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We derive an analytic expression for the bias, to O(n-1) of the maximum likelihood estimator of the 
scale parameter in the half-logistic distribution. Using this expression to bias-correct the estimator is 
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to the alternative of bootstrap-bias-correction. 
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1. Introduction 

The half-logistic (or folded-logistic) distribution was proposed by Balakrishnan (1985) as a life-

testing model. One of the attractions of this distribution in the context of reliability theory is that 

it has a monotonically increasing hazard rate for all parameter values, a property shared by 

relatively few distributions which have support on the positive real half-line. In terms of tail 

behaviour, the half-logistic distribution provides a degree of flexibility as its tail thickness lies 

between those of the half-normal and half-Cauchy distributions. The half-logistic distribution has 

also been used successfully to model records. For example, Mbah and Tsokos (2008) apply it to 

environmental and sports records data. 

 

If X follows a logistic distribution, then || XY =  has a half-logistic distribution, the p.d.f. for 

which is: 
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where μ and  σ are the location and scale parameters respectively. The moments of this 

distribution are given in Appendix A.  

 

Various estimators for the parameters of the half-logistic distribution have been proposed, for 

both uncensored and censored data. For example, see Balakrishnan and Puthenpura (1986), 

Balakrishnan and Wong (1991), Balakrishnan and Chan (1992), and Adatia (1997, 2000). In 

addition, the operating characteristic under acceptance sampling from the half-logistic 

distribution has been discussed by Kantam and Rosaiah (1998). 

 

In this paper we deal with maximum likelihood estimation with uncensored data. If the location 

parameter of (1) is unknown, its MLE is nY :1ˆ =μ , where njY : is the jth order statistic in a sample of 

size n (Balakrishnan and Wong, 1991, p.142). However, the MLE for the scale parameter cannot 

be expressed in closed form. Notwithstanding this complication, we derive the bias, to )( 1−nO , 

of the MLE of the scale parameter of the half-logistic distribution in the interesting case where 

the location parameter is zero. It transpires that the MLE has extremely small relative bias, even 

in very small samples. We also consider a simple bias-corrected counterpart to this estimator, and 

show that its bias is an order of magnitude less than that of the MLE itself, and that this is 
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achieved without loss of precision. The alternative of using the bootstrap to reduce the bias of the 

MLE is found to be totally inferior to our analytic correction. 

 

The next section presents summarizes the techniques used to evaluate the bias to )( 1−nO . Our 

principal results appear in section 3; and some numerical evaluations are given in section 4. 

Section 5 concludes. Some technical details are provided in Appendix A. 

 

2. Preliminary Results 

Let )(θl  be the log-likelihood function based on a sample of n observations, with p-dimensional 

parameter vector, θ. )(θl is assumed to be regular with respect to all derivatives up to and 

including the third order. Define: 

 )/( 2
jiij lEk θθ ∂∂∂=   ; i, j = 1, 2, …., p    (2) 

)/( 3
ljiijl lEk θθθ ∂∂∂∂=   ; i, j, l = 1, 2, …., p   (3) 

)]/)(/[( 2
, ljilij llEk θθθ ∂∂∂∂∂=  ; i, j, l = 1, 2, …., p .   (4) 

and  

 lij
l

ij kk θ∂∂= /)(    ; i, j, l = 1, 2, …., p.   (5) 

All of the expressions in (2) – (5) are assumed to be O(n). Extending earlier work by Tukey 

(1949), Bartlett (1953a, 1953b), Haldane (1953), Haldane and Smith (1956), Shenton and 

Wallington (1962) and Shenton and Bowman (1963), Cox and Snell (1968) showed that when the 

sample data are independent (but not necessarily identically distributed) the bias of the sth element 

of the MLE of θ ( )θ̂ is: 
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where kij is the (i,j)th element of the inverse of the (expected) information matrix, }{ ijkK −= . 

Cordeiro and Klein (1994) note that this bias expression also holds if the data are non-

independent, provided that all of the k terms are O(n), and show that it can be re-written as: 
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The computational advantage of (7) is that it does not involve terms of the form defined in (4). 

Now, let )2/()()(
ijl

l
ij

l
ij kka −= , for i, j, l = 1, 2, …., p; and define the following matrices: 

 }{)( l
ij

l aA = ; i, j, l = 1, 2, …., p      (8) 
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 ]|.......||[ )()2()1( pAAAA = .       (9) 

 

Cordeiro and Klein (1994) show that the expression for the O(n-1) bias of  θ̂  can be re-written as:  

 

)()()ˆ( 211 −−− += nOKvecAKBias θ .      (10) 

 

A “bias-corrected” MLE for θ can then be obtained as: 

 

)ˆ(ˆˆˆ~ 11 −−−= KvecAKθθ ,        (11) 

where  θ̂|)(ˆ KK =  and  θ̂|)(ˆ AA = . It can be shown that the bias of θ~ will be O(n-2). It is crucial to 

note that (10) and (11) can be evaluated even when the likelihood equation does not admit a 

closed-form analytic solution, so that the MLE has to be obtained via a numerical solution. 

 

3. Bias of the MLE for the Shape Parameter   

Under independent sampling from the half-logistic distribution, with uncensored data, the 

log-likelihood function (when 0=μ ) is: 
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Note that there is no closed-form solution to the likelihood equation obtained by equating (13) to 

zero.   

 

In what follows, we will require the following higher-order derivatives of the log-likelihood 

function: 
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To evaluate the expectations of these derivatives we will use the following results for a half- 

logistic variate, Y, the proofs of which appear in Appendix B: 

 

 ]5.0)2[ln()]}/exp(1/[)]/exp({[ +=+ σσσ yyyE     (16) 
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)]12/(5.0[})]/exp(1/[))]/2exp()/(exp({[ 2333 πσσσσ −=+− yyyyE   (18) 

 

We then have the following expressions relating to the joint cumulants of the derivatives of the 

log-likelihood function: 
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The (expected) information measure is 

 )/(429956044.1 2
11 σnkK =−=  ,     (23) 

and 

 )1(
11aA =  .        (24) 

So, using Cordeiro and Klein’s (1994) modification of the Cox-Snell (1968) result, to )( 1−nO ,  
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The bias is unambiguously negative, and small in relative terms. Moreover, the relative bias is 

invariant to the value of σ. An unbiased (to )( 2−nO ) estimator of σ is 

nnBias /)052567665.0(ˆ))ˆ(ˆ(~ +=−= σσσσ . Of course, correcting for the bias in this way 

also has implications for the mean squared error (MSE) of the estimator, and this point is taken up 

in the next section.  

 

4. Numerical Evaluations 

The bias expression in (25) is valid only to )( 1−nO . The actual bias and mean squared error 

(MSE) of the maximum likelihood and bias-corrected maximum likelihood estimators have been 

simulated in a Monte Carlo experiment. The simulations were undertaken using the maxLik 

package (Toomet, 2008) for the R statistical software environment (R, 2008). Half-logistic 

variates were generated using the inversion method, and the log-likelihood function was 

maximized using the Nelder-Mead algorithm.  

 

In addition to σ̂  and σ~ , we have also considered the bootstrap-bias-corrected estimator (Efron, 

1979). The latter is obtained as ∑−=
=

BN

j
jBN

1
)( ]ˆ)[/1(ˆ2 σσσ( , where )(ˆ jσ is the MLE of σ  

obtained from the jth of the NB bootstrap samples. See Efron (1982, p.33). This estimator is also 

unbiased to )( 2−nO , but in many applications it is known to suffer from excessive variance. 

 

Each part of the experiment relating to σ̂  and σ~  uses 250,000 Monte Carlo replications. In the 

case of σ(  the number of Monte Carlo replications is 250,000, with 1,000 bootstrap samples per 

replication (i.e., 250 million evaluations for each value of n, in this case). The results that are 

reported in Table 1 are percentage biases and MSE’s, the latter being defined as 100× (MSE / σ2). 

For each of the estimators under consideration, both of these measures are invariant to the value 

of σ , for a given sample size. 

  

Several key results emerge from Table 1. First, the percentage bias of the MLE is negative but 

small, even for very small sample sizes, which is encouraging for users of this estimator. Second, 

however, the absolute bias of the bias-corrected estimator, σ~ , is often an order of magnitude less 
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than that of the MLE. This bias-corrected estimator is trivial to implement, and provides dramatic 

gains - its bias is negligible, in percentage terms. Third, these gains in bias reduction when using 

σ~  come at the cost of increases in variance, as is evidenced by the very small differences in the 

percentage MSE’s that are reported for σ̂  and σ~ . Fourth, the bootstrap-bias-corrected estimator 

performs essentially as well as σ~ , in terms of bias reduction (especially when nthe sample size 

exceeds 50)  but at some computational expense. Finally, however, using the bootstrap correction 

is slightly less effective than is the analytic correction in terms of mean squared error. Overall, 

these results strongly favour using the Cox-Snell analytic approach to correct for bias to O(n-1). 

 

5. Conclusion 

The maximum likelihood estimator of the scale parameter in the half-logistic distribution has a 

very small (negative) percentage bias, even with quite small sample sizes. However, using the 

Cox-Snell procedure for determining the O(n-1) bias of this estimator, and then making the 

associated analytic bias correction, proves to be highly effective. The percentage bias is often 

reduced by an order of magnitude, with essentially no cost in terms of increased mean squared 

error. In terms of bias reduction, it is generally at least as effective as using the bootstrap to bias-

correct the maximum likelihood estimator, and usually slightly better than the bootstrap 

correction in terms of mean squared error. The analytic bias correction is extremely simple to 

apply in practice, and is recommended. 
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Table 1 

Simulated percentage biases and mean squared errors for the maximum likelihood  

and bias-corrected maximum likelihood estimators 

 

n % )ˆ(σBias      % )~(σBias     % )(σ(Bias        % )ˆ(σMSE        % )~(σMSE       % )(σ(MSE  
 

  
 

10 -0.4827  0.0404  0.0988  6.9512  7.0221  7.0402 

15 -0.3279  0.0214  -0.0390  4.6267  4.6581  4.6793 

20 -0.2400  0.0223  0.0415  3.4784  3.4961  3.5016  

25 -0.1719  0.0380  0.0331  2.7966  2.8081  2.7997 

30 -0.1370  0.0380  0.0166  2.3271  2.3351  2.3342 

35 -0.1206  0.0294  0.0141  1.9962  2.0020  2.0010 

40 -0.1098  0.0264  0.0077  1.7505  1.7549  1.7540 

45 -0.0902  0.0239  -0.0259  1.5549  1.5584  1.5607 

50 -0.0811  0.0214  0.0135  1.3996  1.4025  1.4022 

75 -0.0497  0.0203  0.0014  0.9300  0.9313  0.9334 

100 -0.0337  0.0188  -0.0073  0.6988  0.6995  0.7008 

150 -0.0170  0.0180  -0.0137  0.4651  0.4655  0.4678 

200 -0.0137  0.0126  -0.0093  0.3502  0.3504  0.3498 

250 -0.0133  0.0077  0.0040  0.2808  0.2809  0.2806 
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Appendix A 

 

A.1 Moments of the half-logistic distribution 

The central moments of the standardized half-logistic distribution can be evaluated using the 

following result (Gradshteyn, and Ryzhik, 1994; integral 3.424, no.2): 
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Letting σμ /)( −= YZ , from (1) the density of the standardized variate, Z, is 
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Applying (A.1) with a = 0 and n = r: 
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An alternative derivation of (A.2) is provided by Balakrishnan and Wong (1991, p. 140). Using 

the Maclaurin series for )1ln( w+ with w = 1, it follows that )4ln()( =ZE . Similarly, using the 

relationship ∑=
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−
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kπ , we have )3/()( 22 π=ZE  . The moments of Y itself can, of course, 

be derived directly from (A.2) by applying the binomial theorem: 
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When 0=μ , using the convention that 00 = 1, it follows immediately that )2ln(2)( σ=YE  and 

})]2[ln(4)3/{()( 222 −= πσYV , etc. 
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A.2 Derivation of equations (16) – (18) 

All of the following results have been established analytically, and then verified by using the 

Maple 10 package (Maplesoft, 2005). Further details are available on request. 

 

(i) Equation (16) follows directly from (13) by recalling that 0)/( =∂∂ σlE , and using the 

result that )2ln(2)( σ=YE , from Appendix A. 
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The evaluation of this integral is tedious, but can be accomplished by using the change of 

variable, )/exp( σyz = , and then repeatedly integrating by parts and by partial fractions. A final 

change of variable, 1−= zw , and the use of the integral ∫
+1
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w
 = )12/( 2π  (Gradshteyn, 

and Ryzhik, 1994; integral 4.291, no.1.) , yields the result: 
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