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I. Introduction

The study of inequality, especially income inegtyadr income distribution, has been
regaining attention among economists and otheakscientists since the late 1980s,
after a period of relative neglect throughout thst of the last century. As Atkinson
(1997, p. 297) points ouFbr much of this century, (the subject of income
distribution)has been very much out in the cold he revival of interest has resulted
in a growing literature on the theory of measurenaeéimequality as well as formal
analysis of the statistical properties of such mess However, gaps still remain
between theoretical developments and empiricalieatmns.

A key manifestation of this gap is that much of dpplied inequality research
does not undertake statistical inference. Mogiigoal studie$ use inequality
measures to make inter-temporal or inter-regionaimarisons of inequality and/or
for studying policy impacts (e.g., to examine tffea of a tax policy) but the
conclusions are usually based on comparisons ofuheerical estimates rather than
on formal statistical testing.One argument (see Maasoumi, 1997) used by applied
investigators to support such practices has besrttibir large samples do not
warrant concern about precision but in realitygéastandard errors can still arise with
such data sets. Furthermore, as the majorityeo$tétistical theory in this area is
based on large sample or asymptotic approximatibesjse of large samples in most
income inequality studies actually makes it morennegful to report standard errors
and undertake statistical tests. So, why the comlaxck of statistical inference? We
believe two factors are perhaps at play — applitglof current theoretical results
and ease of use of relevant theory.

On the first factor, many papers provide theorétoatributions to the topic of
inference with inequality measures using asymptgigroximations, including, to
name only a few, Cowell (1989), Binder and Késnac (1995), Van de gaer et al.
(1999), Schluter and Trede (2002), Biewen and #sn@006), Davidson and
Flachaire (2007), Bhattacharya (2007) and David2009). Most of these studies

! See, e.g., Maasoumi (1997) for a survey of therétial and empirical literature on income
inequality.
%2 See, e.g., Ram (2006).



focus on an identically and independently distiéoutiid) framework, whereas data
commonly used by applied researchers come from lEongorrveys. Although some
of these iid papers consider weights, these tala different role than in a complex
survey. For instance, Cowell (1989) examines arfee for decomposable inequality
measures with random household weights that cotiverwbserved household
distribution into a personal distribution. Scleluand Trede (2002) allow for
contemporaneous dependences within householdasbuine that households are iid.
Correlation is also introduced by Van de gaer e1#199) but it is temporal
dependence rather than correlations arising frastiivey design. However, most
inequality measures are calculated from data obteirom a complex survey design,
leading to (asymptotic) variances and covarianicasdan be quite different from
those generated under simple random sampling (8R&g iid with weights
framework. Consequently, to date, much of theritgzal work on asymptotic
inference does not pertain to the data often ugezhipirical researchers.

Data obtained under a complex survey design tylgicalolves both stratification
and clustering, undertaken to ensure adequatesepeagion of groups of interest, in
addition to minimizing financial and administratigests of surveying a population.
Stratification, which can substantially reduce syreosts for a given level of
precision, results in the breakdown of the “idegitipart of an iid assumption — even
when members are independent within a stratum,dheynlikely to come from the
same distribution across strata. Moreover, sawipdervations are likely correlated
when the survey design involves clustering, soating the “independent” part of an
iid assumption. Clustering, such as interviewiagesal households on the same
block or from the same village, likely introducesammon unobserved cluster-
specific effect, which needs to be accounted foemindertaking inference.

Theoretical contributions that do incorporate setfacts include Binder and
Kovacevi¢ (1995) and, more recently, Biewen and Jenkins§2@@d Bhattacharya
(2007). Each of these provides explicit wayshitam (at least) asymptotic variances
for various inequality measures when data are obtbirom complex surveys.

Binder and Kovéevi¢ (1995) use linearization methods based on soecallémating

equations to obtain variance estimators for a feth@inequality measures (Gini



coefficient, coefficient of variation, an “exponaitmeasure” and Lorenz curve
ordinates) allowing for complex survey data. Asyotig inference for the Lorenz
curve and the Gini coefficient, assuming complexey data, is developed by, for
example, Bhattacharya (2007). The paper mosttakour work is Biewen and
Jenkins (2006), who use a commonly applied surliegdrization method” to obtain
asymptotic variances for the Atkinson (1970) anaéalized Entropy measures with
complex survey data. Like the comm®method estimator, the linearization
estimator is obtained from a Taylor series appraiom.

One ideal feature of the expressions provided leywBn and Jenkins (2006) is
that they address the second factor we identifieva for the possible lack of
statistical inference in applied research — eassef This factor seems important, as
it has been identified by others (see, e.g., G684 and Davidson, 2009), in
explaining the lack of use of asymptotic varianmarfulae and subsequent hypothesis
testing in applied inequality research. Asymptetdances obtained via the
linearization approach avoid the calculation obéeptially complicated variance-
covariance matrix that arises with the usatethod. Indeed, the variances can be
obtained with minimal coding in standard softwaaekages. One element not
covered by Biewen and Jenkins, as well as the aibent references that account for
complex sampling, is that they do not examine tements arising from a
decomposition analysis, such as the “between” antthin” components or any share
measures that may be generated from these pagtsoniposing inequality measures
is standard applied practice. In addition, Biewed Jenkins do not indicate how to
extend the approach to test hypotheses involvimgammore inequality measurgs.

Our goal is to provide these missing pieces. RerAtkinson and Generalized
Entropy families, we give linearization expressiémssub-group decomposition
measures, the between and within components arsdiflegroup shares of overall
inequality, describing how to use these in standaftivare packages to generate
estimates of asymptotic variances with only a fe®d of code. In addition, we

show explicitly how to easily extend the methodadculate asymptotic variance-

% For their empirical application, Biewen and Jesk{p006) simply provide values of statistics for
significance testing and a test statistic for éetifnce hypothesis.



covariance matrices so that Wald statistics cafotmed to test hypotheses involving
two or more inequality measures. In particular,omeer testing the equivalence of
inequality measures that may be simple inequaiitijces, sub-group decomposition
indices, between and within measures and grougslwdroverall inequality.
Modified statistics that account for small sampldegign degrees of freedom are also
given. As in Biewen and Jenkins (2006), our exgitess are applicable to the study
of inequality of not just income but many other eding variables such as wages,
years of schooling, height-for-age etc. Consedyethie results should be of interest
to a wide range of empirical researchers in varfalds.

We illustrate using Indian data from three NatioRamily and Health Surveys
(1992/93 (NFHS-1), 1998/99 (NFHS-2) and 2005/06HISF3)), examining
children’s height-for-age, an anthropometric meashat can indicate growth
retardation and cumulative growth deficits, suggestf long-term malnutrition. The
sampling design involved an urban/rural stratifimatvith one or two stages of
clustering prior to the selection of households addition to providing variance
estimates for simple inequality indices, sub-grdepomposition measures and sub-
group shares of overall inequality, based on thanfrural split, we undertake tests
of equality of these measures across the threegsinA brief examination of gender
differences in inequality is also provided. Inti&s been experiencing rapid
economic growth since the 1990s along with povertiuction. However, this has
been accompanied by rising economic inequalityiwitliban areas and also between
urban and rural sectors. But as Deaton and D2@2( p.3744) rightly askVhat
about other types of social inequality, involvirther dimensions of well-
being....... ?”. Clearly health is an important dimemsof well-being and health
inequality among children is a worthy issue to ex@l Testing across surveys allows
us to answer what has been happening to healthaliggamong children over time.

Health inequality has been studied by others, winvinicingly argue that
measures of health inequality are important inrtbein right and not just because of
the possible correlation between income and hed&tdom (2006) estimates cross-
country inequality in life expectancy over the peril980-2000 using three different

inequality measures. Gini coefficients for healtld @ducation using Latin American



children’s height data and data on years of schgdbr women aged 22-30 are
calculated by Sahn and Younger (2006). Heightuaéty among adults in Sub-
Saharan Africa is the subject of Moradi and Bat¢R@05) work. Pradhan et al.
(2003) decompose world health inequality, as meashy height inequality among
pre-school children, into within-country and betwamuntry inequality using one of
Theil’s (1967) measures. Neither Ram (2006), Moaad Baten (2005) nor Pradhan
et al. (2003) report standard errors associated twéir inequality measures and
despite concluding differences in the numericaheses, they do not undertake
formal hypothesis testing. While Sahn and Your{@606) report standard errors and
undertake significance testing, they do not mentiow they obtain their standard
errors. Our work is directly relevant to such s#sgdas data are typically obtained
from Demographic and Health Surveys, which emptogtiied multi-stage cluster
sampling.

As bootstrapping offers a viable alternative to camsidered method, albeit less
computationally friendly, we also provide standartbr estimates and hypothesis test
p-values from a bootstrap experiment that allowste complex survey design.
Undertaking inference for inequality measures atbtrapping was first proposed
by Mills and Zandvakili (1997), who examine the Ginefficient along with the two
Theil (1967) measures, and extended to all the Géped Entropy and Atkinson
indices by Biewen (2002). Since the publicatiomMifs and Zandavakili (1997),
applied researchers in this area have begun usgagnpling methods to undertake
statistical inference, such as for standard estmates and p-values; e.g., Barrett et
al. (2000), Gray et al. (2003a), Mills and Zand\ig}Z004) and Davidson (2009).
Some of these studies use complex survey datathat accounted for when
undertaking their bootstrap experiments, leadingappropriate standard errors and
p-values. Our bootstrap samples, on the other,Fmedirawn allowing for the
complex survey. Finally, we use the linearizatioethod to calculate variance-
covariance matrices (and subsequent test stajisticer a false iid assumption but

allowing for sampling weights. Although this lastse misinterprets the role weights

* A novel feature of our work compared with thaBaéwen and Jenkins (2006).



play under an iid assumption, it is a useful iltagon of an error that might
inadvertently arise in applied research.

The paper is organized as follows. Section 2 wesithe inequality measures
considered in our work. Our results on the estimsadf the variance-covariance
matrices and subsequent inference are presensattion 3. Section 4 describes our
setup for the bootstrap experiment for the appboat The setting, data and results
from the empirical illustration are detailed in 8ex 5 and section 6 concludes.

Relevant formulae are provided in an appendix.

I1. Inequality measures
Many measures, or indices, of inequality can baiabt from a population, each

with a different sensitivity to inequality in theper or lower tail of the distribution.

We examine indices that belong to the GeneralizetRy (GE) clasd&g, and

Atkinson (A) class| . Theil's (1967) two information indices are spéciases:
specifically, the Theil-1 indexy4, arises when - 1, whereas the Theil?2ndex, k»,
results by lettingt — 0. In addition, settingt = 2 gives half of the coefficient of
variation squared. Accordingly, the parametetetermines the sensitivity of the
index to inequality; changes in the underlyingritisttion’s upper tail are more
important for larger positiva while a greater response to inequality in the lotai
occurs wher becomes more negative. The parame(ed) for the Atkinson
indices is often called the inequality aversionapagter (or preference for equality
parameter), as larger values lead to greater setysio inequality in the lower tail
(or more aversion to inequality). Each membehefAtkinson family of inequality
measures has an ordinally equivalent member d&théamily (but notvice versa
For consistency, we adopt the basic setup of BieamehJenkins (2006), where
each inequality measure is written in terms of pafjian totals of the variable of

interest (denoted as y) that captures some aspeslebeing

® Also often termed the mean logarithmic deviation.



L Np M;

Ug = Z Z Z(Yhu) (1)

h=li=1j=1

Tg= z z zl(yhu) (logynij) (2

h=1i=1 j=1

summed over the stages of the complex survey saghgésign, assumed to involve
h=1,...,L strata, i=1,...,Nclusters in stratum h and j=1,...,Mdividuals in cluster i.
The parameted is predetermined by which particular index is addpbeing either O
or 1 for the T totals and 0,d&,or (1<) for the U totals. Note thatdis then the finite
population size. It will not matter whether there enore stages of sampling beyond
these, as the nonparametric variance estimatanigpuated from the quantities
formed from the Multimate clusters.

Given (1) and (2), the population indices we exahare

|%E:(a2—a)‘1(u8‘1ul‘°‘ua —1), a 00\ {01} (3)
|T1:T1U1‘1—|og(ulu51), a1 (4)
lto = —T0U51+Iog(U1U61), a-0 (5)
15 =1- Ut @ ®u e ez 021 (6)
15 =1- UOU[lexp(TOU(_)l), g1 (7)

Estimators of these indicé&,E,TTl, 12, Ti and flA , are generated by using the

complex survey sample totals

Np Mj
UG = Z Z thlj(yhlj) (8)
h=1li=1j=1
T@ = z Z lehu (Yhu) (logynij) ()]
h=1i=1 j=1

where R is the number of sampled first stage clustersmnd the number of
sampled units in cluster i. As the complex surdegign results in units with
(usually) different probabilities of being sampléae weight, w;, is included to

® See, for example, Cochran (1977) and Skinner. é1889).
' See, for instance, Cowell (1989).



account for such differential sampling rates, idiidn to any adjustments for
nonresponse and inadequate frame coverage.

Each of these inequality measures is decomposgalileat total inequality of the
population can be subdivided into a weighted awe@ddhe inequality within chosen
sub-groups of the population (the “within” compot)eand the inequality between
these sub-groups (the “between” component). Sobpy are typically based on
grouping together units that share a common featoréenstance: place of residence;
gender; race; educational attainment of the houddtead.. Specifically, we suppose
the population comprises G mutually exclusive axttbestive sub-groups (g=1,...,

G) with sub-group population totals

gUe = z Z Z gPnij(Yni))~ (10)
h=1i=1 j=1
L Ny M,

gTo =2, D. D gDni (Yhij)®(logypij) (11)
h=li=1 j=1

wheregDyj is a dummy variable that is 1 when unit hij bel®ig sub-group g, 0

otherwise. Then, the sub-group inequality measare

o1%e = (02 -a) H(GUE (U (gUa) -1, a OO\ {01 (12)
o111 =T (UTY ~log{(gUp(gUsh), o 1 (13)
g72 = ~(gTo)(gUah) +logl(gU(gUsh). o - 0 (14)
ol% =1-(Ugt ) (GUHUTE ™), e20e 21 (15)
ath =1-(gUo) (Ui extlgTo)gU3h). € - 1 (16)

The decomposition is additive when the index (3aatisfies the constraint

I=§:wg|g+B=W+B a7
g=1
where for the g'th sub-group (g=1,..., Gyid the inequality index and is the
weight function that depends only on sub-group reeam population sizes. The
terms B and W are, respectively, the “between” ‘avithin” components, with the

sub-group inequality indices only entering via Whis decomposition is empirically



useful as then total inequality is the sum of entéV, which considers the inequality
within each population sub-group plus the termwBich is the inequality arising
when there is no inequality within each group. dging inequality in such a manner
provides information on possible causes of inedy#iat may prove useful to policy
makers. GE indices are additively decomposabtkisnway, whereas A indices
cannot be decomposed additively into inter- angaigtoup components. However,
defining B and W as before, for an arbitrary A inde we have the decomposition
(1-1)=(@1-B)1-wW) (18)
or, equivalently, 1=W + B - WB. Given these definitions, Table 1 provides the
weights for the within component and the betweeasuee for each of our

considered inequality indices. Here on, we detiwevithin components for the
indices asW@g, Wry, Wy,, W& and W5 , and the between componentsBge,
Bt1, By, Biand BlA. Point estimates are obtained by replacing tipeifadion
totals with their sample counterparts — we denweestimators a\fng, VAVT11
Wrp, WX, Wi, Bg, Bry, Bro, BhandBj.

Empirically, interest also lies with the sharedh#se components to total

inequality. Specifically: the contribution of thetween component to overall
inequality (S%e , Stig , St2.8 » S g andSh g ) where, generically,sS= BII; the
share of the within component to overall inequa(l%E,W » STIW s ST2,W

SsA,W andSlA,W ) where, generically,ws= W/I; and the proportion of total inequality

taken by the within-group component of sub-groq@%E,W, gSTLIW  gST2,W

G
oSh.w and 4Sh v ) where, genericallySy = W/l with W =>" ;W . Estimators of
o=1

these shares, denoted with a circumflex, are forasaty the relevant sample
counterparts. Note thag8Sy = 1 for the GE indices, but not for the A measures.
Despite this shortcoming for the latter indice®, share information still provides

guidance on how inequality is changing from, foample, one survey to another.
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TABLE 1

GE and A indices: between component and weighthéwithin component

Index Weight Between

15 1/(1-¢)
A gU]- 1_ zG: (gul—s/Ul—s)
/(1-
U; = (gUo/Uo)E( )
1 -1
Ia U G
gv1 Up
U 1-(exp(To/ Uy)) Z(gu—JeprgTolgUO)
1 g=1 0
Note: The table provides the weights used to form th@iwicomponent for each index; i.e.,
G
W = nglg, where | is the g'th sub-group’s inequality index (g=1,...,G)
g=1

We now turn to obtaining nonparametric estimatdrhe variances of the
inequality statistics, along with an estimatortwg ariance-covariance matrix of any

linear combination of two or more of these statstneeded for hypothesis tests.

I11.1nference using linearization estimator s of variance-covariance matrices

Having estimated the sample inequality measuresiometurn to estimating

sampling variability along with undertaking hypatigetests involving two or more
inequality measures, taking account of the compiexey design. Questions might
include: Are sub-group inequality indices equ&l@s inequality changed from one
survey to another? Do the sub-groups have equlinnghares? Are the shares equal
across two or more surveys? To address such quosstve propose use of a

linearization estimator, formed via a first-ordexylor series approximation, of the

11



relevant variance-covariance matrix when formingappropriate Wald statistic.
This method, which straightforwardly accommodakesdomplex survey design,
avoids complicated covariance calculations tharoéirise with thé-method,

formed from the same Taylor series approximatiee(e.g., Cowell, 1989; Schluter
and Trede, 2002; Van de gaer et al., 1999; Bhadtgeh 2007).

To be general, le@ =[34,...,9¢ ] be a K-dimensional vector of inequality

guantities; e.gQ might contain sub-group inequality measures feutaey or
consist of inequality indices for several surveyge consider testing the null
hypothesis RRRQ = r against a two-sided alternative hypothesiagisi Wald

statistic, where R is a nonstochasti<gmatrix and r is a nonstochastic g-
dimensional vector. Le® =[$;,....9¢] be the estimator & formed using the
relevant inequality estimators defined in sectioriT®en, the usual Wald statistic is
wT =(RQ-r)[varRa -n[ {rRA 1), (19)
where Vér(sz -nN= RVA(Q)R' is an estimator of the asymptotic variance-
covariance matrix o(sz -r). Obtaining the so-called linearization rule for
var(Q)is our focus in this section; we denote this estimasvar, (Q).2 Each
inequality measure if is a nonlinear function of relevant population Istdg, Ty,
gUe and 4Ty - we suppose there are P distinct populationgatséd in forming
placed in a vecto® =[qy,....qp]" ; i.€., Q =f (D) =[f1(P),...,fx (P)]'. To make this

notation concrete, as an illustration, suppose &8 o test the equality of three sub-

0
r= and
0
®=[1Ty N1 3f1 1U; 2U; 3U; 1Ug 2Ugp 3Uql.

Let ® be a consistent estimator®dfand assume f(.) is appropriately differentiable.

group Theil-1 indices; i.eHg : 1l11=2171=3lT1. Then, K=3, q=2,

1 -1 0
1 0 -1|

P=9.Q =[1l11 2l11 3lmal’» Q=l1l11 2lm1 3lmal' R =[

A first-order Taylor series approximation is then:

8 Our approach extends that of Biewen and Jenkid@§Rto the vector case. It is based on Woodruff
(1971), who extended some results due to Keyf@b7). The survey literature usually terms this the
“linearization method” for variance estimation; seey., Skinner et al., (1989, pp50-51 and p54).

12



A~ ~ P "
Q =f(®) Of (®) + > FP(D)(@, ~9p) ,
p=1

wheref P (o) = of (P)/9¢, is a K-dimensional vector of partial derivativekhe

asymptotic variance-covariance matrix®fs then approximated by

Va{if p(q:)EppJ = Var(F(®)d) (20)

p=1
where F@) is the K«P derivative matrix. Noting thatar(F(®)®) =
F(®)Var(®)F(®)' leads to the usudmethod estimator that requires evaluation of the

PxP variance-covariance matrix @f, which can be difficult, especially with the

complex survey design. The “linearization methaddids generating this matrix by

L Ny M;
rewriting (20) in an alternative manner. Specificaas® =>" > > ty;, where jis
h=1i=1 j=1

a P-dimensional vector with p'th elemepiit we havé

P R Nh M,
Va{zf p(q:’)(PpJ Va{Zf p(q))z Zzwhlj p, huJ
p=1

=1 h=1i=1j=1

F}r

n, m; p L ny
Whij[zfp(‘b)tp,hij] =Var > [ZWhthu] (21)

:1]:1 h=1li=1

0
1

1i

P

where yp; = Zf p(d))tpyhij . Assumingd® (i) the ultimate clusters selected within
p=1

strata are independent; (ii) thesampled units within each stratum h are selected

with replacement} and (iii) n,> 2, we obtain the linearization estimator

® For our illustration,dj = [:Dnj(Yni) (109 Yhi) 2Dri(Yni) (109 Yhij) sDrij(Yni) 10G Yhi) 1Dni (Vi) 2Dni (Vi)
2Dhu(Yhu) thu 2Dhu 3Dhu]

% See, for example, Skinner et al. (1989, p47).
1 This assumption is usually always violated withveys, in which case the formula generally leads
to overestimation. An alternative assumption is tha i, ultimate clusters within stratum h form a
simple random sample without replacement from tretiam, h=1,...,L; see, e.g., Kalton (1977). This
results in adding a finite population correctiomatving the factor (fNy). The correction adds little
when this factor is small, as is often the case.

13



R L Nyl m
Van (Q)=Var )’ lewhithij]

h=1i=1| j=1

L m;
= znhVé{ZWhithij] (22)
h=1 =

where yp;; is yp;j with ®replacing® in the derivatives; we denote the k'th element of
Yhij @S Vi hij» k=1,...,K.  Switching the summation order has catlithe problem to

one of obtaining a variance-covariance matrix ftotal; e.g., Cochran (1977) and
Skinner et al. (1989). Applying standard formuliee, linearization method estimator

of the variance-covariance matrix is then

Var (Q) =

N, M; N M;

L | 2.2, wrifhi | 2.2 whifh
2 jZ:iwhij\/hij‘—’ o || i = ——

h=1 i=1 j=1 M

(23)

The elements of this matrix provide variance eators for each individual
inequality measure on the diagonal and covariastimators on the off-diagonals.
Standard software packages can easily generatedimsated variance-covariance
matrix. For instance, with Stata (StataCorp., 2@0ter defining the survey’s strata,
ultimate cluster and weight variables, along wigémerating each element of the

vector yy;j, use of thesvy: totalcommand generates the matrix (23). To enable each

of the inequality measures reported in section@tpart of any hypothesis test, in
addition to providing a linearization method stamderror, we need formulae to

generate a correspondipgy;. We provide these in the appentfixNote that we do

not provide explicit formulae for generating thedarization method variances for the

2|n the appendix, for consistency we also repatafuations for the full sample inequality indices
obtained by Biewens and Jenkins (2006). The testur knowledge, are new.

14



estimated between component shares for membehg GE family because they are
the same as for the within components. This issndbr Atkinson indices.

A substantial body of research exists on the asytiggproperties of complex
survey estimators of totals, smooth/nonsmooth iinealinear functions of totals,
and the corresponding linearization variance/cewane estimators: e.g., Krewski and
Rao (1981) and Rao and Wu (1988). Most assumerejfifacement selection of the
primary sampling units, in which case Krewski arabR (1981) analysis establishes
consistency of the total estimators and smoothineat functions of them, as used
for our inequality measures. Asymptotic normaiéylso shown, along with
consistency of variance estimators using the linaion method. Key is that there
are no isolated, influential, values in the clustefApplying these results to without
replacement sampling typically follows directly whihe sampling fraction£n,/Np
is small, as is usual with the surveys used to ig@eenequality measures. Further,
when the analysis assumes that it is the total mambclusters that goes to infinity
(with fixed and finite secondary stage units axedi number of strata), sampling
with or without replacement has no effect on thgrgstotic results; e.qg.,
Bhattacharya (2005, 2007). Accordingly, we asstimat our inequality estimators

are consistent and asymptotically normal with thedrization method variance

estimator also consistent. So, WT usig, (Q), denoted as WT is approximately
xé under its null hypothesis.

Although unlikely to arise with most socio-econordatasets, inverting the

variance-covariance matnisr, (Q) may be an issue when the number of sampled
clusters relative to the number of strata (Enh -L ) is small compared to K, the

dimension ofQ .** One way to proceed is to use the estimated \@ianvariance
matrix under simple random sampling, then adjustie design effects of complex
sampling (see, e.g., Skinner et al., 1989, pp E)-1The adjusted Wald statistic is

WT, o= (RO -1 [RVarsrd ORT RO - ictr(5) ) (24)

13 The effective number of degrees of freedom (usdene assumptions) lies between the smallest of
the (n-1)'s andZnh -L, but is usually assumed to be the latter for thrgey.

15



where Vargrg(Q) is the estimated variance-covariance matrix undémgle random
sampling assumptiore = (tr(%))/tr(£?) and

5 = (RVarspgdQ)R") " (RVar (Q)R)) (25)
is the design effect measure. The asymptoticdisitibution of WT_ a4 iS

approximated by that of g2 variate.

To end this section, we comment on the applidgtoli our results to two other
sampling schemes: simple random sampling (SRS)remeery unit has an identical
chance of being selected into the sample; andrdgriéntly studied iid framework
where, for the i'th unit, the variable of well-bginy;, and weight, w are viewed as
iid draws from a population (y, w). Nicely, ourstdts are easily modified to handle
both cases. Under SRS, a self-weighting desigmevheinits are selected (with
replacement) from a finite population of N, thenforiae in the appendix apply with
the sampling weights either ignored or simply set for all units, and the summation
is over i=1,....,n rather than over the various stagfe¢he complex survey design.
The iid framework regards the inequality measura asction of population
moments rather than population totals, with thattrent of the weights being
different than under a complex survey desigmespite these disparities, the
numerical estimates of linearization variance-c@rare matrices can be obtained
using the formulae in the appendix with the sumamalieing over i=1,...,n rather

than over the stages of the complex survey design.

IV.Inference using bootstrapping

Maintaining the general notation from the previsastion, we first outline how we

obtained a bootstrap variance-covariance estinfiatdahe nonlinear estimator

Q =f(®) ; we denote this estimator &rg7(Q) ."> The method, which involves the
following steps for each bootstrap sample, guaeantieat the replicate sample has

the same sampling design as the parent samplestéps, V1 through V5, are:

14 For example, Cowell (1989), Van de gaer et al9g)9Biewen and Jenkins (2006).
15 Our outlined approach is commonly termed the fesgaootstrap (e.g., Rao and Wu, 1988).
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V1.Draw a simple random sample gfatusters with replacement from the clusters
within stratum h independently for each stratumi(hz,L).*°

V2.When a cluster is selected into the bootstegticate, all secondary and
successive units from the selected cluster arenegtaalong with their

corresponding sampling weights.
V3.Let rﬁ’i (O< rﬁ’i <n,,) be the number of times that cluster i from strajusn
included in bootstrap replicate b. The bootst@psing weight is then
WEij = Whijrr?i (26)
so thatwf; = 0if cluster i is not selected in the b'th bootstszmple’’
V4.Let ®° be the estimated using the p’th bootstrap totzii%formed from replicate

b. Specifically, with® = 0, 1 ora, depending on the term of intere&s@,will be

one of the following totals:

Ab L
Uezz

h=1i

Np

m
thlj (yhlj)

=1 |

WRij (Yhij)e(log Yhij) -

Mn—

L
Ug Z WEij (g Dhij)(yhij)e,

R L
g 6b: Z _ Whu(gDhlj)(Yhu) (logyhjj) -

Then form the bootstrap copy @f QP = (®P).

V5. Repeat steps V1-V4Rimes to give B bootstrap estimators 6f, Q',...QBv

and compute the bootstrap estimator of the variaogariance matrix:

16 Undertaking the resampling with replacement sifigslithe procedure and should not be an issue
with most surveys used to generate inequality nreasuAlthough the number of clusters to be
resampled is often chosen to bg-{)to ensure unbiased estimation (at least asyinplly), it is
computationally easier with Stata to selgcthusters from each strata. The effect of thimiisimal in
our case given the large number of clusters irstiteeys.

" Modifying the sampling weight by ¢ffn.-1)) occurs when (pl) clusters are drawn — see footnote
16.
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Vg (@ =13 (6" - 66" -a) (27)

V' Tb=1
We set B = 200. Aside from providing standard errors, thile is used to form
a bootstrapped sample value of any Wald stati&iiceference; specifically, we
form WTg = (Rf) - r)’ [RVérBT(f))R’]_l(sz —r). Turning to bootstrapping p-
values, we undertake a double bootstrap with theviong steps.
W1.Undertake steps V1 to V4 above to give the {istl) bootstrap sample with its
estimator of, Q! =f(d).

W2.Treating this first bootstrap replicate as theept sample, repeat steps V1 to V4

again to give B estimates of2, é%fz}gv . Form the associated estimator of

the variance-covariance matrix for this first bowatp replicate sample:
A 1 OBV N A
Vargr (@) =——>" (Q};, - Ql)(Q%) - Ql) : (28)
Bv -1i3
W3.Form the associated bootstrap Wald statistic:
~ ~\ R ~ -1 [~ ~

WTgt = (Ql - Q) R'[RVarBT(Ql)R'] R(Ql - Q), (29)
where, recallQ is the original sample’s estimate®@fand is used to so-call
centre the statistic because our data may not lbeee drawn from a population

that satisfies bl see, e.g., Hall and Wilson (1991).
W4.Repeat steps W1 through W@ Bmes to obtain & values of

WT: WT,_%,T,...WT,';}N . We choose B = 99 to correspond with a nominal 10% or

Bw
5% level'® The bootstrapped p-value jis= [ZI(WTET >WTgT) +1J I(By +1).
b=1

18 Given a nominal level for the test@§,, a choice of B that leads tay(Bw+1) being an integer
results in an exact Monte Carlo test when thesdtatis pivotal; Dufour and Kiviet (1998). For a
nonpivotal statistic (as is ours) it is not necegsa choose i in such a way, but, as advocated by (for
example) Davidson and MacKinnon (2000), it wouldreaeasonable to still follow such a practice.
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V. Empirical example: height inequality among Indian children

Here we apply some of our results to study heakiguality among Indian children,
based on the anthropometric measure height. Asaaled analysis of health
inequality among Indian children is beyond our sayr example illustrates, using a
policy-relevant problem, the usefulness of statadtiesting involving the simple
inequality indices or their decompositions, as waslkhe effectiveness of our
proposed methods compared to the computationatlyemsome bootstrapping
procedure. For space reasons, we only reporttsassihg the Theil-1 measurts.

We provide standard errors for simple inequalityices and sub-group
decomposition measures based on an urban/rurglaplivell as undertake tests for
equality of these measures across two or threeegsirdetails of which are provided
in the next subsection. Whether rural and urbgiores differ in health inequality, as
represented by children’s height inequality, isndérest given the strong evidence of
varying economic inequality across these regiorgs,(Beaton and Dréze, 2002). We
also examine gender differences in height ineqyaditconcern given the debate on
whether girls and boys are equally well cared foe tb the preference for sons,
particularly in rural districts. This predilectioformed from social, cultural,
economic and religious desires and norms, suggestshere may be health and
nutritional discrimination against girféwhich may show up in health inequality
measures. In particular, as argued by, for ingtalioradi and Baten (2005), poorer
households may reduce resources allocated tovghils maintaining those for boys
in leaner times, which may show up as genderdiffees in health inequality.

For each case, we compare the linearization outsawite those from two other
scenarios: (i) assuming (incorrectly) that the dtadized heights and the sample
weights are iid draws from a common population; @pdrom using the bootstrap

procedure described in section 4, designed to atdouthe complex survey design.

19 Results for other measures are available on réques

% For instance, Kadi et al. (1996) and Tarozzi arahBjan (2007) report that girls are more
nutritionally deprived compared to boys. In costy&riffiths et al. (2002) and Marcoux (2002),
among others, find little evidence of gender défeials in food consumption.
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Survey design and data characteristics

Our data come from the three Indian National Fadialth Surveys (NFHS),
conducted under the agency of the Internationditirie for Population Sciences
(IIPS): NFHS-1 (1992/93), NFHS-2 (1998/99) and (2008). All states and the
National Capital Territory of Delfit are included, providing indicators on family
welfare, maternal and child health, and nutriibrDue to coverage differences
between surveys, we only include children (i) whosehers were interviewed with
the Women'’s Questionnaire, (ii) who are less tlnmed years of age and (iii) who
lived in states other than Sikkim, Andhra Pradésimachal Pradesh, Madhya
Pradesh, Tamil Nadu and West Bengal. This result@@,410 children from NFHS-
1, 18,520 children from NFHS-2 and 18,146 childirem NFHS-3.

Stratified multi-stage cluster sampling generatexidata with the design being
roughly similar for each survey. We sketch outkbg stages from NFHS-3; see
IIPS (2007a,b; 2000; 1995) for full details. Eatdtes was sampled separately with
urban and rural areas forming the first stageatratvo phases of cluster sampling
came next for rural regions: random selection hges followed by households. A
three-stage procedure was adopted for urban aelestion of wards followed by
census enumeration blocks followed by householits.average, 30 households were
targeted for interviewing from each village or cemgnumeration block. This
sampling scheme results in the number of clusterexXceeding the number of strata
so that testing should not suffer from a shortdgeampling design degrees of
freedom?® The survey method also ensured self-weightirthetiomain level (i.e.,
the urban and rural areas of each state) so thhtasld in the same domain has a
common sampling weight (the inverse of the prolgiif selection).

Prior to estimating height inequalities, we accdontnatural/biological median
height differences of children across gender amdggconverting the individual
heights into percent-of-median, which is simply bieéght of an individual child

relative to the median height of comparable childrea reference population,

2L Covering more than 99 percent of India’s populgtiother union territories were not surveyed.
22 See International Institute for Population Scien@907a, b; 2000; 1995) for full details.
% gpecifically, there are 559 clusters for NFHS-49 Sor NFHS-2 and 2719 for NFHS-3.
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expressed as a percentdgelhe current reference population group is thelvor
Health Organization’s (WHO) Child Growth Standaf@d¢HO Multicentre Growth
Reference Study Group, 2006; WHO, 2006), formethfeomultiethnic sample of
healthy children; we refer to this as the WHO-MG&&hdard. Specifically, leiga

be the height of the ith Indian child of gendemg aged month a (g=1 when the child
is a boy, 2 when the child is a girl; a=0,...,35et Mdy, be the median from the
WHO-MGRS standard for a child of gender g and ageraonths. The percent-of-
median is Ba = 100(y/Mdgs); when gender and age is not of issue, we dehstas
R. For example, if a 6-month old boy’s height is3&3ns then his;P96.6% as the
WHO-MGRS median height is 67.6236cms for a 6-madhboy.

Using percent-of-median does not account for thierahvariability in height,
normal for healthy children, around the median heithat differs across and within
age and gender groups. We believe this is liketyam issue when examining total
inequality over surveys, as it seems reasonatdsgome that the natural inequality in
our Indian children is fairly stable over the tifneme of our study and across
regions. However, care is needed when considgender differences in inequality,
as natural inequality varies significantly acrosg$and girls, dependent on age. For
this case, we estimate the natural inequality kintpappropriate draws of children’s

height from the WHO-MGRS reference growth curvége now turn to our results.

Overall inequality

Table 2 provides the estimated inequality inditgs,along with standard errors for
the three surveys. For each case, we report sha@elard error estimates based on:
our proposed linearization method, a (false) isuasption with weights and the
bootstrap approach that accounts for the complesegisample design; these are
denoted as sesep and ser respectively. Irrespective of index, we see that
inequality has declined over the three surveyd) tie change between NFHS-2 and
NFHS-3 being far more than the decline that occlbetween NFHS-2 and NFHS-1.

That the standard errors allowing for the complaxesy design are larger than those

% See, e.g., Gershwin et al. (2000, pp. 7-8). ®sithat use percent-of-median include Prudhon et al
(1996) and Zainah et al. (2001).
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under the false iid assumption (by, approximat@¥, to 24%) highlights the
importance of taking account of the design wheimeding standard errors, the
heterogeneity between and within clusters increptfia variance from the iid case.
Typically, the linearization and bootstrap standamars are in close agreement.
Given the ease of forming the linearization stadaarors compared to coding the
bootstrap, these outcomes support using the foapioach.

How do these inequality outcomes compare with ttiasa a sample of
“healthy” children? To examine this, we drew ramdsamples of children’s height
from the distributions that generated the WHO MGR&wth curves, with samples
constructed to match the age/gender structureabf B&HS survey. Drawing
samples in this way ensures that we allow for iferénces in natural inequality
across age and gender. The corresponding NFH&i8 T'imdex is 6.169E-04 with
that for the other surveys being minimally differehe inequality for our Indian
children is over four times that of the naturalgunality of healthy children, which
provides some indication of the disparities in tteaf Indian children and the

relevance of examining whether inequality has ckdng

TABLE 2
Estimates of overall height inequality using THednd standard errors
NFHS-1 NFHS-2 NFHS-3 % change % change % change
(1992/93)  (1998/99)  (2005/06)  NFHS-2 NFHS-3 NFHS-3
INFHS-1 INFHS-1 INFHS-2
I 2.655E-03  2.609E-03  2.263E-03  -1.73% -14.76% -18.26
s 4.635E-05  3.919E-05  3.734E-05
s@i 3.543E-05  3.405E-05  3.414E-05
Sesr A4.772E-05  3.644E-05  3.944E-05

Note: The standard error obtained via the linearizati@thod (accounting for the complex survey) is
denoted by se that from the linearization approach assumintp€lg) that sampling is iid with

weights as sg and that from the bootstrap method (allowing fer tomplex survey) by se

Returning back to the results in Table 2, havimgdard error estimates enables
us to ask whether the changes in the indices atistgtally significant. Outcomes

from hypothesis tests to address this questiogiass in Table 3. We provide Wald
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statistics, associated and bootstrapped p-values from four tests: s fimee test
equality of indices across two surveys while therfio test is for equality of the

indices across the three surveys. Results aretegposing the three different
approaches to estimating variances. We denote $¥aiidtics by WT, Wp and

WTgr and associated p-values hy pip and gr. We assume that the samples across
surveys are independent, allowing the variancéefifference in inequality indices

to be the sum of the variances from each individuavey. This is a reasonable

assumption, as the clusters are sampled indepépndiemh one survey to another.

TABLE 3
Testing whether overall inequality has changed asrsurveys using Theil 1
Hypothesis test
NFHS-1= NFHS-2= NFHS-1= NFHS-1=
NFHS-2 NFHS-3 NFHS-3 NFHS-2=
NFHS-3

WT, (p) 0.586 (0.444) 40.956 (0.000) 43.573 (0.000) 59.@L000)
WTp (Pip) 0.894 (0.344) 51.617 (0.000) 63.764 (0.000) 73 (08000)
WTar (psr) 0.599 (0.500) 41.625 (0.010) 40.281 (0.010) 53.@0010)

Notes:The table reports Wald statistics and associatealyes for equality of indices. The subscripts
are: L = complex survey linearization; 11D = iidtlwiweights linearization; BT= complex survey
bootstrap.

Turning to the test outcomes, the change betwedtSNEFand NFHS-2 is not
statistically significant, while that between NFR&nd NFHS-3, and NFHS-1 and
NFHS-3 are statistically significant. The bootpteand linearization methods are in
close agreement, again supporting use of the lreg@m approach over the more
computationally intensive bootstrap. Using thedidcomes does not qualitatively
change the results. Our findings perhaps sughasthe high income growth
observed in India over the last 15 years or sddian time to impact health
inequality of children, as there is no significanange between NFHS-1 and NFHS-2
but there are strong declines in overall healtljuadity between NFHS-2 and NFHS-

3. One possibility for the delayed impact couldhadit persistence in food
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consumption, as it may take time for any incomedase to lead to consumption of

more nutritious food.

Inequality by place of residence and gender

In contrast to the previous subsection that exathomdy overall inequality measures,
this subsection contains results based on vargosggoups (sector- or gender-
specific) and on the decomposition of the overahjuality by place of residence
(rural or urban). Turning first to the urban seclitable 4 provides estimated Theil 1
indices, their percentage changes and standang éroon the three methods, and

Table 5 reports on tests across surveys.

TABLE 4

Urban sector: estimates of height inequality arahgtard errors for Theil 1

NFHS-1 NFHS-2 NFHS-3 % change % change % change
(1992/93) (1998/99) (2005/06) NFHS-2 NFHS-3 NFHS-3
INFHS-1 /INFHS-1 INFHS-2

U iTl 2.445E-03 2.140E-03 2.160E-03 -12.47% -11.66% 0.93%
s 8.297E-05 6.444E-05 6.830E-05
Sap 6.458E-05 5.721E-05 6.268E-05

SesT 8.953E-05 6.6290E-05 6.430E-05

Notes:The standard error obtained via the linearizatmthod (accounting for the complex survey) is
denoted by se that from the linearization approach assumintsélg) that sampling is iid with
weights as sg and that from the bootstrap method (allowing far tomplex survey) by gg The

subscript U iny TTl indicates index estimates for the urban sector.

The results in Table 4 highlight the importanceseétor-specific analysis, as the
observed decline in health inequality of childrecwred between NFHS-1 and
NFHS-2 for this sector, with minimal change (indeedominal increase) in
inequality between NFHS-2 and NFHS-3. This com¢rasth the findings observed
for overall inequality. In terms of standard es;ahose under the false iid
assumption are again smaller than those that atémutihhe complex survey design,
more so for NFHS-1 than for the other two surv&ys.again observe that the

bootstrap and linearization standard errors agtage agreement.
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The hypothesis test outcomes provided in Tableppai the statistical
significance of the inequality change between it fwo surveys but that there is no
significant change in inequality between NFHS-2 Ai#HS-3. The outcomes are

gualitatively consistent across the methods usegnerate variances.

TABLE 5
Testing whether height inequality of urban childreas changed using Theil 1

Hypothesis test

NFHS-1= NFHS-2= NFHS-1= NFHS-1=
NFHS-2 NFHS-3 NFHS-3 NFHS-2=
NFHS-3
WT. (o) 8.428 (0.004) 0.047 (0.828) 7.011 (0.008) 9.650Q8)
WTio (Puo) 12.496 (0.000) 0.058 (0.810) 9.997 (0.002) 14.(03801)
WTgr (Per) 7.495 (0.040) 0.049 (0.800) 6.664 (0.020) 8.39030)

Notes:The table reports Wald statistics and associatealyes for equality of urban indices. The
subscripts are: L = complex survey linearizatiob; # iid with weights linearization; BT= complex

survey bootstrap.

Our findings on urban health inequality contragtmhose on urban income
inequality (at least for the 1990s); e.g., Deatod Bréze (2002). This highlights the
importance of exploring the impact of the econoreiorms on not just income or per
capita consumption expenditure inequality but als@ther social inequality
measures such as children’s health inequalitydéfiom examining raw
decomposition measures by region of residencg alsio of interest to ascertain the
contribution of the between component to total uradiy and how this share has
changed across surveys. We report this informatidrables 6 and 7; Table 6
provides estimates of shares along with standaciseusing the three variance
methods and Table 7 details outcomes from hypahests.

Around 1% of total health inequality arises froreguality between the rural and
urban sectors, implying that the majority of inelifjyarises from within each sector.
The standard error estimates indicate, howevet ttiisasmall between component is
significantly different from zero, even allowingrfthe lower precision from the

complex survey design. This result contrasts witdst income inequality findings,
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where the between component often contributes toditee overall inequality than
the within componerft. It is useful to note, however, that our resukirsilar to that
of Pradhan et al. (2003), who, using children’gghedata, find that the within
country health inequality component dominates whddlth inequality. Here, we
find that this holds even within regions for arratountry study. Whether this is a
common finding for health inequality remains todeen. At least at the 5% level,
there is no evidence to suggest different betweeunpgshares across surveys when
using the complex survey linearization or bootstrapance estimates. However,
rejection of this null of equality occurs under taése iid assumption in two of the

four cases, highlighting, again, the importancaafounting for the survey design.

TABLE 6

Urban-rural between component shares and standenat®(%’s)

NFHS-1 NFHS-2 NFHS-3
(1992/93)  (1998/99)  (2005/06)

S 050% 1.04% 0.75%
sq 0.19% 0.22% 0.18%
sé 0.11% 0.16% 0.15%
seyr 0.23% 0.22% 0.17%

Note: The standard error obtained via the linearizatiwthod (accounting for the complex survey) is
denoted by se that from the linearization approach assumintsélg) that sampling is iid with

weights as s@ and that from the bootstrap method (allowing fer tomplex survey) by se

The final set of results we provide are given ibl€8, based on gender-specific
inequality. Health inequality indices for boys ayids are reported, along with
outcomes from hypothesis tests that examine whétkight inequality for girls is the
same as that for boys. Examining the estimategegainequality for girls is higher
than for boys, with the two-sided hypothesis t@sdtcating that this difference is

statistically significant, irrespective of methoskd to estimate the variancé8s.

% An example of an exception is Gray et al. (2008l report a 1% between-group inequality share
when comparing incomes of those born in Canadajgnamts who arrived before 1981, and
immigrants who arrived after 1981.

26 Interestingly, we see an example (NFHS-2 boys) wilee linearization and bootstrap standard
errors are marginally smaller than the iid standardr.
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TABLE 7

Testing whether the Theil 1 between group (urbaaljishare has changed

Hypothesis test

NFHS-1= NFHS-2= NFHS-1= NFHS-1=
NFHS-2 NFHS-3 NFHS-3 NFHS-2=
NFHS-3
S'I'l,B
WT, (p) 3.346 (0.067) 1.023 (0.312) 0.891 (0.345) 3.35187)
WTio (Puo) 7.328 (0.007) 1.688 (0.194) 1.691 (0.193) 7.45624)
WTgr (Per) 2.864 (0.100) 1.108 (0.290) 0.754 (0.320) 2.89240)

Note: The table reports Wald statistics and associatealyes for equality of urban/rural between
shares. . The subscripts are: L = complex suliwegrization; [ID = iid with weights linearization

BT= complex survey bootstrap.

However, these results do not allow for the vasrain natural inequality across

gender. To estimate this, we drew random samfblaeaithy children’s height from
the distributions used to generate the WHO-MGRSvtir@urves, with the samples
constructed to have the same age/gender struguerdNFHS samples. The boys

and girls natural inequality Theil-1 estimates frimase simulated samples of healthy

children, denotec[;i—'}'l and GT-’Fll respectively, are reported in the bottom part of

Table 8, along with the differencegi(Tl- Bf-'Fll) and (Gle-Gf-'Fll), so-called

adjusted inequalities, that estimate the inequalighildren’s height due to poor
health and nutrition. The genetic natural inedyath the heights of healthy girls (as
represented by percent-of-median) exceeds thaty, Imitigating much of the
observed inequality differences between our Inthays and girls when we do not

account for natural inequality. Indeed, althoughneported in the table, tests of the
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TABLE 8

Boys and girls: height inequality and standard esrasing Theil-1

NFHS-1 NFHS-2 NFHS-3 % change % change % change
(1992/93) (1998/99) (2005/06) NFHS-2  NFHS-3  NFHS-3
/INFHS-1  /NFHS-1  /NFHS-2

BlT1

2.561E-03 2.472E-03 2.153E-03 -3.48% -15.93% -1%.90

s 5.655E-05 4.278E-05 4.595E-05
sap 4.880E-05 4.326E-05 4.323E-05
set 5.696E-05 3.816E-05 4.784E-05
GiTl 2.752E-03 2.758E-03 2.383E-03 0.22% -13.41% -13.60%
sq 5.792E-05 5.956E-05 5.569E-05
sap 5.140E-05 5.335E-05 5.363E-05
set 5.935E-05 5.867E-05 5.980E-05
boys=girls
WT, 8.061 17.984 11.152
(po) (0.005) (0.000) (0.001)
WTp 7.311 17.333 11.168
(Pip) (0.007) (0.000) (0.001)
WTgr 8.248 18.911 9.883
(PeT) (0.010) (0.010) (0.010)
natural inequality
Bml 5.851E-04 5.788E-04 5.703E-04
Gi1’\'11 6.673E-04 6.706E-04 6.673E-04
adjusted inequality

(BTTl_BT'I’\'ll) 1.976E-04 1.893E-04 1.583E-04
(Gle_Gml) 2.085E-04 2.087E-04 1.716E-04

Notes:The subscript L denotes use of the linearizatiethwd (accounting for the complex survey) to

form variances, IID implies that the variances @vtained using the linearization approach under a

false iid assumption with weights, and BT refersht® bootstrap method that accommodates the

complex survey design. The subscript B and @TiﬁandGTTl, and BT1N1 and Gf-’Fll, indicate

Theil-1 index estimates for boys and girls respetji
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hypothesis thatéiTl-BT'T\'l) = (Gle-Gf’T\ll) confirm that we cannot reject equality

of these adjusted inequality measures, suggestatghese samples do not support

gender differences in health inequality, at leasha national level.

VI.Concluding comments

In this paper, we have considered undertaking émiee on GE and Atkinson
inequality indices when data are drawn under a ¢exmgurvey design. Variance-
covariance matrices are obtained via a linearinatiethod rather than tide
approach, so avoiding the calculation of often cersbme covariance expressions.
One of our key contributions is to obtain expressithat enable inference for the
components of common decompositions of the inetyualeasures, including
“between” and “within” elements and any subsequséiare measures generated from
these. A key benefit of using these expressiongference is ease of coding in
standard software packages (e.g., Stata), in @inttvrdhe coding that must be
undertaken to bootstrap variances and p-values.

Our illustrative application using height-for-agatal on Indian children from
three surveys highlights the importance of accogntor the stratified multi-stage
cluster sampling design and the (typically) simdatcomes obtained using the
linearization and bootstrap methods. This laftedihg is particularly encouraging
for applied researchers. Although it is uncleatoashether our findings can be
broadly generalized, as the sampling design degrfefesedom for our data are
relatively large, it is clear that the linearizatiapproach to inference provides a user

friendly way to undertake inference for inequalitgasures.
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