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FINITE-SAMPLE PROPERTIESS OF THE MAXIMUM 

LIKELIHOOD ESTIMATOR FOR THE BINARY LOGIT MODEL 

WITH RANDOM COVARIATES 
 

1. Introduction 

Qualitative response (QR) models are very widely used in various fields, including bioassay, 

medicine, transportation research, economics, and other social sciences. These models have the 

characteristic that the dependent variable is qualitative, rather than quantitative. To make the 

model estimable, these qualitative attributes are “coded” numerically. The binary choice model, 

with the dependent variable coded as zero or unity (without loss of generality), is the most widely 

used of the QR models. In this case, it is well known that conventional (linear) regression 

methods are inappropriate: the predicted probabilities can be negative, or exceed unity; the error 

must be heteroskedastic; and the error term clearly cannot follow a normal distribution. These 

problems can be overcome by making the probability of occurrence for one of the attributes a 

non-linear, rather than a linear, function of the covariates. In particular, if this function is taken to 

be a cumulative distribution function, it will be monotonically non-decreasing, and bounded 

between zero and unity. Choosing the standard normal distribution for this function gives rise to 

the probit model, while the logistic distribution results in the logit (or “logistic regression”) 

model. Of course, other choices are possible, but the logit and probit models are the two that are 

encountered most frequently in practice, and they generally yield similar (scaled) estimates. The 

appeal of the logit specification is that the logistic distribution function can be expressed in closed 

form, and this has certain computational advantages when the model is extended to the 

multinomial case involving more than two characteristics. In this paper we focus on the logit, 

rather than probit, model. 

 

The maximum likelihood estimator (MLE) is the usual choice for QR models. For both the logit 

and probit models the likelihood function is strictly concave, so it has a unique maximum, but the 

likelihood equations are non-linear in the parameters, and must be solved numerically. If the 

covariates are non-random, the likelihood functions for QR models satisfy the usual regularity 

conditions and so the maximum likelihood estimators (MLEs) are weakly consistent and best 

asymptotically normal, and the strong consistency of the MLE for the logit model has been 

established by Gourieroux and Montfort (1981). Taylor (1953) showed that the MLE estimator 

and the minimum chi square estimator (MCSE) proposed by Berkson (1944), and defended 
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vigorously by that author, have the same asymptotic normal distribution for this model. Other 

estimators that have been suggested for the logit model include the “minimum φ -divergence” 

estimator (Pardo et al. 2005, Menéndez et al. 2009.), which is a generalization of MLE and is also 

consistent and asymptotically normal. Turning to the case of random covariates, Fahrmeir and 

Kaufmann (1986) investigated the asymptotic properties of various discrete and qualitative 

response models (including the logit model), and provided conditions on the behaviour of the 

covariates under which the MLE has its usual asymptotic properties. Wilde (2008) discussed the 

inconsistency of the generalized method of moments estimator for QR models with endogenous 

(random) regressors, and suggested a suitable modification in the case of the probit, but not logit, 

model. 

   

A number of results relating to the finite-sample properties of the MLE (and some other 

estimators) for the logit model have also been established. However, all of these relate to the case 

of non-stochastic covariates, and it is this last assumption that we relax in this paper. Using the 

approach of Cox and Snell (1968), Cordeiro and McCullagh (1991) provided analytical 

expressions for the O(n-1) bias of the MLE in the family of generalized linear models. This family 

includes logistic regression, of course. Several authors have investigated the properties of the 

MLE for the logit model in the context of a two-stage sampling scheme involving grouped data of 

a type that arises frequently in the biological sciences. This includes simple random sampling as a 

special case. Berkson (1955) evaluated the finite-sample bias and MSE of the MLE and the 

MCSE estimator for some simple examples of this model, and found the MCSE to be preferred to 

the MLE in terms of MSE in the cases that he considered. Amemiya (1980) derived analytic 

expressions for the O(n-2) MSEs of the MLE and the MCSE for the “dichotomous” (binary) logit 

model and provided some numerical results for the relative quality of these two estimators. 

Several other studies have extended Berkson’s and Amemiya’s results. Ghosh and Sinha (1981) 

provided necessary and sufficient conditions for improving the MSE of the MLE, and applied 

these to Berkson’s models and data. They also showed the relative MSE ranking of the MLE and 

the MCSE is model-specific. Davis (1984) found some examples in which the MLE has smaller 

MSE than the MCSE estimator, and Hughes and Savin (1994) provided further results indicating 

that the choice between these two estimators is not straightforward.  

 

Another somewhat related study is that of MacKinnon and Smith (1998). Those authors discussed 

methods for reducing the bias of consistent estimators that are biased in finite samples, and 

applied these methods to the MLE for the linear AR(1) model and the standard logit model based 
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on simple random sampling with fixed regressors. Finally, Li (2005) used a Monte Carlo 

experiment to examine some of the small sample properties of the MLE for three different models 

- the probit model, the logit model and the binary choice model where the underlying distribution 

is the extreme value distribution. She also considered the case where the underlying distributional 

process is mis-specified, and found that this increases the MSE for each of the estimators. 

 

The assumption that the covariates in the logit model are non-random (or “fixed in repeated 

samples”) is obviously unsatisfactory in many situations. One example is when survey data are 

used, as is very common with applications in economics and the other social sciences. So, in this 

paper, we use results due to Rilstone et al. (RSU) (1996), as corrected by Rilstone and Ullah 

(2005), to derive analytic expressions for the bias and MSE functions for the MLE in the logit 

model based on simple random sampling with stochastic covariates. Based on the analytic bias 

expression we can derive a bias-corrected MLE and the standard error associated with this bias-

corrected estimator. We also provide some numerical evaluations based on these analytic results. 

The approach that we adopt was also used by Rilstone and Ullah (2002) in the context of 

Heckman’s sample selection estimator, and could also be used to extend our results to other QR 

models.  

 

The next section introduces the logit model. In section 3 we summarize the required results of 

RSU (1996) and use them to derive analytic expressions for the bias and mean square error of the 

MLE in the binary logit model. Some numerical evaluations and Monte Carlo results follow in 

section 4; and the final section provides our conclusions. 

  

2.  The Logit Model and the Maximum Likelihood Estimator 

A binary choice model is structured as follows: 

εβ +′= ii Xy*  ,          

aXy ii ≥+′= εβ if    ;1  

aXy ii <+′= εβ if    ;0                          (1) 

where *
iy  is the latent dependent variable to incorporate the effects of covariates; and the row 

vector,  iX ′ , represents the ith observation on all of the covariates. As is well known, provided 

that an intercept is included among the covariates, the threshold value, a , may be assigned to 

zero without affecting the results. We make this assignment in what follows. 
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The basic model can be structured as: 

)()1Pr( βiiii XFXyP ′===  

)(1)0Pr(1 βiiii XFXyP ′−===− . 

The form of the cumulative distribution function, )( βiXF ′ , will determine which particular 

model is used. As noted above, we focus on the logit model, so:  

iiiii XFXyP Λ=′=== )()1Pr( β                         (2) 

where  

)exp(1
)exp(
β

β

i

i
i X

X
′+

′
=Λ                           (3) 

is the c.d.f. for the logistic distribution. 

The MLE for the parameter vector in (2) can be derived as the solution of the following log-

likelihood equations: 

[ ] 0)(log
1

=Λ−=
∂

∂ ∑
=

n

i
iii XyL

β
 .                        (4) 

The MLE cannot be written as a closed-form expression, and this is what substantially 

complicates the task of evaluating the characteristics of its (finite-sample) sampling distribution, 

whether the covariates are random or not.  

 

3.  Analytic Results 

Before deriving the analytic results for the bias and MSE of the MLE in the binary logit model, 

we first introduce the results of RSU (1996). The class of estimators considered by RSU includes 

those which can only be expressed implicitly as a function of the data. Suppose we have a 

regression model of the form 

iii Xfy εβ += );( 0 .                          (5) 

The regressor vector iX can include any endogenous or exogenous variables. Let ) ,( iii XyZ =  

and assume ,1Z ,2Z K ,3Z  be a sequence of m  dimensional i.i.d. random vectors. 0θ  

represents the true parameter vector, which could include only 0β , or any other parameters of 

interest. The estimator θ̂  can be written in the form: 

 

∑ ==
=

n

i
in g

n 1
0)ˆ(1)ˆ( θθψ  ,                                     (6) 
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where ),()( θθ iii zgg =  is a 1×k  vector involving the known variables and the parameters, and 

0)]([ =θigE  only for the true value 0θ . Some assumptions about the function )(θig are needed 

for the derivation of the Lemmas below. (See Ullah 2004: 31.) 

 

Assumption 1  

The sth order derivatives of )(θig exist in a neighborhood of 0θ  and ∞<∇
2

0 )(θi
s gE , where 

A  = trace 2/1][ AA ′  denotes the usual norm of the matrix A; and )(θAs∇  is the matrix of sth 

order partial derivations of the matrix )(θA  with respect to θ , obtained recursively. 

 

Assumption 2  

For some neighborhood of 0θ , )1())(( 1
pn O=∇ −θψ . 

 

Assumption 3  

ii
s

i
s Mgg 00 )()( θθθθ −≤∇−∇  for some neighborhood of 0θ , where Mi satisfies the 

condition ∞<≤ CME i , K 2, ,1=i  

 

As the log-likelihood function of the binary logit model is strictly concave, these three 

assumptions are satisfied. In the notation that follows, for simplicity we will suppress the 

argument for any function where this can be done without confusion. So, )( 0θig will be written 

as ig . Then, RSU derived the following lemmas, corrected here according to the corrigendum in 

Rilstone and Ullah (2005). 

 

Lemma 1 (Proposition 3.2, RSU, 1996; Ullah 2004: 32) 

Let assumptions 1-3 hold for some 2≥s . Then the bias of θ̂  to )( 1−nO  is  

⎭
⎬
⎫

⎩
⎨
⎧ ⊗−= ][

2
11)ˆ( 11211 ddHdVQ

n
B θ  ,                     (7) 

where 
_______

i
j

j gH ∇= , 1
_______

][ −∇= igQ ,  ][
_______

iii ggV ∇−∇= , and ii Qgd = . A bar over a function 

indicates its expectation, so that ][
_______

ii gEg ∇=∇ .  
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Lemma 2 (Proposition 3.4, RSU, 1996; Ullah 2004: 32) 

If Assumptions 1-3 hold for some 3≥s , then the MSE of θ̂  to )( 2−nO  is  

)(1)(11)ˆ( 44322221 Π′+Π+Π+Π′+Π+Π=
nnn

MSE θ             (8)  

where  

111 dd ′=Π  

{ }11122
1

1112 ][ dddHddVQ ′⊗+′−=Π  

{ }QVddVVddVVddVQ  1221212122113 ′′+′′+′′=Π

 { } QHddddddddddddHQ 212212121221124
1  ]][[]][[][][  ′′⊗′⊗+′⊗′⊗+′⊗′⊗+

 { } QHdddVdddVdddVQ 21221212122112
1  ][][ ′′⊗′+′⊗′+′⊗′−

 { }QVdddVdddVdddHQ  ][][ 12212121221122
1 ′′⊗+′′⊗+′′⊗−  

{ }1221212122114  ddQVVddQVVddQVVQ ′+′+′=Π

 { }1222121221221212
1 ][][][ dddHQVdddHQVdddHQVQ ′⊗+′⊗+′⊗−

 { }1221212122112
1 ][][][ dddWdddWdddWQ ′⊗+′⊗+′⊗+

 { }12212121221122
1 ][][][ ddQVdddQVdddQVdHQ ′⊗+′⊗+′⊗−

 { }12221212212212124
1 ][][][  dddHQddddHQddddHQdHQ ′⊗⊗+′⊗⊗+′⊗⊗+

 { }12212121221122
1 ][][][ dddQVdddQVdddQVHQ ′⊗+′⊗+′⊗−                 

{ }12212212122211224
1 ]][[]][[]][[ ddddHQddddHQddddHQHQ ′⊗⊗+′⊗⊗+′⊗⊗+

 { }12212121221136
1 ][][][ ddddddddddddHQ ′⊗⊗+′⊗⊗+′⊗⊗−          (9) 

where ][
_______

22
iii ggW ∇−∇= . 

 

To apply the above lemmas to derive the bias and MSE for MLE in the binary logit model, we 

assume that both the dependent and independent variables are random and i.i.d.. Comparing (4) 

and (6), we can see that for the logit model we should set iiii Xyg )( Λ−= . We know that 

E(gi│Xi) = 0, so by the law of iterated expectations, E(gi) = 0.  We then have the following 

results: 

 

iiii XXg ′Λ−=∇ )1( ;               )( )1(
______

1 iiii XXEgH ′Λ−=∇=  
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)()2(2
iiiii XXXg ′⊗′Λ−=∇ ;          )]([ )2(

_______
2

2 iiiii XXXEgH ′⊗′Λ−=∇=  

)()3(3
iiiiii XXXXg ′⊗′⊗′Λ−=∇ ;        )]([ )3(

_______
3

3 iiiiii XXXXEgH ′⊗′⊗′Λ−=∇=  

1)1(1
_____

)]([)( −− ′Λ−=∇= iiii XXEgQ ;          iiiiiiii XyXXEQgd )()]([ 1)1( Λ−′Λ−== −  

)( )1()1(
_____

iiiiiiiii XXEXXggV ′Λ+′Λ−=∇−∇=  

)]([)( )2()2(
______

22
iiiiiiiiiii XXXEXXXggW ′⊗′Λ+′⊗′Λ−=∇−∇=   ,         (10) 

where )(s
iΛ  is the sth order derivative of iΛ  with respect to the argument of βiX ′  and  

2
)1(

)]exp(1[
)exp(
β
β

i

i
i X

X
′+
′

=Λ  

3
)2(

)]exp(1[
)]exp(1)[exp(

β
ββ

i

ii
i X

XX
′+

′−′
=Λ  

4

2
)3(

)]exp(1[
})][exp()exp(41){exp(

β
βββ

i

iii
i X

XXX
′+

′+′−′
=Λ   .         (11) 

 

Then we can derive the following theorems and corollaries. 

 

Theorem 1 

If assumptions 1-3 hold for some 2≥s , then the bias of the MLE in the logit model, to )( 1−nO  

is 

vecQHQ
n

Bias 22
1)ˆ( =β  .          (12) 

 

Theorem 2 

If Assumptions 1-3 hold for some 3≥s , then the MSE of MLE in the logit model to )( 2−nO  is  

   )(1)(11)ˆ( 44322221 Π′+Π+Π+Π′+Π+Π=
nnn

MSE β ,       (13)  

 

where  

Q−=Π1  
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{ }{ }QXQXQXvecEHQXQXVEQ 111
)2(

122
1

111
)1(

12 )]([)( ′′Λ−′Λ−=Π  

{ } { )())((   ])([ 24
1

122
)1(

213 QQvecQvecQHQQVQXXQVEQ ⊗+′+′′Λ=Π

 { } } QHQQXXvecXXvecEQQ 221
)1(

212
)1(

1 )(]))([()( ′⊗′′Λ′Λ⊗+  

{ 21221
)1(

2
)1(

124
1

114 )()[()( )( XQXQXvecHXEQQHQQQVVQE ′′⊗ΛΛ⊗+−=Π
 }QXQXQXvecXQXQXvec ])()( 122221 ′′+′′+           

[{ 22112
)1(

2
)1(

124
1 ))(( XQXQXQXvecHQEHQ ′⊗′ΛΛ+

 ]}QXQXQXQXvecHQXQXQXQXvecHQ 1212221122 ))(())(( ′⊗′+′⊗′+  

[{ 21122211
)1(

2
)1(

136
1 ))(())(( XQXQXQXvecXQXQXQXvecEHQ ′⊗′+′⊗′ΛΛ−

 ]}QXQXQXQXvec 1212 ))(( ′⊗′+                (14) 

Now we consider the logit model with only one regressor, which implies that the coefficient of 

the intercept term in the latent regression model equals the true threshold a in (1). For this simple 

model, we have the following corollaries. 

 

Corollary 1 

If assumptions 1-3 hold for some 2≥s . Then the )( 1−nO  bias of the MLE of β in the logit 

model with only one regressor, is 

22)1(

3)2(

)]([
)(

2
1)ˆ(

ii

ii

XE
XE

n
Bias

Λ
Λ

−=β  .          (15) 

Corollary 2 

If Assumptions 1-3 hold for some 3≥s , then the )( 2−nO  MSE of the MLE of β  in the logit 

model with only one regressor, is  

  )(1)(11)ˆ( 44322221 Π′+Π+Π+Π′+Π+Π=
nnn

MSE β  ,       (16)    

where  

)(
1

2
1

)1(
1

1 XE Λ
=Π  

⎭
⎬
⎫

⎩
⎨
⎧

Λ
Λ

+Λ−Λ
Λ

−=Π
)(2

)]([
)]([)(

)]([
1

2
1

)1(
1

23
1

)2(
122

1
)1(

1
22

1
)1(

132
1

)1(
1

2 XE
XE

XEXE
XE

 

 
)(4
)]([3

)]([)(
)]([

1
2

1
)1(

1

23
1

)2(
122

1
)1(

1
22

1
)1(

132
1

)1(
1

3
⎭
⎬
⎫

⎩
⎨
⎧

Λ
Λ

+Λ−Λ
Λ

=Π
XE
XE

XEXE
XE
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⎭
⎬
⎫

⎩
⎨
⎧

Λ−
Λ
Λ

+Λ−Λ
Λ′

=Π ])(
)(2

)]([3
)]([)(

)]([
1 4

1
)3(

12
1

2
1

)1(
1

23
1

)2(
122

1
)1(

1
22

1
)1(

132
11

4 XE
XE
XE

XEXE
XE

. 

(17) 

The proofs of the Theorems and Corollaries are given in the Appendix. 

 

Based on these results, we can obtain two bias-adjusted estimators, BCβ̂  and BCβ~ , defined as 

follows: 

   )ˆ(ˆˆ βββ BBC −= ,               (18) 

   )ˆ(ˆˆ~ βββ BBC −= ,             (19) 

where )ˆ(βB  is the bias based on (15) and the true parameter β , and )ˆ(ˆ βB  is the estimated bias 

based on (15) and the MLE, β̂ . In practice, of course, BCβ̂  is an infeasible estimator as it 

involves the unknown true parameter. It can be shown that both of these bias-adjusted estimators 

are unbiased to O(n-2). 

  

Finally, in the single covariate case the true standard deviation, s.d.( β̂ ), and the standard error, 

s.e.( β̂ ), can be obtained as: 

   s.d.( β̂ ) 2)]ˆ([)ˆ( ββ BMSE −=  ,                                                             (20) 

  s.e.( β̂ ) 2)]ˆ(ˆ[)ˆ(ˆ ββ BSEM −= .                        (21) 

where )ˆ(βMSE  is based on (16) and the true parameter β , and )ˆ(ˆ βSEM  is the estimated MSE 

based on (16) and the MLE, β̂ . 

 

4.  Numerical Evaluations 

Given their complexity, it is difficult to interpret the above analytical results. Here we provide 

some numerical evaluations and Monte Carlo simulation results obtained using code for the R 

(2008) statistical package. For the one-regressor model we first consider how the true value of the 

coefficient, 0β , and the distribution of the regressor affect the finite sample properties of the 

MLE. Second, we conduct a small Monte Carlo experiment to evaluate the performance of the 
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feasible bias-corrected estimator of β  relative to that of the infeasible bias-corrected estimator 

and the basic MLE. In that experiment we also evaluate s.e.( β̂ ) as an estimator of s.d.( β̂ ). 

 

In both the numerical evaluations and the Monte Carlos simulation, three different distributions 

are used to generate the random regressor – normal, chi-square and Student-t. This enables us to 

allow for different degrees of variability, skewness and kurtosis in covariate data by varying the 

moments of each distribution. The value of 0β  is chosen for each case to control the signal-to-

noise ratios to sensible levels. Sample sizes of n = 25, 50 and 100 are considered.  

 

The numerical evaluations of β̂  are summarized in Tables 1 to 3 where, to conserve space, the 

results for n = 100 are omitted, but they corroborate the tabulated results. We note the following. 

The sign of the bias of the MLE is the same as the sign of 0β , and both the absolute bias and the 

MSE increase (symmetrically) with the absolute value of 0β . For each of the distributions 

considered for the regressor, as n increases, the absolute bias and MSE both decrease for all 0β  

values, reflecting the mean-square consistency of the MLE. Whatever distribution the covariate 

follows, as the moments of this distribution change, the bias and MSE of the MLE change in a 

manner that depends on the absolute value of 0β . In percentage terms, the absolute biases of the 

MLE can be substantial. For example, when n = 25 (50), and for the range of values of  0β  that 

are tabulated, the percentage biases associated with a normally distributed covariate range up to 

48% (24%). The corresponding figures for a chi-square distributed covariate are 40% (20%); and 

those for a Student-t distributed covariate are 25% (12%). Percentage MSEs range in value up to 

27% (14%), 19% (11%) and 14% (8%) in Tables 1, 2 and 3 respectively, again for the values of 

0β that are considered in these evaluations. 

 

In addition, a small Monte Carlo experiment has been undertaken to check the finite-sample 

performance of the feasible bias-corrected estimator, compared with the MLE and the infeasible 

bias-corrected estimator. The same sample sizes and distributions for the random regressor are 

considered, but only a limited selection of parameter values for these distributions, and a small 

number of values for 0β  are considered. Table 4 reports results averaged over 1,000 Monte Carlo 

replications. Several features of these are noteworthy. First, and as expected, both the feasible and 

infeasible bias correction substantially reduces the bias of the MLE. For instance, when the 
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covariate is chi-square distributed, n = 25 and 0β = -0.2, the absolute percentage biases of the 

infeasible and feasible bias-adjusted MLEs are 3.5% and 5.0% respectively, as compared with a 

corresponding bias of 14.4% for β̂  itself. In addition, it is noteworthy that the feasible bias-

corrected estimator ( BCβ~ ) often out-performing the infeasible “estimator” ( BCβ̂ ). For example, 

for the normally distributed covariate, when n = 25 and 0β = 1.5, the absolute percentage biases 

of β̂ , BCβ̂ and BCβ~  are 17.6%, 5.0% and 2.2% respectively; and the corresponding figures for 

the Student-t distributed covariate, when n = 25 and 0β = -0.7, are 22.9%, 8.3% and 3.2%.  

 

Finally, in each part of Table 4 we see that the (average values) of both the true standard 

deviation and the standard error of β̂  decrease monotonically as n increases, for a given value of 

0β . The first of these results reflects the mean-square consistency of the estimator noted above.  

In all but one of the cases considered, s.e.( β̂ ) is an upward-biased estimator of s.d.( β̂ ) – the 

exception is for the chi-square distributed covariate when 0β = 0.1. For the situations tabulated, 

the largest bias for this standard error is 11.1%, which occurs for the Student-t distributed 

covariate when n = 25 and 0β = -0.7. This (maximum) bias reduces to 5% when n = 100. In each 

part of Table 4, s.e.( β̂ ) converges to s.d.( β̂ ) as n increases, as expected. 

 

5.  Concluding remarks 

In this paper we apply results from Rilstone et al. (1996) and Rilstone and Ullah (2005) to derive 

analytic expressions for the first two moments of the maximum likelihood estimator for the 

binary logit regression model with random covariates. Our analysis extends the limited literature 

on this topic, notably by allowing for random covariates.  The analytic expressions that we derive 

are complex, but some simple numerical evaluations provide some clear messages. The bias and 

mean squared error of this estimator for the logit model are determined by both the value of the 

true parameter and the data generating process of the regressor. For the one-regressor case, the 

bias takes the sign of the coefficient of the regressor. The absolute bias and the mean squared 

error increase with the absolute true value of this coefficient, and (of course) decrease as the 

sample size increases.  

 

We also find that a feasible bias-corrected estimator, constructed by subtracting the estimated bias 

from the maximum likelihood estimator, substantially reduces the bias in all of the situations 
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examined in a limited Monte Carlo experiment. We recommend the use of this bias correction 

when the logit model is estimated from samples of 100 observations or less. The Monte Carlo 

experiment also indicates that the standard error associated with the maximum likelihood 

estimator is quite a reliable estimator of the true standard deviation of that estimator. Although 

the standard error is generally upward-biased for the cases considered, it converges rapidly to the 

true standard deviation as the sample size increases.      

 

The techniques that are used in this paper can be applied readily to determine analytic expressions 

for the first two moments of other maximum likelihood estimators that are defined only implicitly 

because the likelihood equations cannot be solved analytically. For example, work in progress 

deals with such estimators for models for count data. 
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Table 1: O(n-1) Bias and O(n-2) MSE of MLE. Normal (μ, σ2) Regressors 

Normal (0, 1)  Normal (3, 1)    Normal (5, 1)     Normal (0, 2)   Normal (0, 4) 

 

n = 25 

|β0|  |Bias|    MSE  |Bias|    MSE   |Bias|    MSE   |Bias|    MSE  |Bias|    MSE   

 
0.1  0.0120     0.1644   0.0056     0.0223   0.0048     0.0116   0.0119     0.0540   0.0118     0.0267  
0.2  0.0239     0.1678   0.0116     0.0251   0.0107     0.0160   0.0236     0.0577   0.0234     0.0325  
0.3  0.0356     0.1735   0.0185     0.0300   0.0190     0.0241   0.0350     0.0640   0.0362     0.0422  
0.4  0.0471     0.1815   0.0267     0.0372   0.0316     0.0375   0.0467     0.0730   0.0512     0.0552  
0.5  0.0586     0.1917   0.0370     0.0470   0.0512     0.0583   0.0590     0.0845   0.0692     0.0713  
0.6  0.0700     0.2041   0.0500     0.0599   0.0817     0.0894   0.0723     0.0984   0.0903     0.0904  
0.7  0.0816     0.2186   0.0665     0.0763   0.1289     0.1338   0.0867     0.1147   0.1147     0.1126  
0.8  0.0934     0.2352   0.0874     0.0968   0.2015     0.1930   0.1025     0.1335   0.1426     0.1378  
0.9  0.1056     0.2539   0.1137     0.1219   0.3123     0.2621   0.1197     0.1548   0.1740     0.1662  
1.0  0.1181    0.2748   0.1468    0.1518   0.4798     0.3186   0.1384     0.1788   0.2090     0.1976  

 

n = 50 

|β0|  |Bias|    MSE   |Bias|    MSE   |Bias|    MSE   |Bias|    MSE   |Bias|    MSE 

 

0.1  0.0060     0.0814   0.0028     0.0097   0.0024     0.0046   0.0060     0.0238   0.0059     0.0095  
0.2  0.0119     0.0831   0.0058     0.0108   0.0053     0.0060   0.0118     0.0256   0.0117     0.0118  
0.3  0.0178     0.0861   0.0092     0.0128   0.0095     0.0088   0.0175     0.0287   0.0181     0.0157  
0.4  0.0236     0.0901   0.0134     0.0157   0.0158     0.0134   0.0234     0.0329   0.0256     0.0211  
0.5  0.0293     0.0953   0.0185     0.0198   0.0256     0.0206   0.0295     0.0385   0.0346     0.0281  
0.6  0.0350     0.1016   0.0250     0.0251   0.0408     0.0317   0.0362     0.0452   0.0452     0.0369  
0.7  0.0408     0.1090   0.0333     0.0322   0.0645     0.0479   0.0434     0.0533   0.0574     0.0476  
0.8  0.0467     0.1176   0.0437     0.0411   0.1008     0.0709   0.0512     0.0627   0.0713     0.0603  
0.9  0.0528     0.1272   0.0569     0.0524   0.1562     0.1008   0.0598     0.0736   0.0870     0.0753  
1.0  0.0590     0.1380   0.0734     0.0663   0.2399     0.1345   0.0692     0.0860   0.1045     0.0927 
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Table 2:  O(n-1) Bias and O(n-2) MSE of MLE. Chi-square (d.f.) regressors 
 
            Chi-square (3)                 Chi-square (4)               Chi-square (5) 
 
 

 
n = 25 

 
|β0| |Bias|    MSE  |Bias|    MSE  |Bias|    MSE 
 
 
 0.3  0.0391     0.0440   0.0343     0.0383   0.0326     0.0370  
 0.4  0.0524     0.0556   0.0485     0.0510   0.0486     0.0518  
 0.5  0.0677     0.0699   0.0657     0.0668   0.0693     0.0708  
 0.7  0.1050     0.1068   0.1114     0.1085   0.1285     0.1215  
 0.9  0.1523     0.1553   0.1743     0.1640   0.2172     0.1883  
 1.0  0.1799     0.1842   0.2131     0.1967   0.2750     0.2255  
 1.1  0.2104     0.2161   0.2574     0.2322   0.3431     0.2627  
 1.3  0.2802     0.2891   0.3635     0.3086   0.5142     0.3228  
         

 
n = 50 

 
|β0| |Bias|    MSE  |Bias|    MSE  |Bias|    MSE 
 
  
 0.3  0.0195     0.0168   0.0171     0.0138   0.0163     0.0127  
 0.4  0.0262     0.0220   0.0242     0.0191   0.0243     0.0185  
 0.5  0.0339     0.0285   0.0329     0.0259   0.0347     0.0261  
 0.7  0.0525     0.0463   0.0557     0.0450   0.0642     0.0485  
 0.9  0.0761     0.0712   0.0871     0.0730   0.1086     0.0822  
 1.0  0.0900     0.0867   0.1066     0.0908   0.1375     0.1037  
 1.1  0.1052     0.1045   0.1287     0.1115   0.1715     0.1284  
 1.3  0.1401     0.1471   0.1818     0.1614   0.2571     0.1859  
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Table 3:  O(n-1) Bias and O(n-2) MSE of MLE. Student-t (d.f.) regressors 
       

         t (5)                   t (10)         t (15) 
 

 
n = 25 

 
|β0| |Bias|    MSE  |Bias|    MSE  |Bias|    MSE 

 
  
 0.5   0.0793     0.1485   0.0682     0.1679   0.0647     0.1754  
 1.0   0.1389     0.2494   0.1287     0.2598   0.1251     0.2643  
 1.5   0.2138     0.4038   0.2016     0.4059   0.1974     0.4075  
 2.0   0.3079     0.6190   0.2925     0.6123   0.2873     0.6107  
 2.5   0.4229     0.9017   0.4038     0.8854   0.3973     0.8805  
 3.0   0.5597     1.2565   0.5365     1.2302   0.5286     1.2219  
 3.5   0.7191     1.6847   0.6912     1.6488   0.6819     1.6370  
 4.0   0.9014     2.1847   0.8686     2.1400   0.8577     2.1252  
 4.5   1.1071     2.7509   1.0688     2.6996   1.0561     2.6822  

 
 

n = 50 
 

|β0| |Bias|    MSE  |Bias|    MSE  |Bias|    MSE 
 
  
 0.5   0.0397     0.0729   0.0341     0.0830   0.0323     0.0869  
 1.0   0.0695     0.1252   0.0643     0.1305   0.0626     0.1327  
 1.5   0.1069     0.2075   0.1008     0.2079   0.0987     0.2085  
 2.0   0.1540     0.3261   0.1463     0.3209   0.1437     0.3195  
 2.5   0.2115     0.4877   0.2019     0.4758   0.1987     0.4721  
 3.0   0.2799     0.6988   0.2682     0.6790   0.2643     0.6727  
 3.5   0.3596     0.9652   0.3456     0.9367   0.3410     0.9274  
 4.0   0.4507     1.2923   0.4343     1.2540   0.4288     1.2414  
 4.5   0.5535     1.6844   1.0688     2.6996   0.5281     1.6194 
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Table 4:  Average of 1,000 Monte Carlo simulation replications 
    

    Normal (0, 1)           Chi-square (3)  
  

β0 n β̂  BCβ~  BCβ̂  )ˆ(s.e. β  )ˆ(s.d. β    β0 n β̂  BCβ~  BCβ̂  )ˆ(s.e. β  )ˆ(s.d. β      
  

 
1.5    25 1.7643  1.4664  1.5754  0.6756    0.6135    0.4   25 0.4912  0.4574  0.4388  0.2601   0.2299  

    50 1.6302  1.5412  1.5357  0.4806     0.4489       50 0.4262  0.3858  0.4000  0.1595   0.1458  
  100 1.5412  1.4877  1.4940  0.3311    0.3226     100 0.4131  0.4011  0.4000  0.0986   0.0967  

               
1.1    25 1.2893  1.1750  1.1582  0.5801    0.5297    0.1   25 0.1133  0.1102  0.0982  0.1612   0.1764  

    50 1.1913  1.1409  1.1257  0.4035   0.3817       50 0.1082  0.1051  0.1007  0.0970   0.1041  
  100 1.1304  1.0981  1.0977  0.2784   0.2724     100 0.1020  0.1000  0.0982  0.0619   0.0651  

               
-0.7    25 -0.7844  -0.7166  -0.7028  0.4926   0.4604    -0.2   25 -0.2288  -0.1900  -0.2017  0.1980   0.1861  

    50 -0.7319  -0.6677  -0.6911  0.3391   0.3277       50 -0.2066  -0.1940  -0.1930  0.1165   0.1131  
  100 -0.7191  -0.7015  -0.6987  0.2365    0.2325     100 -0.2096  -0.2015  -0.2028  0.0742   0.0725  

               
-1.3    25 -1.5161  -1.4173  -1.3574  0.6209   0.5702    -0.3   25 -0.3520  -0.2209  -0.3130  0.2220   0.2061  
   50 -1.3627  -1.2890  -1.2833  0.4316   0.4139       50 -0.3212  -0.3045  -0.3017  0.1334   0.1280  

  100 -1.3429  -1.3031  -1.3032  0.3047   0.2964     100 -0.3089  -0.2972  -0.2992  0.0852   0.0836  
 

Student-t (5) 
            

β0 n β̂  BCβ~  BCβ̂  )ˆ(s.e. β  )ˆ(s.d. β    β0 n β̂  BCβ~  BCβ̂  )ˆ(s.e. β  )ˆ(s.d. β  
 

 
1.5   25 1.7667  1.5593  1.5529  0.6459   0.5984    -0.7   25 -0.8600  -0.7221  -0.7581  0.4609   0.4152  

    50 1.5888  1.4851  1.4819  0.4668   0.4428       50 -0.7521  -0.7024  -0.7011  0.3096   0.2966  
  100 1.5437  1.4847  1.4902  0.3290   0.3199     100 -0.7368  -0.7094  -0.7113  0.2166   0.2108  

               
0.9   25 1.0386  0.8967  0.9126  0.4983   0.4574    -1.7   25 -2.0947  -1.8176  -1.8456  0.7200   0.6482  

    50 0.9444  0.8691  0.8814  0.3414   0.3295       50 -1.8295  -1.7031  -1.7050  0.5186   0.4845  
  100 0.9385  0.8941  0.9070  0.2416   0.2351     100 -1.7899  -1.7392  -1.7277  0.3691   0.3515  
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Appendix: Proofs of Theorems and Corollaries 

 

Proofs of Theorems 1 and 2 

For the logit model in (3),  

i
j

i XyE Λ=)(    .    (22) 

By applying (10) and the law of iterated expectations, we can derive the following results. The 

terms, which are in Lemmas to derive the bias and MSE, but not specified below, are all equal to 

zero.         
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[ ]QXQXQXQXvecHQEddddHQ 12122
)1(

2
)1(

112212 ])([]][[ ′⊗′ΛΛ=′⊗⊗  

[ ]QXQXQXQXvecEdddd 2211
)1(

2
)1(

12211 ])([][ ′⊗′ΛΛ=′⊗⊗  

[ ]QXQXQXQXvecEdddd 2112
)1(

2
)1(

12121 ])([][ ′⊗′ΛΛ=′⊗⊗  

[ ]QXQXQXQXvecEdddd 1212
)1(

2
)1(

11221 ])([][ ′⊗′ΛΛ=′⊗⊗    (23) 

 

Therefore, based on Lemmas 1, 2 and (23), Theorems 1 and 2 are proved. 

 

 

Proofs of Corollaries 1 and 2 

When the logit model only includes just one regressor, (23) reduces to  
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Based on Lemmas 1, 2 and (24), Corollaries 1 and 2 are proved. 
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