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Abstract 
We examine inference for Generalized Entropy and Atkinson inequality measures with 
complex survey data, using Wald statistics with variance-covariance matrices estimated 
from a linearization approximation rather than the δ-method.  Testing the equivalence of 
two or more inequality measures, including sub-group decomposition indices and group 
shares, are covered.  We illustrate with Indian data from three surveys, examining children’s 
height-for-age, an anthropometric measure that can indicate long-term malnutrition.  
Sampling involved an urban/rural stratification with clustering before selection of 
households.  We compare the linearization complex survey outcomes with those from an 
incorrect iid assumption and a bootstrap that accounts for the survey design.  For our 
samples, the results from the easy to implement linearization method and more 
computationally burdensome bootstrap are in close agreement. 
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I. Introduction 

The study of inequality, especially income inequality or income distribution, has been 

regaining attention among economists and other social scientists since the late 1980s, 

after a period of relative neglect throughout the rest of the last century.  As Atkinson 

(1997, p. 297) points out “For much of this century, it (the subject of income 

distribution) has been very much out in the cold”.  The revival of interest has resulted 

in a growing literature on the theory of measurement of inequality as well as formal 

analysis of the statistical properties of such measures.  However, gaps still remain 

between theoretical developments and empirical applications.   

A key manifestation of this gap is that much of the applied inequality research 

does not undertake statistical inference.   Most empirical studies1 use inequality 

measures to make inter-temporal or inter-regional comparisons of inequality and/or 

for studying policy impacts (e.g., to examine the effect of a tax policy) but the 

conclusions are usually based on comparisons of the numerical estimates rather than 

on formal statistical testing.2  One argument (see Maasoumi, 1997) used by applied 

investigators to support such practices has been that their large samples do not 

warrant concern about precision but in reality, large standard errors can still arise with 

such data sets.  Furthermore, as the majority of the statistical theory in this area is 

based on large sample or asymptotic approximations, the use of large samples in most 

income inequality studies actually makes it more meaningful to report standard errors 

and undertake statistical tests.  So, why the common lack of statistical inference?  We 

believe two factors are perhaps at play – applicability of current theoretical results 

and ease of use of relevant theory.  

On the first factor, many papers provide theoretical contributions to the topic of 

inference with inequality measures using asymptotic approximations, including, to 

name only a few, Cowell (1989), Binder and Kovačević (1995), Van de gaer et al. 

(1999), Schluter and Trede (2002), Biewen and Jenkins (2006), Davidson and 

Flachaire (2007), Bhattacharya (2007) and Davidson (2009).  Most of these studies 

                                                 
1 See, e.g., Maasoumi (1997) for a survey of the theoretical and empirical literature on income 
inequality. 
2 See, e.g., Ram (2006).   
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focus on an identically and independently distributed (iid) framework, whereas data 

commonly used by applied researchers come from complex surveys.  Although some 

of these iid papers consider weights, these take on a different role than in a complex 

survey.  For instance, Cowell (1989) examines inference for decomposable inequality 

measures with random household weights that convert the observed household 

distribution into a personal distribution.   Schluter and Trede (2002) allow for 

contemporaneous dependences within households, but assume that households are iid.  

Correlation is also introduced by Van de gaer et al. (1999) but it is temporal 

dependence rather than correlations arising from the survey design.   However, most 

inequality measures are calculated from data obtained from a complex survey design, 

leading to (asymptotic) variances and covariances that can be quite different from 

those generated under simple random sampling (SRS) or the iid with weights 

framework.  Consequently, to date, much of the theoretical work on asymptotic 

inference does not pertain to the data often used by empirical researchers. 

Data obtained under a complex survey design typically involves both stratification 

and clustering, undertaken to ensure adequate representation of groups of interest, in 

addition to minimizing financial and administrative costs of surveying a population.  

Stratification, which can substantially reduce survey costs for a given level of 

precision, results in the breakdown of the “identical” part of an iid assumption – even 

when members are independent within a stratum, they are unlikely to come from the 

same distribution across strata.  Moreover, sample observations are likely correlated 

when the survey design involves clustering, so violating the “independent” part of an 

iid assumption.  Clustering, such as interviewing several households on the same 

block or from the same village, likely introduces a common unobserved cluster-

specific effect, which needs to be accounted for when undertaking inference. 

Theoretical contributions that do incorporate such effects include Binder and 

Kovačević (1995) and, more recently, Biewen and Jenkins (2006) and Bhattacharya 

(2007).   Each of these provides explicit ways to obtain (at least) asymptotic variances 

for various inequality measures when data are obtained from complex surveys.  

Binder and Kovačević (1995) use linearization methods based on so-called estimating 

equations to obtain variance estimators for a few of the inequality measures (Gini 
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coefficient, coefficient of variation, an “exponential measure” and Lorenz curve 

ordinates) allowing for complex survey data.  Asymptotic inference for the Lorenz 

curve and the Gini coefficient, assuming complex survey data, is developed by, for 

example, Bhattacharya (2007).   The paper most akin to our work is Biewen and 

Jenkins (2006), who use a commonly applied survey “linearization method” to obtain 

asymptotic variances for the Atkinson (1970) and Generalized Entropy measures with 

complex survey data.  Like the common δ-method estimator, the linearization 

estimator is obtained from a Taylor series approximation.   

One ideal feature of the expressions provided by Biewen and Jenkins (2006) is 

that they address the second factor we identified above for the possible lack of 

statistical inference in applied research – ease of use.  This factor seems important, as 

it has been identified by others (see, e.g., Giles, 2004 and Davidson, 2009), in 

explaining the lack of use of asymptotic variance formulae and subsequent hypothesis 

testing in applied inequality research.  Asymptotic variances obtained via the 

linearization approach avoid the calculation of a potentially complicated variance-

covariance matrix that arises with the usual δ-method.  Indeed, the variances can be 

obtained with minimal coding in standard software packages.  One element not 

covered by Biewen and Jenkins, as well as the other cited references that account for 

complex sampling, is that they do not examine the elements arising from a 

decomposition analysis, such as the “between” and “within” components or any share 

measures that may be generated from these parts.  Decomposing inequality measures 

is standard applied practice.  In addition, Biewen and Jenkins do not indicate how to 

extend the approach to test hypotheses involving two or more inequality measures.3 

Our goal is to provide these missing pieces.  For the Atkinson and Generalized 

Entropy families, we give linearization expressions for sub-group decomposition 

measures, the between and within components and for sub-group shares of overall 

inequality, describing how to use these in standard software packages to generate 

estimates of asymptotic variances with only a few lines of code.   In addition, we 

show explicitly how to easily extend the method to calculate asymptotic variance-

                                                 
3 For their empirical application, Biewen and Jenkins (2006) simply provide values of statistics for 
significance testing and a test statistic for a difference hypothesis. 
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covariance matrices so that Wald statistics can be formed to test hypotheses involving 

two or more inequality measures.  In particular, we cover testing the equivalence of 

inequality measures that may be simple inequality indices, sub-group decomposition 

indices, between and within measures and group shares of overall inequality.  

Modified statistics that account for small sampling design degrees of freedom are also 

given.  As in Biewen and Jenkins (2006), our expressions are applicable to the study 

of inequality of not just income but many other well-being variables such as wages, 

years of schooling, height-for-age etc.  Consequently, the results should be of interest 

to a wide range of empirical researchers in various fields. 

We illustrate using Indian data from three National Family and Health Surveys 

(1992/93 (NFHS-1), 1998/99 (NFHS-2) and 2005/06 (NFHS-3)), examining 

children’s height-for-age, an anthropometric measure that can indicate growth 

retardation and cumulative growth deficits, suggestive of long-term malnutrition.  The 

sampling design involved an urban/rural stratification with one or two stages of 

clustering prior to the selection of households.  In addition to providing variance 

estimates for simple inequality indices, sub-group decomposition measures and sub-

group shares of overall inequality, based on the urban/rural split, we undertake tests 

of equality of these measures across the three surveys.  A brief examination of gender 

differences in inequality is also provided.  India has been experiencing rapid 

economic growth since the 1990s along with poverty reduction.  However, this has 

been accompanied by rising economic inequality within urban areas and also between 

urban and rural sectors.  But as Deaton and Drèze (2002, p.3744) rightly ask “What 

about other types of social inequality, involving other dimensions of well-

being........?”.  Clearly health is an important dimension of well-being and health 

inequality among children is a worthy issue to explore.  Testing across surveys allows 

us to answer what has been happening to health inequality among children over time.   

Health inequality has been studied by others, who convincingly argue that 

measures of health inequality are important in their own right and not just because of 

the possible correlation between income and health.  Ram (2006) estimates cross-

country inequality in life expectancy over the period 1980-2000 using three different 

inequality measures. Gini coefficients for health and education using Latin American 
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children’s height data and data on years of schooling for women aged 22-30 are 

calculated by Sahn and Younger (2006).  Height inequality among adults in Sub-

Saharan Africa is the subject of Moradi and Baten’s (2005) work.  Pradhan et al. 

(2003) decompose world health inequality, as measured by height inequality among 

pre-school children, into within-country and between-country inequality using one of 

Theil’s (1967) measures.  Neither Ram (2006), Moradi and Baten (2005) nor Pradhan 

et al. (2003) report standard errors associated with their inequality measures and 

despite concluding differences in the numerical estimates, they do not undertake 

formal hypothesis testing.  While Sahn and Younger (2006) report standard errors and 

undertake significance testing, they do not mention how they obtain their standard 

errors.  Our work is directly relevant to such studies, as data are typically obtained 

from Demographic and Health Surveys, which employ stratified multi-stage cluster 

sampling.   

As bootstrapping offers a viable alternative to our considered method, albeit less 

computationally friendly, we also provide standard error estimates and hypothesis test 

p-values from a bootstrap experiment that allows for the complex survey design.4   

Undertaking inference for inequality measures via bootstrapping was first proposed 

by Mills and Zandvakili (1997), who examine the Gini coefficient along with the two 

Theil (1967) measures, and extended to all the Generalized Entropy and Atkinson 

indices by Biewen (2002).  Since the publication of Mills and Zandavakili (1997), 

applied researchers in this area have begun using resampling methods to undertake 

statistical inference, such as for standard error estimates and p-values; e.g., Barrett et 

al. (2000), Gray et al. (2003a), Mills and Zandvakili (2004) and Davidson (2009).  

Some of these studies use complex survey data that is not accounted for when 

undertaking their bootstrap experiments, leading to inappropriate standard errors and 

p-values.  Our bootstrap samples, on the other hand, are drawn allowing for the 

complex survey.  Finally, we use the linearization method to calculate variance-

covariance matrices (and subsequent test statistics) under a false iid assumption but 

allowing for sampling weights.  Although this last case misinterprets the role weights 

                                                 
4 A novel feature of our work compared with that of Biewen and Jenkins (2006). 
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play under an iid assumption, it is a useful illustration of an error that might 

inadvertently arise in applied research.    

The paper is organized as follows.  Section 2 reviews the inequality measures 

considered in our work.  Our results on the estimators of the variance-covariance 

matrices and subsequent inference are presented in section 3.  Section 4 describes our 

setup for the bootstrap experiment for the application.  The setting, data and results 

from the empirical illustration are detailed in section 5 and section 6 concludes.  

Relevant formulae are provided in an appendix.   

 
 
 
II. Inequality measures 

Many measures, or indices, of inequality can be obtained from a population, each 

with a different sensitivity to inequality in the upper or lower tail of the distribution.  

We examine indices that belong to the Generalized Entropy (GE) class,αGEI , and 

Atkinson (A) class, εAI . Theil’s (1967) two information indices are special cases: 

specifically, the Theil-1 index, IT1, arises when 1→α , whereas the Theil-25 index, IT2, 

results by letting 0→α .  In addition, setting α = 2 gives half of the coefficient of 

variation squared.   Accordingly, the parameter α determines the sensitivity of the 

index to inequality; changes in the underlying distribution’s upper tail are more 

important for larger positive α while a greater response to inequality in the lower tail 

occurs when α becomes more negative.   The parameter ε (≥0) for the Atkinson 

indices is often called the inequality aversion parameter (or preference for equality 

parameter), as larger values lead to greater sensitivity to inequality in the lower tail 

(or more aversion to inequality).  Each member of the Atkinson family of inequality 

measures has an ordinally equivalent member of the GE family (but not vice versa). 

For consistency, we adopt the basic setup of Biewen and Jenkins (2006), where 

each inequality measure is written in terms of population totals of the variable of 

interest (denoted as y) that captures some aspect of well-being 

                                                 
5 Also often termed the mean logarithmic deviation. 
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summed over the stages of the complex survey sampling design, assumed to involve 

h=1,…,L strata, i=1,…,Nh clusters in stratum h and j=1,…,Mi individuals in cluster i.  

The parameter θ is predetermined by which particular index is adopted, being either 0 

or 1 for the T totals and 0,1, α or (1-ε) for the U totals.  Note that U0 is then the finite 

population size. It will not matter whether there are more stages of sampling beyond 

these, as the nonparametric variance estimator is computed from the quantities 

formed from the Mi ultimate clusters.6   

Given (1) and (2), the population indices we examine7 are 
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Estimators of these indices,α
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AÎ , are generated by using the 

complex survey sample totals    
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where nh is the number of sampled first stage clusters and mi is the number of 

sampled units in cluster i.  As the complex survey design results in units with 

(usually) different probabilities of being sampled, the weight, whij, is included to 

                                                 
6 See, for example, Cochran (1977) and Skinner et al. (1989). 
7 See, for instance, Cowell (1989). 
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account for such differential sampling rates, in addition to any adjustments for 

nonresponse and inadequate frame coverage.    

Each of these inequality measures is decomposable, in that total inequality of the 

population can be subdivided into a weighted average of the inequality within chosen 

sub-groups of the population (the “within” component) and the inequality between 

these sub-groups (the “between” component).  Sub-groups are typically based on 

grouping together units that share a common feature, for instance: place of residence; 

gender; race; educational attainment of the household head..  Specifically, we suppose 

the population comprises G mutually exclusive and exhaustive sub-groups (g=1,…, 

G) with sub-group population totals  

 ∑∑∑
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where gDhij is a dummy variable that is 1 when unit hij belongs to sub-group g, 0 

otherwise.   Then, the sub-group inequality measures are 
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The decomposition is additive when the index (say I) satisfies the constraint 

 BII g

G

1g
g +ω= ∑

=
= W + B      (17) 

where for the g’th sub-group (g=1,…, G): Ig is the inequality index and ωg is the 

weight function that depends only on sub-group means and population sizes.  The 

terms B and W are, respectively, the “between” and “within” components, with the 

sub-group inequality indices only entering via W.  This decomposition is empirically 
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useful as then total inequality is the sum of a term, W, which considers the inequality 

within each population sub-group plus the term, B, which is the inequality arising 

when there is no inequality within each group.  Studying inequality in such a manner 

provides information on possible causes of inequality that may prove useful to policy 

makers.   GE indices are additively decomposable in this way, whereas A indices 

cannot be decomposed additively into inter- and intra-group components.  However, 

defining B and W as before, for an arbitrary A index, I, we have the decomposition 

  (1 – I) = (1-B)(1-W)      (18) 

or, equivalently,  I = W + B - W×B.   Given these definitions, Table 1 provides the 

weights for the within component and the between measure for each of our 

considered inequality indices.  Here on, we denote the within components for the 

indices as α
GEW , 1TW , 2TW , ε

AW and 1
AW , and the between components as α

GEB , 

1TB , 2TB , ε
AB and 1

AB .  Point estimates are obtained by replacing the population 

totals with their sample counterparts – we denote the estimators as α
GEŴ , 1TŴ , 

2TŴ , ε
AŴ , 1

AŴ , α
GEB̂ , 1TB̂ , 2TB̂ , ε

AB̂ and 1
AB̂ . 

 Empirically, interest also lies with the shares of these components to total 

inequality.  Specifically: the contribution of the between component to overall 

inequality ( α
B,GES , B,1TS , B,2TS , ε

B,AS and 1
B,AS ) where, generically, SB = B/I; the 

share of the within component to overall inequality ( α
W,GES , W,1TS , W,2TS , 

ε
W,AS and 1

W,AS ) where, generically, SW = W/I; and the proportion of total inequality 

taken by the within-group component of sub-group g ( α
W,GEgS , W,1TgS , W,2TgS , 

ε
W,AgS and 1

W,AgS ) where, generically, gSW = gW/I with ∑
=

=
G

1g
gWW .  Estimators of 

these shares, denoted with a circumflex, are formed using the relevant sample 

counterparts.   Note that SB+SW = 1 for the GE indices, but not for the A measures.  

Despite this shortcoming for the latter indices, the share information still provides 

guidance on how inequality is changing from, for example, one survey to another.   
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TABLE 1 

GE and A indices: between component and weights for the within component 
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Note: The table provides the weights used to form the within component for each index; i.e., 
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ω= , where Ig is the g’th sub-group’s inequality index (g=1,…,G).   

 
 We now turn to obtaining nonparametric estimators of the variances of the 

inequality statistics, along with an estimator of the variance-covariance matrix of any 

linear combination of two or more of these statistics, needed for hypothesis tests.   

 

III. Inference using linearization estimators of variance-covariance matrices 

Having estimated the sample inequality measures, we now turn to estimating 

sampling variability along with undertaking hypothesis tests involving two or more 

inequality measures, taking account of the complex survey design.  Questions might 

include:  Are sub-group inequality indices equal?  Has inequality changed from one 

survey to another?  Do the sub-groups have equal within shares?  Are the shares equal 

across two or more surveys?  To address such questions, we propose use of a 

linearization estimator, formed via a first-order Taylor series approximation, of the 
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relevant variance-covariance matrix when forming an appropriate Wald statistic.  

This method, which straightforwardly accommodates the complex survey design, 

avoids complicated covariance calculations that often arise with the δ-method, 

formed from the same Taylor series approximation (see, e.g., Cowell, 1989; Schluter 

and Trede, 2002; Van de gaer et al., 1999; Bhattacharya, 2007).   

 To be general, let ],...,[ K1 ′ϑϑ=Ω be a K-dimensional vector of inequality 

quantities; e.g., Ω might contain sub-group inequality measures for a survey or 

consist of inequality indices for several surveys.  We consider testing the null 

hypothesis H0:RΩ = r against a two-sided alternative hypothesis using a Wald 

statistic, where R is a nonstochastic q×K matrix and r is a nonstochastic q-

dimensional vector.  Let ]ˆ,....,ˆ[ˆ
K1 ′ϑϑ=Ω be the estimator of Ω formed using the 

relevant inequality estimators defined in section 2.  Then, the usual Wald statistic is 

  ( ) [ ] ( )rˆR)rˆR(râVrˆRWT
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where )rˆR(râV −Ω = R)ˆ(râRV ′Ω  is an estimator of the asymptotic variance-

covariance matrix of )rˆR( −Ω .  Obtaining the so-called linearization rule for 
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Let Φ̂  be a consistent estimator of Φ and assume f(.) is appropriately differentiable.  

A first-order Taylor series approximation is then: 

                                                 
8 Our approach extends that of Biewen and Jenkins (2006) to the vector case.   It is based on Woodruff 
(1971), who extended some results due to Keyfitz (1957).  The survey literature usually terms this the 
“linearization method” for variance estimation; see, e.g., Skinner et al., (1989, pp50-51 and p54). 
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where ∑
=

Φ=γ
P

1p
hij,p

p
hij t)(f .  Assuming10: (i) the ultimate clusters selected within 

strata are independent; (ii) the nh sampled units within each stratum h are selected 

with replacement;11  and (iii) nh ≥ 2, we obtain the linearization estimator  

                                                 
9 For our illustration, thij = [1Dhij(yhij)(log yhij) 2Dhij(yhij)(log yhij) 3Dhij(yhij)(log yhij) 1Dhij(yhij) 2Dhij(yhij) 

2Dhij(yhij) 1Dhij 2Dhij 3Dhij]′.   
10 See, for example, Skinner et al. (1989, p47). 
11 This assumption is usually always violated with surveys, in which case the formula generally leads 
to overestimation. An alternative assumption is that the nh ultimate clusters within stratum h form a 
simple random sample without replacement from the stratum, h=1,…,L; see, e.g., Kalton (1977).  This 
results in adding a finite population correction involving the factor (nh/Nh).  The correction adds little 
when this factor is small, as is often the case. 
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where hijγ̂ is hijγ with Φ̂ replacing Φ  in the derivatives; we denote the k’th element of 

hijγ̂ as hij,kγ̂ , k=1,…,K.   Switching the summation order has reduced the problem to 

one of obtaining a variance-covariance matrix for a total; e.g., Cochran (1977) and 

Skinner et al. (1989).  Applying standard formulae, the linearization method estimator 

of the variance-covariance matrix is then  
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 The elements of this matrix provide variance estimators for each individual 

inequality measure on the diagonal and covariance estimators on the off-diagonals.  

Standard software packages can easily generate this estimated variance-covariance 

matrix.  For instance, with Stata (StataCorp., 2005) after defining the survey’s strata, 

ultimate cluster and weight variables, along with generating each element of the 

vector hijγ̂ , use of the svy: total command generates the matrix (23).  To enable each 

of the inequality measures reported in section 2 to be part of any hypothesis test, in 

addition to providing a linearization method standard error, we need formulae to 

generate a correspondinghij,kγ̂ .   We provide these in the appendix.12  Note that we do 

not provide explicit formulae for generating the linearization method variances for the 

                                                 
12 In the appendix, for consistency we also report the equations for the full sample inequality indices 
obtained by Biewens and Jenkins (2006).  The rest, to our knowledge, are new.  
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estimated between component shares for members of the GE family because they are 

the same as for the within components.  This is not so for Atkinson indices. 

 A substantial body of research exists on the asymptotic properties of complex 

survey estimators of totals, smooth/nonsmooth linear/nonlinear functions of totals, 

and the corresponding linearization variance/covariance estimators: e.g., Krewski and 

Rao (1981) and Rao and Wu (1988).  Most assume with replacement selection of the 

primary sampling units, in which case Krewski and Rao’s (1981) analysis establishes 

consistency of the total estimators and smooth nonlinear functions of them, as used 

for our inequality measures.  Asymptotic normality is also shown, along with 

consistency of variance estimators using the linearization method.  Key is that there 

are no isolated, influential, values in the clusters.  Applying these results to without 

replacement sampling typically follows directly when the sampling fraction fh=nh/Nh 

is small, as is usual with the surveys used to generate inequality measures.  Further, 

when the analysis assumes that it is the total number of clusters that goes to infinity 

(with fixed and finite secondary stage units and fixed number of strata), sampling 

with or without replacement has no effect on the asymptotic results; e.g., 

Bhattacharya (2005, 2007).    Accordingly, we assume that our inequality estimators 

are consistent and asymptotically normal with the linearization method variance 

estimator also consistent.  So, WT using )ˆ(râV L Ω , denoted as WTL, is approximately 

2
qχ under its null hypothesis.    

 Although unlikely to arise with most socio-economic datasets, inverting the 

variance-covariance matrix )ˆ(râV L Ω may be an issue when the number of sampled 

clusters relative to the number of strata (i.e.,∑ − Lnh ) is small compared to K, the 

dimension of Ω̂ .13  One way to proceed is to use the estimated variance-covariance 

matrix under simple random sampling, then adjust for the design effects of complex 

sampling (see, e.g., Skinner et al., 1989, pp 90-103).  The adjusted Wald statistic is 

   ( ) [ ] ( ) )e/)ˆ(tr/(rˆRR)ˆ(râRVrˆRWT
1

SRSadj,L Σ−Ω′Ω
′

−Ω=
−

, (24) 

                                                 
13 The effective number of degrees of freedom (under some assumptions) lies between the smallest of 

the (nh-1)’s and ∑ − Lnh , but is usually assumed to be the latter for the survey.   
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where )ˆ(râV SRS Ω is the estimated variance-covariance matrix under a simple random 

sampling assumption, )ˆ(tr/))ˆ(tr(e 22 ΣΣ= and  

   )R)ˆ(râRV()R)ˆ(râRV(ˆ
L

1
SRS ′Ω′Ω=Σ −     (25) 

is the design effect measure.  The asymptotic null distribution of WTL,adj is 

approximated by that of a 2eχ  variate.  

 To end this section, we comment on the applicability of our results to two other 

sampling schemes: simple random sampling (SRS), where every unit has an identical 

chance of being selected into the sample; and the frequently studied iid framework 

where, for the i’th unit, the variable of well-being, yi, and weight, wi, are viewed as 

iid draws from a population (y, w).  Nicely, our results are easily modified to handle 

both cases.  Under SRS, a self-weighting design where n units are selected (with 

replacement) from a finite population of N, the formulae in the appendix apply with 

the sampling weights either ignored or simply set to 1 for all units, and the summation 

is over i=1,….,n rather than over the various stages of the complex survey design.  

The iid framework regards the inequality measure as a function of population 

moments rather than population totals, with the treatment of the weights being 

different than under a complex survey design.14  Despite these disparities, the 

numerical estimates of linearization variance-covariance matrices can be obtained 

using the formulae in the appendix with the summation being over i=1,…,n rather 

than over the stages of the complex survey design.    

 

IV. Inference using bootstrapping 

Maintaining the general notation from the previous section, we first outline how we 

obtained a bootstrap variance-covariance estimator for the nonlinear estimator 

)ˆ(fˆ Φ=Ω ; we denote this estimator as )ˆ(râV BT Ω .15  The method, which involves the 

following steps for each bootstrap sample, guarantees that the replicate sample has 

the same sampling design as the parent sample.  The steps, V1 through V5, are: 

                                                 
14 For example, Cowell (1989), Van de gaer et al. (1999), Biewen and Jenkins (2006). 
15 Our outlined approach is commonly termed the rescaling bootstrap (e.g., Rao and Wu, 1988). 
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V1. Draw a simple random sample of nh clusters with replacement from the clusters 

within stratum h independently for each stratum (h=1,…,L).16   

V2. When a cluster is selected into the bootstrap replicate, all secondary and 

successive units from the selected cluster are retained, along with their 

corresponding sampling weights. 

V3. Let )nr0(r h
b
hi

b
hi ≤≤ be the number of times that cluster i from stratum j is 

included in bootstrap replicate b.  The bootstrap sampling weight is then 

b
hihij

b
hij rww =        (26) 

so that 0wb
hij = if cluster i is not selected in the b’th bootstrap sample.17 

V4. Let bΦ̂  be the estimated Φ using the p’th bootstrap totalsbpφ̂ formed from replicate 

b.  Specifically, with θ = 0, 1 or α, depending on the term of interest, b
pφ̂ will be 

one of the following totals: 

θ

= = =
θ ∑∑∑= )y(wÛ hij

L

1h

n

1i

m

1j

b
hij

b
h i

, 

)y(log)y(wT̂ hijhij

L

1h

n

1i

m

1j

b
hij

b
h i

θ

= = =
θ ∑∑∑= , 

θ

= = =
θ ∑∑∑= )y)(D(wÛ hijhijg

L

1h

n

1i

m

1j

b
hij

b
g

h i

, 

)y(log)y()D(wT̂ hijhij

L

1h

n

1i

m

1j
hijg

b
hij

b
g

h i
θ

= = =
θ ∑∑∑= . 

 Then form the bootstrap copy of Ω, )ˆ(fˆ bb Φ=Ω .   

V5. Repeat steps V1-V4 BV times to give BV bootstrap estimators of Ω, VB1 ˆ,ˆ ΩΩ K , 

and compute the bootstrap estimator of the variance-covariance matrix: 
                                                 
16 Undertaking the resampling with replacement simplifies the procedure and should not be an issue 
with most surveys used to generate inequality measures.  Although the number of clusters to be 
resampled is often chosen to be (nh-1) to ensure unbiased estimation (at least asymptotically), it is 
computationally easier with Stata to select nh clusters from each strata.  The effect of this is minimal in 
our case given the large number of clusters in the surveys. 
17 Modifying the sampling weight by (nh/(nh-1)) occurs when (nh-1) clusters are drawn – see footnote 
16.   
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  ( )( )′Ω−ΩΩ−Ω
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1
)ˆ(râV b

B

1b

b

V
BT

V

 .   (27) 

We set BV = 200.  Aside from providing standard errors, this rule is used to form 

a bootstrapped sample value of any Wald statistics for inference; specifically, we 

form ( ) [ ] ( )rˆRR)ˆ(râRVrˆRWT
1

BTBT −Ω′Ω
′

−Ω=
−

.  Turning to bootstrapping p-

values, we undertake a double bootstrap with the following steps. 

W1.Undertake steps V1 to V4 above to give the first (b=1) bootstrap sample with its 

estimator of Ω, )ˆ(fˆ 11 Φ=Ω .   

W2.Treating this first bootstrap replicate as the parent sample, repeat steps V1 to V4 

again to give BV estimates of Ω, 1
B

1
1

V

ˆ,,ˆ ΩΩ K .  Form the associated estimator of 

the variance-covariance matrix for this first bootstrap replicate sample: 

   ( )( )′Ω−ΩΩ−Ω
−

=Ω ∑
=

11
b

B

1b

11
b

V

1
BT

ˆˆˆˆ
1B

1
)ˆ(râV

V

.   (28) 

W3.Form the associated bootstrap Wald statistic: 

   ( ) [ ] ( )Ω−Ω′Ω′
′

Ω−Ω=
− ˆˆRR)ˆ(râRVRˆˆWT 111

BT
11

BT ,  (29) 

where, recall, Ω̂  is the original sample’s estimate of Ω and is used to so-call 

centre the statistic because our data may not have been drawn from a population 

that satisfies H0; see, e.g., Hall and Wilson (1991).  

W4.Repeat steps W1 through W3 BW times to obtain BW values of 

WT: WB
BT

1
BT WT,WT K .  We choose BW = 99 to correspond with a nominal 10% or 

5%  level.18 The bootstrapped p-value is )1B/(1)WTWT(Ip W

B

1b
BT

b
BT

W

+













+>= ∑

=
.   

 

 

 

                                                 
18 Given a nominal level for the test of αW, a choice of BW that leads to αW(BW+1) being an integer 
results in an exact Monte Carlo test when the statistic is pivotal; Dufour and Kiviet (1998).  For a 
nonpivotal statistic (as is ours) it is not necessary to choose BW in such a way, but, as advocated by (for 
example) Davidson and MacKinnon (2000), it would seem reasonable to still follow such a practice. 
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V. Empirical example: height inequality among Indian children 

Here we apply some of our results to study health inequality among Indian children, 

based on the anthropometric measure height.  As a detailed analysis of health 

inequality among Indian children is beyond our scope, our example illustrates, using a 

policy-relevant problem, the usefulness of statistical testing involving the simple 

inequality indices or their decompositions, as well as the effectiveness of our 

proposed methods compared to the computationally burdensome bootstrapping 

procedure.  For space reasons, we only report results using the Theil-1 measures.19   

We provide standard errors for simple inequality indices and sub-group 

decomposition measures based on an urban/rural split, as well as undertake tests for 

equality of these measures across two or three surveys, details of which are provided 

in the next subsection.  Whether rural and urban regions differ in health inequality, as 

represented by children’s height inequality, is of interest given the strong evidence of 

varying economic inequality across these regions (e.g., Deaton and Drèze, 2002).  We 

also examine gender differences in height inequality, of concern given the debate on 

whether girls and boys are equally well cared for due to the preference for sons, 

particularly in rural districts.  This predilection, formed from social, cultural, 

economic and religious desires and norms, suggests that there may be health and 

nutritional discrimination against girls,20 which may show up in health inequality 

measures.  In particular, as argued by, for instance, Moradi and Baten (2005), poorer 

households may reduce resources allocated to girls while maintaining those for boys 

in leaner times, which may show up as  gender differences in health inequality. 

For each case, we compare the linearization outcomes with those from two other 

scenarios: (i) assuming (incorrectly) that the standardized heights and the sample 

weights are iid draws from a common population; and (ii) from using the bootstrap 

procedure described in section 4, designed to account for the complex survey design.   

 

 

                                                 
19 Results for other measures are available on request. 
20 For instance, Kadi et al. (1996) and Tarozzi and Mahajan (2007) report that girls are more 
nutritionally deprived compared to boys.  In contrast, Griffiths et al. (2002) and Marcoux (2002), 
among others, find little evidence of gender differentials in food consumption.  
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Survey design and data characteristics 

Our data come from the three Indian National Family Health Surveys (NFHS), 

conducted under the agency of the International Institute for Population Sciences 

(IIPS): NFHS-1 (1992/93), NFHS-2 (1998/99) and (2005/06).  All states and the 

National Capital Territory of Delhi21 are included, providing indicators on family 

welfare, maternal and child health, and nutrition.22  Due to coverage differences 

between surveys, we only include children (i) whose mothers were interviewed with 

the Women’s Questionnaire, (ii) who are less than three years of age and (iii) who 

lived in states other than Sikkim, Andhra Pradesh, Himachal Pradesh, Madhya 

Pradesh, Tamil Nadu and West Bengal.  This resulted in 20,410 children from NFHS-

1, 18,520 children from NFHS-2 and 18,146 children from NFHS-3. 

Stratified multi-stage cluster sampling generated the data with the design being 

roughly similar for each survey.  We sketch out the key stages from NFHS-3; see 

IIPS (2007a,b; 2000; 1995) for full details. Each state was sampled separately with 

urban and rural areas forming the first stage strata.  Two phases of cluster sampling 

came next for rural regions: random selection of villages followed by households.  A 

three-stage procedure was adopted for urban areas: selection of wards followed by 

census enumeration blocks followed by households.  On average, 30 households were 

targeted for interviewing from each village or census enumeration block.   This 

sampling scheme results in the number of clusters far exceeding the number of strata 

so that testing should not suffer from a shortage of sampling design degrees of 

freedom.23  The survey method also ensured self-weighting at the domain level (i.e., 

the urban and rural areas of each state) so that each child in the same domain has a 

common sampling weight (the inverse of the probability of selection).   

Prior to estimating height inequalities, we account for natural/biological median 

height differences of children across gender and age by converting the individual 

heights into percent-of-median, which is simply the height of an individual child 

relative to the median height of comparable children in a reference population, 

                                                 
21 Covering more than 99 percent of India’s population; other union territories were not surveyed. 
22 See International Institute for Population Sciences (2007a, b; 2000; 1995) for full details. 
23 Specifically, there are 559 clusters for NFHS-1, 549 for NFHS-2 and 2719 for NFHS-3. 
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expressed as a percentage.24  The current reference population group is the World 

Health Organization’s (WHO) Child Growth Standards (WHO Multicentre Growth 

Reference Study Group, 2006; WHO, 2006), formed from a multiethnic sample of 

healthy children; we refer to this as the WHO-MGRS standard.  Specifically, let higa 

be the height of the ith Indian child of gender g and aged month a (g=1 when the child 

is a boy, 2 when the child is a girl; a=0,…,35).  Let Mdga be the median from the 

WHO-MGRS standard for a child of gender g and age a in months.  The percent-of-

median is Piga = 100(higa/Mdga); when gender and age is not of issue, we denote this as 

Pi.  For example, if a 6-month old boy’s height is 65.3cms then his Pi=96.6% as the 

WHO-MGRS median height is 67.6236cms for a 6-month old boy. 

Using percent-of-median does not account for the natural variability in height, 

normal for healthy children, around the median height, that differs across and within 

age and gender groups.  We believe this is likely not an issue when examining total 

inequality over surveys, as it seems reasonable to assume that the natural inequality in 

our Indian children is fairly stable over the time frame of our study and across 

regions.  However, care is needed when considering gender differences in inequality, 

as natural inequality varies significantly across boys and girls, dependent on age.  For 

this case, we estimate the natural inequality by taking appropriate draws of children’s 

height from the WHO-MGRS reference growth curves.  We now turn to our results.    

 

Overall inequality  

Table 2 provides the estimated inequality indices, IT1, along with standard errors for 

the three surveys.  For each case, we report three standard error estimates based on: 

our proposed linearization method, a (false) iid assumption with weights and the 

bootstrap approach that accounts for the complex survey sample design; these are 

denoted as seL, seIID and seBT respectively. Irrespective of index, we see that 

inequality has declined over the three surveys, with the change between NFHS-2 and 

NFHS-3 being far more than the decline that occurred between NFHS-2 and NFHS-1.  

That the standard errors allowing for the complex survey design are larger than those 

                                                 
24 See, e.g., Gershwin et al. (2000, pp. 7-8).  Studies that use percent-of-median include Prudhon et al. 
(1996) and Zainah et al. (2001). 
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under the false iid assumption (by, approximately, 9% to 24%) highlights the 

importance of taking account of the design when estimating standard errors, the 

heterogeneity between and within clusters increasing the variance from the iid case.  

Typically, the linearization and bootstrap standard errors are in close agreement.  

Given the ease of forming the linearization standard errors compared to coding the 

bootstrap, these outcomes support using the former approach.  

How do these inequality outcomes compare with those from a sample of 

“healthy” children?  To examine this, we drew random samples of children’s height 

from the distributions that generated the WHO MGRS growth curves, with samples 

constructed to match the age/gender structure of each NFHS survey.  Drawing 

samples in this way ensures that we allow for the differences in natural inequality 

across age and gender.  The corresponding NFHS-3 Theil-1 index is 6.169E-04 with 

that for the other surveys being minimally different.  The inequality for our Indian 

children is over four times that of the natural inequality of healthy children, which 

provides some indication of the disparities in health of Indian children and the 

relevance of examining whether inequality has changed.   

 

TABLE 2 

Estimates of overall height inequality using Theil 1 and standard errors 

 NFHS-1 
(1992/93) 

NFHS-2 
(1998/99) 

NFHS-3 
(2005/06) 

% change 
NFHS-2 
/NFHS-1 

% change 
NFHS-3 
/NFHS-1 

% change 
NFHS-3 
/NFHS-2 

1TÎ  2.655E-03 2.609E-03 2.263E-03 -1.73% -14.76% -13.26% 

seL 4.635E-05 3.919E-05 3.734E-05    

seIID 3.543E-05 3.405E-05 3.414E-05    

seBT 4.772E-05 3.644E-05 3.944E-05    

Note: The standard error obtained via the linearization method (accounting for the complex survey) is 

denoted by seL, that from the linearization approach assuming (falsely) that sampling is iid with 

weights as seIID and that from the bootstrap method (allowing for the complex survey) by seBT. 

 

Returning back to the results in Table 2, having standard error estimates enables 

us to ask whether the changes in the indices are statistically significant.  Outcomes 

from hypothesis tests to address this question are given in Table 3.  We provide Wald 
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statistics, associated χ2 and bootstrapped p-values from four tests: the first three test 

equality of indices across two surveys while the fourth test is for equality of the 

indices across the three surveys.  Results are reported using the three different 

approaches to estimating variances.  We denote Wald statistics by WTL, WIID and 

WTBT and associated p-values by pL, pIID and pBT.  We assume that the samples across 

surveys are independent, allowing the variance of the difference in inequality indices 

to be the sum of the variances from each individual survey.  This is a reasonable 

assumption, as the clusters are sampled independently from one survey to another.   

 

TABLE 3 

Testing whether overall inequality has changed across surveys using Theil 1 

Hypothesis test  

NFHS-1= 
NFHS-2 

NFHS-2= 
NFHS-3 

NFHS-1= 
NFHS-3 

NFHS-1= 
NFHS-2= 
NFHS-3 

WTL (pL) 0.586 (0.444) 40.956 (0.000) 43.573 (0.000) 59.019 (0.000) 

WTIID (pIID) 0.894 (0.344) 51.617 (0.000) 63.764 (0.000) 77.785 (0.000) 

WTBT (pBT) 0.599 (0.500) 41.625 (0.010) 40.281 (0.010) 55.803 (0.010) 

Notes: The table reports Wald statistics and associated p-values for equality of indices.  The subscripts 

are: L = complex survey linearization; IID = iid with weights linearization; BT= complex survey 

bootstrap.   

 

Turning to the test outcomes, the change between NFHS-1 and NFHS-2 is not 

statistically significant, while that between NFHS-2 and NFHS-3, and NFHS-1 and 

NFHS-3 are statistically significant.  The bootstrap and linearization methods are in 

close agreement, again supporting use of the linearization approach over the more 

computationally intensive bootstrap.  Using the iid outcomes does not qualitatively 

change the results.  Our findings perhaps suggest that the high income growth 

observed in India over the last 15 years or so has taken time to impact health 

inequality of children, as there is no significant change between NFHS-1 and NFHS-2 

but there are strong declines in overall health inequality between NFHS-2 and NFHS-

3.  One possibility for the delayed impact could be habit persistence in food 
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consumption, as it may take time for any income increase to lead to consumption of 

more nutritious food. 

 

Inequality by place of residence and gender 

In contrast to the previous subsection that examined only overall inequality measures, 

this subsection contains results based on various sub-groups (sector- or gender- 

specific) and on the decomposition of the overall inequality by place of residence 

(rural or urban).  Turning first to the urban sector, Table 4 provides estimated Theil 1 

indices, their percentage changes and standard errors from the three methods, and 

Table 5 reports on tests across surveys.   

 

TABLE 4 

Urban sector: estimates of height inequality and standard errors for Theil 1 

 NFHS-1 
(1992/93) 

NFHS-2 
(1998/99) 

NFHS-3 
(2005/06) 

% change 
NFHS-2 
/NFHS-1 

% change 
NFHS-3 
/NFHS-1 

% change 
NFHS-3 
/NFHS-2 

1TU Î  2.445E-03 2.140E-03 2.160E-03 -12.47% -11.66% 0.93% 

seL 8.297E-05 6.444E-05 6.830E-05    

seIID 6.458E-05 5.721E-05 6.268E-05    

seBT 8.953E-05 6.6290E-05 6.430E-05    

Notes: The standard error obtained via the linearization method (accounting for the complex survey) is 

denoted by seL, that from the linearization approach assuming (falsely) that sampling is iid with 

weights as seIID and that from the bootstrap method (allowing for the complex survey) by seBT.  The 

subscript U in 1TU Î  indicates index estimates for the urban sector. 

 

The results in Table 4 highlight the importance of sector-specific analysis, as the 

observed decline in health inequality of children occurred between NFHS-1 and 

NFHS-2 for this sector, with minimal change (indeed a nominal increase) in 

inequality between NFHS-2 and NFHS-3.  This contrasts with the findings observed 

for overall inequality.  In terms of standard errors, those under the false iid 

assumption are again smaller than those that account for the complex survey design, 

more so for NFHS-1 than for the other two surveys. We again observe that the 

bootstrap and linearization standard errors are in close agreement. 
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The hypothesis test outcomes provided in Table 5 support the statistical 

significance of the inequality change between the first two surveys but that there is no 

significant change in inequality between NFHS-2 and NFHS-3.  The outcomes are 

qualitatively consistent across the methods used to generate variances.   

 

TABLE 5 

Testing whether height inequality of urban children has changed using Theil 1 

Hypothesis test  

NFHS-1= 
NFHS-2 

NFHS-2= 
NFHS-3 

NFHS-1= 
NFHS-3 

NFHS-1= 
NFHS-2= 
NFHS-3 

WTL (pL) 8.428 (0.004) 0.047 (0.828) 7.011 (0.008) 9.654 (0.008) 

WTIID (pIID) 12.496 (0.000) 0.058 (0.810) 9.997 (0.002) 14.738 (0.001) 

WTBT (pBT) 7.495 (0.040) 0.049 (0.800) 6.664 (0.020) 8.594 (0.030) 

Notes: The table reports Wald statistics and associated p-values for equality of urban indices.  The 

subscripts are: L = complex survey linearization; IID = iid with weights linearization; BT= complex 

survey bootstrap.   

 

Our findings on urban health inequality contrast with those on urban income 

inequality (at least for the 1990s); e.g., Deaton and Drèze (2002).  This highlights the 

importance of exploring the impact of the economic reforms on not just income or per 

capita consumption expenditure inequality but also on other social inequality 

measures such as children’s health inequality.  Aside from examining raw 

decomposition measures by region of residence, it is also of interest to ascertain the 

contribution of the between component to total inequality and how this share has 

changed across surveys.  We report this information in Tables 6 and 7; Table 6 

provides estimates of shares along with standard errors using the three variance 

methods and Table 7 details outcomes from hypothesis tests.   

Around 1% of total health inequality arises from inequality between the rural and 

urban sectors, implying that the majority of inequality arises from within each sector.  

The standard error estimates indicate, however, that this small between component is 

significantly different from zero, even allowing for the lower precision from the 

complex survey design.  This result contrasts with most income inequality findings, 
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where the between component often contributes more to the overall inequality than 

the within component.25  It is useful to note, however, that our result is similar to that 

of Pradhan et al. (2003), who, using children’s height data, find that the within 

country health inequality component dominates world health inequality.  Here, we 

find that this holds even within regions for an intra-country study.  Whether this is a 

common finding for health inequality remains to be seen.  At least at the 5% level, 

there is no evidence to suggest different between group shares across surveys when 

using the complex survey linearization or bootstrap variance estimates.  However, 

rejection of this null of equality occurs under the false iid assumption in two of the 

four cases, highlighting, again, the importance of accounting for the survey design.   

 

TABLE 6 

Urban-rural between component shares and standard errors (%’s) 

 NFHS-1 
(1992/93) 

NFHS-2 
(1998/99) 

NFHS-3 
(2005/06) 

B,1TŜ  0.50% 1.04% 0.75% 

seL 0.19% 0.22% 0.18% 

seIID 0.11% 0.16% 0.15% 

seBT 0.23% 0.22% 0.17% 

Note: The standard error obtained via the linearization method (accounting for the complex survey) is 

denoted by seL, that from the linearization approach assuming (falsely) that sampling is iid with 

weights as seIID and that from the bootstrap method (allowing for the complex survey) by seBT.   

 

The final set of results we provide are given in Table 8, based on gender-specific 

inequality. Health inequality indices for boys and girls are reported, along with 

outcomes from hypothesis tests that examine whether height inequality for girls is the 

same as that for boys.  Examining the estimated values, inequality for girls is higher 

than for boys, with the two-sided hypothesis tests indicating that this difference is 

statistically significant, irrespective of method used to estimate the variances.26   

                                                 
25 An example of an exception is Gray et al. (2003b), who report a 1% between-group inequality share 
when comparing incomes of those born in Canada, immigrants who arrived before 1981, and 
immigrants who arrived after 1981.   
26 Interestingly, we see an example (NFHS-2 boys) where the linearization and bootstrap standard 
errors are marginally smaller than the iid standard error.   
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TABLE 7 

Testing whether the Theil 1 between group (urban/rural) share has changed 

Hypothesis test  

NFHS-1= 
NFHS-2 

NFHS-2= 
NFHS-3 

NFHS-1= 
NFHS-3 

NFHS-1= 
NFHS-2= 
NFHS-3 

ST1,B 

WTL (pL) 3.346 (0.067) 1.023 (0.312) 0.891 (0.345) 3.351 (0.187) 

WTIID (pIID) 7.328 (0.007) 1.688 (0.194) 1.691 (0.193) 7.465 (0.024) 

WTBT (pBT) 2.864 (0.100) 1.108 (0.290) 0.754 (0.320) 2.892 (0.240) 

Note: The table reports Wald statistics and associated p-values for equality of urban/rural between 

shares.  .  The subscripts are: L = complex survey linearization; IID = iid with weights linearization; 

BT= complex survey bootstrap.   

 

However, these results do not allow for the variation in natural inequality across 

gender.  To estimate this, we drew random samples of healthy children’s height from 

the distributions used to generate the WHO-MGRS growth curves, with the samples 

constructed to have the same age/gender structure as our NFHS samples.  The boys 

and girls natural inequality Theil-1 estimates from these simulated samples of healthy 

children, denoted N
1TB Î  and N

1TG Î  respectively, are reported in the bottom part of 

Table 8, along with the differences ( 1TB Î - N
1TB Î ) and ( 1TG Î - N

1TG Î ), so-called 

adjusted inequalities, that estimate the inequality in children’s height due to poor 

health and nutrition.  The genetic natural inequality in the heights of healthy girls (as 

represented by percent-of-median) exceeds that of boys, mitigating much of the 

observed inequality differences between our Indian boys and girls when we do not 

account for natural inequality.  Indeed, although not reported in the table, tests of the 
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TABLE 8 

Boys and girls: height inequality and standard errors using Theil-1 

 NFHS-1 
(1992/93) 

NFHS-2 
(1998/99) 

NFHS-3 
(2005/06) 

% change 
NFHS-2 
/NFHS-1 

% change 
NFHS-3 
/NFHS-1 

% change 
NFHS-3 
/NFHS-2 

1TB Î  2.561E-03 2.472E-03 2.153E-03 -3.48% -15.93% -12.90% 

seL 5.655E-05 4.278E-05 4.595E-05    

seIID 4.880E-05 4.326E-05 4.323E-05    

seBT 5.696E-05 3.816E-05 4.784E-05    

       

1TG Î  2.752E-03 2.758E-03 2.383E-03 0.22% -13.41% -13.60% 

seL 5.792E-05 5.956E-05 5.569E-05    

seIID 5.140E-05 5.335E-05 5.363E-05    

seBT 5.935E-05 5.867E-05 5.980E-05    

boys=girls 

WTL  

(pL) 

8.061 

(0.005) 

17.984 

(0.000) 

11.152 

(0.001) 

   

WTIID  

(pIID) 

7.311 

(0.007) 

17.333 

(0.000) 

11.168 

(0.001) 

   

WTBT  

(pBT) 

8.248 

(0.010) 

18.911 

(0.010) 

9.883 

(0.010) 

   

natural inequality 

N
1TB Î  5.851E-04 5.788E-04 5.703E-04    

N
1TG Î  6.673E-04 6.706E-04 6.673E-04    

adjusted inequality 

)ÎÎ( N
1TB1TB −

 

1.976E-04 1.893E-04 1.583E-04    

)ÎÎ( N
1TG1TG −

 

2.085E-04 2.087E-04 1.716E-04    

Notes: The subscript L denotes use of the linearization method (accounting for the complex survey) to 

form variances, IID implies that the variances are obtained using the linearization approach under a 

false iid assumption with weights, and BT refers to the bootstrap method that accommodates the 

complex survey design.  The subscript B and G in1TB Î and 1TG Î , and N
1TB Î  and N

1TG Î , indicate  

Theil-1 index estimates for boys and girls respectively. 
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hypothesis that ( 1TB Î - N
1TB Î ) = ( 1TG Î - N

1TG Î ) confirm that we cannot reject equality 

of these adjusted inequality measures, suggesting that these samples do not support 

gender differences in health inequality, at least at the national level.   

 

VI. Concluding comments 

In this paper, we have considered undertaking inference on GE and Atkinson 

inequality indices when data are drawn under a complex survey design.  Variance-

covariance matrices are obtained via a linearization method rather than the δ-

approach, so avoiding the calculation of often cumbersome covariance expressions.  

One of our key contributions is to obtain expressions that enable inference for the 

components of common decompositions of the inequality measures, including 

“between” and “within” elements and any subsequent share measures generated from 

these.  A key benefit of using these expressions for inference is ease of coding in 

standard software packages (e.g., Stata), in contrast to the coding that must be 

undertaken to bootstrap variances and p-values. 

Our illustrative application using height-for-age data on Indian children from 

three surveys highlights the importance of accounting for the stratified multi-stage 

cluster sampling design and the (typically) similar outcomes obtained using the 

linearization and bootstrap methods.  This latter finding is particularly encouraging 

for applied researchers.  Although it is unclear as to whether our findings can be 

broadly generalized, as the sampling design degrees of freedom for our data are 

relatively large, it is clear that the linearization approach to inference provides a user 

friendly way to undertake inference for inequality measures.   
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Appendix A: Formulae for hij,kγ̂  27 
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AÎ : hij,kγ̂ = ( ) hij

)1/(1
1

2
1

)1/(
0

)1/(1
1

1
1

)1/(1
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A.3 Sample within indices 
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27 The expressions given in subsections A.2 to A.7 are our contributions whereas those in A.1 are from 
Biewen and Jenkins (2006). 
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1g y)D)(Û()1/(1 ; 

1
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A.5 Sample within shares 
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01 ÛÛÛ1ÛÛÛ × 

×−




















− ε−

ε−
ε−ε−

=

ε−
ε−

ε−ε−∑ )1/(1
1

)1/(
0hij

G

1g

)1/(1
1g

)1/(
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[ ( ) ( ) ]}ε−−
ε−

− ε−−ε−ε 1
hij

1
1g

1
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( ) ( )( )[ ]hij0000hij

G

1g
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A.6 Sample between shares 
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0 ÛÛÛ1Û)1(yÛÛ  
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 ( ) ( )( ) hij
1
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−
−

=
−+






























− ∑

( ) ( ) ( ) ×−−













× −

−

=
∑ 2

1000

1
G

1g
0g0g0g00 ÛÛ1Û/T̂Û/T̂exp)Û(Û/T̂exp  
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 ( ) ( )




























∑∑
=

−

=

G

1g
hijhijg0g0g

2
G

1g
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A.7 Sample sub-group within shares 
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W,AgŜ : hij,kγ̂ = ( ) ( ){ ×−−− ε−

ε−
ε−ε−−ε−

ε−
ε−ε− )1/(1

1g
)1/(

0g1g
2)1/(1

1
)1/(

01 ÛÛÛÛÛÛ  
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