estimator of ˆ( )Bias β , which is obtained by substituting β̂  for β  in 

the bias expression. Of course, BCβ̂  is an infeasible estimator, but BCβ%  is a feasible 

estimator, and both of these bias-adjusted estimators are unbiased to O(n-2). 

 

Corresponding to the bias-corrected estimators, we can also obtain the true standard deviation, 

s.d.( β̂ ), and the standard error, s.e.( β̂ ), to order )( 1−nO for the single covariate case as 

follows: 

s.d.( β̂ ) 2ˆ ˆ( ) [ ( )]MSE Biasβ β= −  ,          (11) 

    s.e.( β̂ )
2

ˆ ˆ( ) ( )MSE Biasβ β
∧ ∧⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

,          (12) 

where )ˆ(βMSE  and ˆ( )MSE β
∧

 are constructed in a manner similar to ˆ( )Bias β  and 

ˆ( )Bias β
∧

. 

 

3. Numerical evaluations 

 

In this section we present some numerical evaluations using the analytic results in Corollaries 

2 to 4 for the one-regressor case. In all of the experiments, the value of β0 is chosen to control 

the signal-to-noise ratios to sensible levels, and sample sizes of n = 25, 50 and 100 are 

considered. These numerical evaluations enable us to check how the finite sample properties 

of the estimator change as the characteristics of the model change, and they appear in Tables 1 

to 3. Consistent with Corollaries 2 to 4, we consider a random regressor that is either normally, 

uniformly, or chi-square distributed. We vary the moments of each of these distributions by 

changing the parameter values to check the implications for the finite-sample properties of the 

MLE. In all of the cases we have considered, the results show that the bias and MSE depend 

on the values of the parameters of the regressor distributions – a result that could be 

anticipated by differentiating the expressions in the corollaries with respect to these 
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parameters.  

 

We note the following results. No matter which distribution the regressor follows and what 

value β0 is, the absolute bias and the MSE decrease as the sample size increases. This finding 

is further reinforced by the results of sample size of 100, which are not shown here in order to 

conserve space. This finding reflects the mean square consistency of MLE, which is 

consistent with the previous literature. With respect to the percentage bias, the magnitude is 

quite substantial for certain cases. Among the cases we considered, when n = 25 and the 

regressor is normally distributed, the absolute percentage bias can be as large as 120.8%,  

depending on the mean and variance of the data. Further, for this sample size the reported 

absolute percentage biases are as large as 57% for a uniformly distributed covariate, and 

72.9% for a chi-square distributed covariate, again depending on the moments of the 

regressor’s distribution. It will be recalled that these (absolute) biases are considerably greater 

than those found by Breslow (1990) and Brännäs (1991) for models with non-random 

covariates.  

 

4. Bias-corrected estimation 

We have also conducted a Monte Carlo experiment to evaluate the relative performances of 

the feasible bias-corrected MLE, infeasible bias-corrected MLE and the MLE itself, and also 

the performance of s.e.( β̂ ) as an estimator of s.d.( β̂ ). Table 4 shows the results of our 

experiment using 1000 replications. Of course, the feasible bias-corrected estimator is the one 

that we are most interested in. In all the cases we have considered, the feasible bias-corrected 

MLE improves the performance of the original MLE substantially. For example, when the 

regressor follows a chi-square distribution, n = 25 and β0 = -0.3, the absolute percentage bias 

of the feasible bias-corrected MLE is 0.91%, compared with 10.15% for the MLE. Similarly, 

when the regressor follows a uniform distribution, n = 25 and β0 = -2.7, the absolute 

percentage bias of the feasible bias-corrected MLE is 1.10%, compared with 11.81% for the 

MLE.Interestingly, there are negligible differences between the performances of the feasible 

and infeasible bias-corrected MLEs.  
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Our Monte Carlo experiment also provides insights into the performance of the s.e.( β̂ ) as an 

estimator of the s.d.( β̂ ). The s.e.( β̂ ) tends to overestimate the s.d.( β̂ ) in all but three of the 

cases considered. The largest bias of s.e.( β̂ ) as an estimator of s.d.( β̂ ) among all of the 

cases tabulated is 34.77%, which occurs when the regressor follows a chi-square distribution, 

n = 25 and β0 = -0.5. This bias decreases to 2.53%, when the sample size increases to 100. For 

all the cases we considered, the s.e.( β̂ ) converges to the s.d.( β̂ ) and both decrease 

monotonically in value as the sample size increases, as expected from the consistency of the 

MLE. 

 

5. Concluding remarks 
 

In this paper, we apply techniques developed by Rilstone et al. (1996) to derive analytic 

expressions for the first-order bias and second-order mean squared error of the maximum 

likelihood estimator for the Poisson regression model with random regressors. Our study is 

the first to investigate the finite-sample properties of this estimator when this model has 

random covariates, and the first to obtain analytic (rather than simulation-based) results for 

the bias and mean squared error. Not surprisingly, we find that the bias of the maximum 

likelihood estimator when the covariates are random is greater than that obtained from Monte 

Carlo experiments by other authors for the non-random regressor case. The magnitude of the 

bias and mean squared error can be substantial, and this motivates us to consider 

bias-adjusting the maximum likelihood estimator. Using a Monte Carlo experiment we are 

able to confirm that our bias-corrected estimator can substantially reduce the bias of the 

maximum likelihood estimator, and we recommend using this bias-adjusted estimator when 

the sample size is less than 100. 
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Table 1: O(n-1) Bias and O(n-2) MSE of MLE. Normal (μ, σ2) Regressors 

Normal (0, 1)    Normal (5, 1)     Normal (10, 1)  Normal (0, 2)     Normal (0, 4) 

 

n = 25 

β0  Bias  MSE    Bias   MSE      Bias MSE  Bias  MSE  Bias  MSE   

 
- 0.6  0.0182   0.0395   - 0.0796   0.1081     - 0.7248  6.0283   0.0044  0.0081   0.0001  0.0070     
- 0.4   0.0173   0.0413    - 0.0309   0.0238     - 0.1061  0.1482   0.0079  0.0090   0.0010  0.0024     
- 0.2   0.0110   0.0399    - 0.0115   0.0061     - 0.0149  0.0056   0.0087  0.0103   0.0039  0.0022   
- 0.1   0.0059   0.0388    - 0.0069   0.0033     - 0.0055  0.0015   0.0055  0.0100   0.0043  0.0026   
0.3  - 0.0149   0.0409    - 0.0008   0.0003     - 0.0001  0.0000     - 0.0091  0.0099     - 0.0022  0.0020   
0.5  - 0.0184   0.0408    - 0.0003   0.0001   0.0000  0.0000     - 0.0061  0.0083     - 0.0004  0.0037   
0.7  - 0.0172   0.0378    - 0.0001   0.0000   0.0000  0.0000     - 0.0030  0.0084   0.0000  0.0158   
0.9  - 0.0140   0.0343     0.0000   0.0000   0.0000  0.0000     - 0.0012  0.0115   0.0000  0.1363   
1.1  - 0.0104   0.0324     0.0000   0.0000   0.0000  0.0000     - 0.0004  0.0198   0.0000  2.3616     

 

n = 50 

β0  Bias  MSE    Bias   MSE      Bias MSE  Bias  MSE  Bias  MSE 

 

- 0.6   0.0091   0.0160    - 0.0398   0.0353     - 0.3624  1.5448   0.0022  0.0025   0.0001  0.0017     
- 0.4   0.0087   0.0183    - 0.0154   0.0090     - 0.0531  0.0425   0.0039  0.0034   0.0005  0.0006     
- 0.2   0.0055   0.0194    - 0.0058   0.0026     - 0.0075  0.0021   0.0043  0.0046   0.0020  0.0008   
- 0.1   0.0029   0.0196    - 0.0035   0.0015     - 0.0028  0.0006   0.0028  0.0048   0.0022  0.0011   
0.3  - 0.0075   0.0190    - 0.0004   0.0002   0.0000  0.0000     - 0.0046  0.0040     - 0.0011  0.0006   
0.5  - 0.0092   0.0173    - 0.0001   0.0000   0.0000  0.0000     - 0.0030  0.0028     - 0.0002  0.0009   
0.7  - 0.0086   0.0147     0.0000   0.0000   0.0000  0.0000     - 0.0015  0.0024   0.0000  0.0039   
0.9  - 0.0070   0.0123     0.0000   0.0000   0.0000  0.0000     - 0.0006  0.0030   0.0000  0.0341   
1.1  - 0.0052   0.0106     0.0000   0.0000   0.0000  0.0000     - 0.0002  0.0050   0.0000  0.5904   
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Table 2: O(n-1) Bias and O(n-2) MSE of MLE. Uniform (a, b) Regressors 

U (0, 1)        U (0, 5)        U (0, 10)        U (-5, 1)       U (-10, 1) 

 

n = 25 

β0      Bias   MSE   Bias  MSE    Bias MSE   Bias MSE   Bias MSE   

 
-1.9   -0.1546  0.8175   - 0.5379  4.6888   - 1.0830  17.5419    0.0000  0.0000    0.0000  0.0000 
-1.4   -0.1140  0.5252   - 0.2867  1.4317   - 0.5878   5.3088    0.0000  0.0000    0.0000  0.0000  
-1.0   -0.0883  0.3687   - 0.1439  0.4083   - 0.2986   1.4313    0.0002  0.0001    0.0000  0.0000  
-0.6   -0.0679  0.2593   - 0.0573  0.0851   - 0.1042   0.1989    0.0011  0.0006    0.0000  0.0000  
-0.2   -0.0517  0.1828   - 0.0177  0.0147   - 0.0164   0.0089    0.0052  0.0032    0.0011  0.0003  
0.7   -0.0273  0.0842   - 0.0006  0.0003    0.0000   0.0000    0.0652  0.1097    0.1277  0.2868  
1.1   -0.0203  0.0600   - 0.0001  0.0001    0.0000   0.0000    0.0692  0.1500    0.1470  0.3761  
1.3   -0.0174  0.0506    0.0000  0.0000    0.0000   0.0000    0.0432  0.1285    0.0914  0.2306  
1.7   -0.0128  0.0361    0.0000  0.0000    0.0000   0.0000   - 0.0136  0.1602   - 0.0232  0.3179  
2.0   -0.0102  0.0281    0.0000  0.0000    0.0000   0.0000   - 0.0326  0.1868   - 0.0595  0.4358 
 

n = 50 

β0      Bias MSE   Bias  MSE    Bias  MSE   Bias MSE   Bias MSE 

 

- 1.9  -0.0773  0.3201   - 0.2690  1.3444   - 0.5415  4.7284    0.0000  0.0000    0.0000  0.0000 
- 1.4  -0.0570  0.2137   - 0.1434  0.4286   - 0.2939  1.4644    0.0000  0.0000    0.0000  0.0000  
- 1.0  -0.0442  0.1544   - 0.0719  0.1306   - 0.1493  0.4080    0.0001  0.0001    0.0000  0.0000  
- 0.6  -0.0339  0.1115   - 0.0286  0.0306   - 0.0521  0.0612    0.0006  0.0003    0.0000  0.0000  
- 0.2  -0.0259  0.0805   - 0.0088  0.0062   - 0.0082  0.0035    0.0026  0.0015    0.0006  0.0001  
0.7  -0.0136  0.0386   - 0.0003  0.0002    0.0000  0.0000    0.0326  0.0407    0.0639  0.0894  
1.1  -0.0101  0.0279   - 0.0001  0.0000    0.0000  0.0000    0.0346  0.0655    0.0735  0.1423  
1.3  -0.0087  0.0236    0.0000  0.0000    0.0000  0.0000    0.0216  0.0658    0.0457  0.1181  
1.7  -0.0064  0.0170    0.0000  0.0000    0.0000  0.0000   - 0.0068  0.0763   - 0.0116  0.1457  
2.0  -0.0051  0.0133    0.0000  0.0000    0.0000  0.0000   - 0.0163  0.0792   - 0.0298  0.1685  
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Table 3:  O(n-1) Bias and O(n-2) MSE of MLE. Chi-square (d.f.) regressors 
 
    Chi-square (4)          Chi-square (6)        Chi-square (8) 
 
 

 
n = 25 

 
β0   Bias MSE   Bias MSE   Bias  MSE 

 
- 1.0   - 0.1800  0.5908   -0.3375  1.8272   - 0.7290   8.0089  
- 0.7   - 0.0922  0.1747   -0.1382  0.3387   - 0.2389   0.9164  
- 0.5   - 0.0533  0.0667   -0.0667  0.0900   - 0.0960   0.1645  
- 0.3   - 0.0273  0.0215   -0.0273  0.0194   - 0.0315   0.0226  
- 0.2   - 0.0183  0.0112   -0.0160  0.0082   - 0.0161   0.0075  
0.3   - 0.0004  0.0001   -0.0001  0.0000    0.0000   0.0000  
1.5    0.0533  0.0655   -0.0667  0.0375    0.0960   0.1628  
1.7    0.0922  0.1722   -0.1382  0.2079    0.2389   0.9099  
1.9    0.1463  0.3988   -0.2561  0.7945    0.5163   4.0536  
2.1    0.2185  0.8374   -0.4369  2.4448    1.0066  15.0453  

  
 

n = 50 
 

β0      Bias MSE   Bias MSE   Bias  MSE 
  
- 1.0  - 0.0900  0.1814   -0.1688  0.5074   - 0.3645   2.0933  
- 0.7  - 0.0461  0.0575   -0.0691  0.1013   - 0.1194   0.2530  
- 0.5  - 0.0267  0.0233   -0.0333  0.0292   - 0.0480   0.0491  
- 0.3  - 0.0137  0.0081   -0.0137  0.0070   - 0.0157   0.0077  
- 0.2  - 0.0091  0.0044   -0.0080  0.0032   - 0.0081   0.0028  

0.3  - 0.0002  0.0000   -0.0001  0.0000    0.0000   0.0000  
1.5   0.0267  0.0230   -0.0333  0.0027    0.0480   0.0487  
1.7   0.0461  0.0569   -0.0691  0.0354    0.1194   0.2514  
1.9   0.0732  0.1253   -0.1281  0.1628    0.2582   1.0736  
2.1   0.1092  0.2531   -0.2185  0.5413    0.5033   3.8955  
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Table 4:  Average of 1,000 Monte Carlo simulation replications 
    

    Normal (0, 1)           Chi-square (3)  
  

β0 n   β̂  BCβ~  BCβ̂  )ˆ(s.e. β  )ˆ(s.d. β   β0 n   β̂  BCβ~  BCβ̂  )ˆ(s.e. β  )ˆ(s.d. β      
  

 
- 1.7  25  -1.6939  -1.6971  -1.6970  0.2034  0.2040     - 0.5  25  -0.6472  -0.5728  -0.5944  0.3471  0.2576  

  50  -1.6975  -1.6991  -1.6991  0.1048  0.1049       50  -0.5284  -0.5001  -0.5020  0.1644  0.1553  
   100  -1.6995  -1.7002  -1.7002  0.0553  0.0553        100  -0.5136  -0.4999  -0.5004  0.1016  0.0990  

               
- 1.1  25  -1.0832  -1.0939  -1.0936  0.1798  0.1796     - 0.3  25  -0.3304  -0.2973  -0.3002  0.1737  0.1607  
   50  -1.0889  -1.0942  -1.0941  0.1030  0.1026        50  -0.3148  -0.2989  -0.2996  0.1032  0.0995  
   100  -1.0949  -1.0975  -1.0974  0.0624  0.0622        100  -0.3082  -0.3004  -0.3006  0.0661  0.0648  

               
   1.1  25   1.0793   1.0900   1.0896  0.1799  0.1796   0.1  25   0.0956   0.1011   0.1010  0.0478  0.0475 

  50   1.0966   1.1018   1.1018  0.1027  0.1026     50   0.0979   0.1006   0.1006  0.0296  0.0295 
  100   1.0974   1.1000   1.1000  0.0623  0.0622     100   0.0984   0.0998   0.0998  0.0193  0.0192 

               
  2.0  25   1.9929   1.9944   1.9944  0.2414  0.2426   0.2  25   0.1968   0.1995   0.1994  0.1105  0.1232 

  50   1.9990   1.9998   1.9998  0.1223  0.1224     50   0.1988   0.2001   0.2001  0.0599  0.0625 
  100   1.9998   2.0002   2.0002  0.0623  0.0623     100   0.1991   0.1998   0.1998  0.0312  0.0321 

 
Uniform (0, 1) 

            
β0 n   β̂  BCβ~  BCβ̂  )ˆ(s.e. β  )ˆ(s.d. β   β0 n   β̂  BCβ~  BCβ̂  )ˆ(s.e. β  )ˆ(s.d. β  

 
    
   -2.7  25  -3.0189  -2.7297  -2.7750  1.4414  1.2593   0.7  25  0.6812  0.7088  0.7084  0.2912  0.2889  

50  -2.8442  -2.7124  -2.7223  0.8129  0.7686    50  0.6858  0.6996  0.6995  0.1972  0.1961  
   100  -2.7868  -2.7229  -2.7259  0.5105  0.4949    100  0.6875  0.6944  0.6943  0.1364  0.1357  

               
 -1.3  25  -1.3905  -1.2772  -1.2835  0.7127  0.6850   2.0  25  1.9927  2.0029  2.0029  0.1678  0.1673  

           50  -1.3522  -1.2969  -1.2987  0.4500  0.4407    50  1.9940  1.9991  1.9991  0.1154  0.1151  
        100  -1.3424  -1.3149  -1.3156  0.2997  0.2949    100  1.9948  1.9974  1.9974  0.0804  0.0803 
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