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Abstract 
We derive analytic expressions for the biases, to O(n-1) of the maximum likelihood estimators of the 
parameters of the generalized Pareto distribution. Using these expressions to bias-correct the 
estimators is found to be extremely effective in terms of bias reduction, and generally results in a 
small reduction in relative mean squared error. In general, the analytic bias-corrected estimators are 
also found to be superior to the alternative of bias-correction via the bootstrap.  
 

Keywords Bias reduction; Extreme values; Generalized Pareto distribution; Peaks over 
threshold 

 
Mathematics Subject Classification 62F10; 62F40; 62N02; 62N05 



 2

1. Introduction 

This paper discusses the calculation of analytic first-order bias expressions for the maximum 

likelihood estimators (MLE’s) of the parameters of the generalized Pareto distribution (GPD). This 

distribution is widely used in extreme value analysis, and the motivation for its use in such studies 

arises from asymptotic theory that is specific to the tail behaviour of the data. Accordingly, in practice, 

the parameters may be estimated from a relatively small number of extreme order statistics (as is the 

case if the so-called “peaks over threshold” procedure is used), so the finite-sample properties of the 

MLE’s for the parameters of this distribution are of particular interest. Specifically, we consider the 

O(n-1) bias formula introduced by Cox and Snell (1968), as re-expressed by Cordeiro and Klein 

(1994). This methodology is particularly appealing here, as it enables us to obtain analytic bias 

expressions, and hence “bias-corrected” MLE’s, even though the likelihood equations for the GPD do 

not admit a closed-form solution.  

 

It should be noted that the Cox-Snell approach that we adopt here is “corrective”, in the sense that a 

“bias adjusted” MLE can be constructed by subtracting the bias (estimated at the MLE’s of the 

parameters) from the original MLE. An alternative “preventive” approach, introduced by Firth (1993), 

involves modifying the score vector of the log-likelihood function prior to solving for the MLE, but 

we do not discuss this approach here. Interestingly, Cribari-Neto and Vasconcellos (2002) find that 

these two approaches are equally successful with respect to (finite sample) bias reduction without loss 

of efficiency in the context of the MLE for the parameters of the beta distribution. In that same 

context, they find that the bootstrap performs poorly with respect to bias reduction and efficiency. We 

do not pursue preventive methods in this study. 

 

We find that bias-correcting the MLE’s for the parameters of the GPD, using the estimated values of 

the analytic O(n-1) bias expressions, is extremely effective in reducing absolute relative bias. In 

addition, in general this is accompanied by a modest reduction in relative mean squared error. We 

compare this analytic bias correction with the alternative of using the bootstrap to estimate the O(n-1) 

bias, and then correcting accordingly. In common with other related studies, we find that the bootstrap 

bias-correction is quite ineffective, and is not to be recommended. 

 

Section 2 summarizes the required background theory, and this is then used to derive analytic 

expressions for the first-order biases of the MLE’s of the parameters of the generalized Pareto 

distribution in section 3. Section 4 reports the results of a simulation experiment that evaluates the 
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properties of bias-corrected estimators that are based on our analytic results, as well as the 

corresponding bootstrap bias-corrected MLE’s. Some concluding remarks appear in section 5. 

 

2. First-order biases of maximum likelihood estimators 

For some arbitrary distribution, let )(θl  be the (total) log-likelihood based on a sample of n 

observations, with p-dimensional parameter vector, θ. )(θl is assumed to be regular with respect to all 

derivatives up to and including the third order. 

 

The joint cumulants of the derivatives of )(θl are denoted: 

 

 )/( 2
jiij lEk θθ ∂∂∂=   ; i, j = 1, 2, …., p     (1) 

)/( 3
ljiijl lEk θθθ ∂∂∂∂=   ; i, j, l = 1, 2, …., p    (2) 

)]/)(/[( 2
, ljilij llEk θθθ ∂∂∂∂∂=  ; i, j, l = 1, 2, …., p .    (3) 

The derivatives of the cumulants are denoted: 

  

 lij
l

ij kk θ∂∂= /)(    ; i, j, l = 1, 2, …., p.    (4) 

and all of the ‘k’ expressions are assumed to be O(n). 

 

Extending earlier work by Tukey (1949), Bartlett (1953a, 1953b), Haldane (1953), Haldane and Smith 

(1956), Shenton and Wallington (1962) and Shenton and Bowman (1963), Cox and Snell (1968) 

showed that when the sample data are independent (but not necessarily identically distributed) the bias 

of the sth element of the MLE of θ ( )θ̂ is: 
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where kij is the (i,j)th element of the inverse of the (expected) information matrix, }{ ijkK −= . Cordeiro 

and Klein (1994) noted that this bias expression also holds if the data are non-independent, provided 

that all of the k terms are O(n), and that it can be re-written as: 

 ∑ ∑ ∑ +−=
= = =
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Notice that (6) has a computational advantage over (5), as it does not involve terms of the form 

defined in (3).  
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Now, let )2/()()(
ijl

l
ij

l
ij kka −= , for i, j, l = 1, 2, …., p; and define the following matrices: 

 }{)( l
ij

l aA = ; i, j, l = 1, 2, …., p       (7) 

 ]|.......||[ )()2()1( pAAAA = .        (8) 

 

Cordeiro and Klein (1994) show that the expression for the O(n-1) bias of the MLE of θ ( )θ̂ can be re-

written in the convenient matrix form: 

 

)()()ˆ( 211 −−− += nOKvecAKBias θ .       (9) 

A “bias-corrected” MLE for θ can then be obtained as: 

 

)ˆ(ˆˆˆ~ 11 −−−= KvecAKθθ ,         (10) 

where  θ̂|)(ˆ KK =  and  θ̂|)(ˆ AA = . 

 

It can be shown that the bias of θ~ will be O(n-2). 

 

3. Application to the generalized Pareto distribution 

We now turn to the problem of reducing the bias of the MLE’s for the parameters of a distribution that 

is widely used in the context of the peaks over threshold method in extreme value analysis. The 

generalized Pareto distribution (GPD) was proposed by Pickands (1975), and it follows directly from 

the generalized extreme value (GEV) distribution (Coles, 2001, pp.47-48, 75-76) that is used in the 

context of block maxima data. The distribution and density functions for the GPD, with shape 

parameter, or tail index, ξ and (modified) scale parameter σ, are: 

 

( )
0;)/exp(1
0,0;/11)( /1

=−−=
≠>+−= −

ξσ
ξσξ ξ

y
yyyF        (11) 

 

( )
0;)/exp()/1(
0,0;/1)/1()( 1/1

=−=
≠>+= −−

ξσσ
ξσξσ ξ

y
yyyf       (12) 

 

respectively. Note that ∞<≤ y0  if 0≥ξ , and ξσ /0 −<≤ y  if 0<ξ . Our particular interest in this 

distribution arises in the context of modeling extreme values in the returns on financial assets.  
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The (integer-order) central moments of the GPD can be shown (see part A of the Appendix) to be: 

 ∏ −=
=

r

i

rr irYE
1

)]1(/[]![)( ξσ  ; r = 1, 2, …. 

and the rth moment exists if r/1<ξ .  

 

We will be concerned with the MLE for ),(' σξθ = . The finite-sample properties of this estimator 

have not been considered analytically before, although Jondeau and Rockinger (2003) provide some 

limited Monte Carlo results for a modified MLE of the shape parameter in the related GEV 

distribution. Other estimators are available – for example, Hosking and Wallis (1987) discuss the 

method of moments (MOM) and probability-weighted moments estimators of θ; Castillo and Hadi 

(1997) propose the “elemental percentile method”; and Luceño (2006) considers various “maximum 

goodness of fit” estimators, based on the empirical distribution function. The above condition for the 

existence of moments can, of course, limit the applicability of MOM estimation for this distribution. In 

what follows, it is important to note that the MLE is also defined only in certain parameter ranges. 

More specifically, the MLE’s of ξ and σ do not exist if 1−<ξ  because in that case the density in (4.2) 

tends to infinity when y tends to ξσ /− . In addition, the usual regularity conditions (Dugué, 1937; 

Cramér, 1946, p.500) do not hold if 3/1−<ξ  (Luceño, 2006, p.905). Essentially for these reasons, 

maximum likelihood estimation of the parameters of the GPD can be challenging in practice, as is 

discussed more fully by Castillo and Hadi (1997). 

 

Assuming independent observations, the full log-likelihood based on (12) is: 
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In this case the first-order conditions that are obtained by setting (14) and (15) to zero do not admit a 

closed-form solution. However, we can still determine the bias of the MLE’s of the parameters and 

then obtain their “bias-adjusted” counterparts by modifying the numerical solutions (estimates) to the 

likelihood equations by the extent of the (estimated) bias. 

 

As is shown in part B of the Appendix, the following results are obtained readily by direct integration 

after a simple change of variable: 

 
1)1()]/([ −+=+ ξξσ yyE         (23) 

12 )]21)(1([])/([ −++=+ ξξσξσ yyE        (24) 

123 )]31)(21([])/([ −++=+ ξξσξσ yyE        (25) 

122 )]21)(1[(2])/([ −++=+ ξξξσ yyE        (26) 

132 )]31)(21)(1([2])/([ −+++=+ ξξξσξσ yyE       (27) 

133 )]31)(21)(1[(6])/([ −+++=+ ξξξξσ yyE       (28) 

1)]1)(1[(2)]/()2([ −+−=++ ξξσξσξσ yyyE       (29) 

12 )]21[(2])/()2([ −+=++ ξξσξσ yyyE        (30) 

13 )]31)(1([2])/()2([ −++=++ ξξσξσξσ yyyE       (31) 
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Using the same change of variable, and integrating by parts, we also have: 

 ξσξ =+ )]/1[ln( yE .         (32) 

 

We can now evaluate the various terms needed to determine the Cox-Snell biases of the MLE’s of ξ 

and σ, as discussed in section 2. Note that the kij,l terms defined in (3) are not needed in the Cordeiro-

Klein variant of the Cox-Snell bias formula – see (9) and the associated definitions. 

 

The following results are easily obtained: 

)]21)(1/[(211 ξξ ++−= nk          (33) 

)]21(/[ 2
22 ξσ +−= nk           (34) 
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                                    (36) 
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])21()1/[()43(2 22)1(
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0)2(
11 =k            (41) 

])21(/[2 22)1(
22 ξσ += nk          (42) 

)]21(/[2 3)2(
22 ξσ += nk           (43) 

])21()1(/[)43( 22)1(
12 ξξσξ +++= nk         (44) 

)]21)(1(/[ 2)2(
12 ξξσ ++= nk          (45) 

   

Note that all of (33) to (45) are O(n), as is required for the Cox-Snell result. The information matrix is 
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The elements of )1(A are: 

)]31)(21)(1/[(12])21()1/[()43(2 22)1(
11 ξξξξξξ +++−+++= nna     (47) 

)]31)(21(/[2])21(/[2 222)1(
22 ξξσξσ ++−+= nna       (48) 

)]31)(21)(1/[(24111 ξξξ +++= nk
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)]31)(21)(1(/[4])21()1(/[)43( 222)1(
21

)1(
12 ξξξσξξσξ +++−+++== nnaa    ,  (49) 

and the corresponding elements of )2(A are: 

)]31)(21)(1(/[4 2)2(
11 ξξξσ +++−= na        (50) 

)]31(/[2)]21(/[2 33)2(
22 ξσξσ +−+= nna        (51) 

)]31)(21(/[2)]21)(1(/[ 22)2(
21

)2(
12 ξξσξξσ ++−++== nnaa      (52) 

 

Defining ]|[ )2()1( AAA = , the Cox-Snell/Cordeiro-Klein expression for the biases of the MLE’s of ξ 

and σ to order O(n-1) is  

)(
ˆ

ˆ
11 −−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= KvecAKBiasB

σ
ξ ,         (53) 

which can be evaluated by using (46) – (52).  

 

Noting that all of the )(l
ija terms are of order n, and that (from (46)) 1−K  is of order n-1, we see that the 

bias expression in (53) is indeed O(n-1), as required. Finally, a “bias-corrected” MLE for the parameter 

vector can be obtained as 'ˆ)'ˆ,ˆ()'~,~( B−= σξσξ , where B̂ can be obtained by replacing ξ and σ in (53) 

with their MLE’s. This modified estimator is unbiased to order O(n-2). 

 

4. Simulation results 

The bias expression in (53) is valid only to )( 1−nO . The actual bias and mean squared error (MSE) of 

the maximum likelihood and bias-corrected maximum likelihood estimators have been evaluated in a 

Monte Carlo experiment. The simulations were undertaken using the R statistical software 

environment (R, 2008). Generalized Pareto variates were generated using the evd package 

(Stephenson, 2008), and the log-likelihood function was maximized using the maxLik package 

(Toomet and Henningsen, 2008), primarily using the Newton-Raphson method. The use of this 

algorithm in similar problems is supported by Prescott and Walden (1980), for example. The Nelder-

Mead algorithm was used for 50≤n in Table 1 to avoid the very occasional failure of the Newton-

Raphson algorithm when the sample size is this small. Chaouche and Bacro (2006) discuss some 

related issues associated with solving numerically for the MLE of the GPD parameter vector. Each 

part of our experiment uses 50,000 Monte Carlo replications. 
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The results in Table 1 are percentage biases and MSE’s, the latter being defined as 100× (MSE / ξ2) 

and 100× (MSE / σ2). These quantities are invariant to the value of the scale parameter, so we have 

set 1=σ . We report results for several positive values of ξ  that are in the range considered by 

Castillo and Hadi (1997) in their simulation study of other estimators for the GPD, and are also of 

practical relevance. We restrict our attention to positive values for the shape parameter as (at least 

positive) returns on financial assets are potentially unbounded. However, other computations that we 

have undertaken show that the qualitative nature of our conclusions are unaltered if 0<ξ . The range 

of sample sizes that we consider is also motivated by practical applications. For example, Brooks et al. 

(2005) deal with sample sizes of 40≤n , while Bali and Neftci (2003) have a sample with n = 300, in 

each case in the context of fitting the GPD to financial data. 

 

In Table 1 we see that the MLE’s of the shape and scale parameters are negatively and positively 

biased, respectively. In addition, the percentage biases of the MLE’s for ξ  (and σ ) decrease 

(increase) in absolute value as the true value of the shape parameter increases. Of course, these 

absolute biases decline monotonically as the sample size increases. The analytic bias correction 

performs extremely well in all cases, generally reducing the percentage biases by at least an order of 

magnitude. In some cases there is an “over-correction”, with the percentage bias changing sign. It is 

encouraging that, with only one exception, the reduction in relative bias for the (corrected) estimators 

of ξ  and σ  is accompanied by a small improvement in relative mean squared error when 50≥n . 

Similar results are reported by Cribari-Neto and Vaconcellos (2002) in the case of the beta distribution 

and Giles (2009) for the half-logistic distribution. 

 

In addition to ξ̂ , ξ~ , σ̂  and σ~ , we have also considered the bootstrap-bias-corrected estimator 

(Efron, 1979). The latter is obtained as ∑
=

−=
BN

j
jBN

1
)( ]ˆ)[/1(ˆ2 θθθ

(
, where )(̂ jθ is the MLE of 

θ  obtained from the jth of the NB bootstrap samples, and θ  is either ξ  or σ . See Efron (1982, 

p.33). This estimator is also unbiased to )( 2−nO , but in practice it is known that this often comes at the 

expense of increased variance. In this part of the Monte Carlo experiment we have used 50,000 

replications and 1,000 bootstrap samples within each replication – a total of 50 million evaluations for 

each associated entry in Table 1.  
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The bootstrap-corrected estimator also achieves a reasonable degree of bias reduction, especially with 

regard to the scale parameter. In the latter case )(% σ(Bias is less than )~(% σBias , in absolute terms, 

for two-thirds of the entries in Table 1. In contrast, )~(% ξBias  is less than )(% ξ
(

Bias , in absolute 

terms, for two-thirds of the 21 cases considered. When estimating the shape parameter, the analytical 

correction results in a gain in relative bias that is at least an order of magnitude better than that of the 

bootstrap correction in a number of cases – e.g., when n = 50 and ξ = 1.0, or n = 200 and ξ = 0.5). The 

percentage mean squared errors of the bootstrap-corrected estimators are generally very close to those 

of the analytically corrected estimators. With the exception of two cases (when n = 25), the analytical 

correction leads to slightly lower mean squared error than does the bootstrap correction. In addition, in 

a few cases (e.g., for ξ
(

when n = 150 and ξ = 1.0) the variance inflation that is induced by the 

bootstrap correction actually increases the percentage mean squared error above that of the original 

MLE. Overall, our results provide a strong case for using the Cox-Snell analytic bias correction for the 

MLE’s of the parameters of the GPD 

 

5. Conclusions 

We have derived analytic expressions for the bias to O(n-1) of the maximum likelihood estimators of 

the parameters of the generalized Pareto distribution. These have then been used to bias-correct the 

original estimators, resulting in modified estimators that are unbiased to order O(n-2). We find that the 

negative relative bias of the shape parameter estimator, and the positive relative bias of the scale 

parameter estimator are each reduced by using this correction. This reduction is especially noteworthy 

in the case of the shape parameter. Importantly, these gains are usually obtained with a small 

improvement in relative mean squared error, at least for sample sizes of the magnitude likely to be 

encountered in practice. Using the bootstrap to bias-correct the maximum likelihood estimator is also 

quite effective for this distribution. However, on balance it is inferior to the analytic correction, 

especially once the effect on mean squared error is considered. 

 

While reducing the finite-sample bias of the MLE’s of the parameters of the GPD is important in its 

own right, there is also considerable interest in managing the bias of the MLE’s of certain functions of 

these parameters. Specifically, in risk analysis we are concerned with value at risk (VaR) and the 

expected shortfall (ES), both of which are non-linear functions of the shape and scale parameters when 

the GPD is used in the context of the peaks over threshold method. Work in progress by the authors 

addresses this issue by deriving the Cox-Snell O(n-1) biases for the estimators of VaR and ES, and 

evaluating the bias-corrected estimators in a manner similar to that adopted in the present paper. 
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Table 1: Percentage biases and MSE’s  
 
n )ˆ(% ξBias  )~(% ξBias  )(% ξ

(
Bias  )ˆ(% σBias  )~(% σBias  )(% σ(Bias  

 )]ˆ([% ξMSE  )]~([% ξMSE  )]([% ξ
(

MSE  )]ˆ([% σMSE  )]~([% σMSE  )]([% σ(MSE  
 

ξ = 0.5 
25 -20.1587  1.1605  -7.1104  10.0664  -8.6228  -2.6335 
 [48.0904] [82.1440] [53.9613] [15.2634] [161.5268] [14.7778] 
50 -12.1930  -1.9603  -6.2334  5.9062  -1.7691  2.1070 
 [25.9748] [24.2179] [31.4349] [7.1023]  [10.1278] [7.5628] 
75 -5.7610  0.3024  -2.7424  3.7248  -0.5590  1.3044 
 [13.3837] [11.4417] [20.6066] [4.6853]  [3.5037]  [5.1182] 
100 -4.2936  0.1299  -0.3207  2.7687  -0.2444  0.1146 
 [9.8939]  [8.7299]  [9.6071]  [3.4162]  [2.7323]  [3.2064] 
125 -4.5675  -0.9802  0.1478  2.4156  0.0035  0.3841  
 [9.5717]  [8.6061]  [10.2316] [2.7411]  [2.2631]  [2.9058] 
150 -3.5011  -0.5653  -0.2740  1.9333  -0.0105  0.1147 
 [7.4976]  [6.8917]  [6.2552]  [2.2364]  [1.9205]  [2.0722] 
200 -2.0973  0.0538  0.8231  1.3237  -0.0673  -0.0772 
 [4.7031]  [4.4580]  [4.8872]  [1.6009]  [1.4465]  [1.6480] 
 

ξ = 1.0  
25 -9.1557  -0.1383  0.1238  14.3801  -5.5375  -6.2403 
 [19.1474] [29.9705] [18.0012] [26.4306] [142.9493] [18.8745] 
50 -4.1533  -0.0776  -0.5368  6.5035  -0.6587  -0.3049 
 [8.6654]  [7.7240]  [8.4399]  [10.1828] [7.1063]  [8.6948] 
75 -2.6054  0.0780  -0.1429  4.1453  -0.3124  -0.1269 
 [5.5917]  [5.2105]  [5.5304]  [6.2165]  [4.9778]  [5.6628] 
100 -1.9488  0.0580  0.0515  3.0952  -0.1541  -0.0767 
 [4.1462]  [3.9371]  [4.0946]  [4.5360]  [3.8564]  [4.2325] 
125 -1.5604  0.0416  -0.1268  2.3881  -0.1641  0.0512 
 [3.2876]  [3.1547]  [3.2764]  [3.5022]  [3.0846]  [3.2925] 
150 -1.2639  0.0699  -0.0973  -1.9609  -0.1427  0.0490 
 [2.7206]  [2.6302]  [2.7516]  [2.8740]  [2.5887]  [2.7528] 
200 -0.9600  0.0405  0.0141  1.4940  -0.0645  0.0347 
 [2.0366]  [1.9855]  [2.0268]  [2.1346]  [1.9745]  [2.0681] 
 

ξ = 1.5  
25 -6.0540  -0.7288  -0.2062  16.5238  -2.7281  -5.6138 
 [12.3696] [10.5364] [12.0444] [34.1139] [16.5733] [23.7049] 
50 -2.7273  -0.0628  -0.3398  7.5318  -0.5637  -0.5293 
 [5.8190]  [5.4434]  [5.5079]  [13.0552] [9.4773]  [10.9063] 
75 -1.7202  0.0669  -0.0591  4.8439  -0.3034  -0.2462 
 [3.8004]  [3.6436]  [3.7762]  [7.9263]  [6.4518]  [7.1146] 
100 -1.2862  0.0594  0.1075  3.6137  -0.1643  -0.1957 
 [2.8340]  [2.7474]  [2.8040]  [5.7482]  [4.9354]  [5.3060] 
125 -1.0474  0.0310  0.0519  2.8073  -0.1722  0.0143 
 [2.2495]  [2.1938]  [2.2486]  [4.4312]  [3.9292]  [4.1995] 
150 -0.8437  0.0562  -0.0135  2.3039  -0.1575  0.0012 
 [1.8682]  [1.8304]  [1.8645]  [3.6268]  [3.2837]  [3.4491] 
200 -0.6833  0.0380  0.0408  1.7519  -0.0763  0.0300 
 [1.4006]  [1.3791]  [1.4004]  [2.6892]  [2.4963]  [2.5932] 
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Appendix – Mathematical Derivations 

A. Moments of the Generalized Pareto Distribution 

 

A general expression for the moments of the GPD does not appear to be well documented, so it is 

derived here. When 0=ξ the GPD collapses to the exponential distribution, whose moments are well 

known, so we consider only the case where 0≠ξ . We will use the following result (Gradshteyn, and 

Ryzhik, 1965, p. 292; integral 3.241, no.4): 

 

∫ +Γ−+ΓΓ=+
∞

++−−

0

/1)1(1 )1(/)/1()/()/)(/1()( mmqppdxqxpx mm νμνμν νμνμ  (A.1) 

    (for 1/0 +<< mνμ ). 

 

Using the GPD density for Y in (4.2), 

 

 ∫ +=
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Applying (A.1) with 1+= rμ ; ξ/1=m ; σξ /=q ; 1=ν and 1=p : 
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Repeatedly applying the recursion formula, )()1( aaa Γ=+Γ , the ratio of gamma functions in (A.3) 

reduces to 1)]/1).....(2/1)(1/1)(/1[( −−−− rξξξξ , so that 
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    (A.4) 

The parameter constraints for (A.1) to be valid amount to )/11()1(0 ξ+<+< r , or )/1(0 ξ<< r . This 

condition precisely matches the condition given by Hosking and Wallis (1987, p. 341) for the 

existence of the rth central moment of the GPD. Finally, note that (A.4) collapses to the usual 

expression for the rth moment of the exponential distribution when 0=ξ , and to that of the uniform 

distribution on (0 , σ) when 1−=ξ . 
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B. Derivation of Equation (23) 

 

Setting σξφ /= , and using (12) with 0≠ξ , 

dyyy

yyEyyE

∫ +=

+=+
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Let yx φ+=1 , so that φ/dxdy = , and 
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Results (24) to (31) follow in a similar manner. 

 

 

  


