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Abstract 
 
We examine the finite sample properties of the MLE for the Logit model with random covariates. 

We derive the second order bias and MSE function for the MLE in this model, and undertake some 

numerical evaluations to illustrate the analytic results. From these numerical results we find, for 

example, that the bias correction that we provide is effective, and that the bias-corrected estimator is 

more efficient than the uncorrected MLE.  
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FINITE-SAMPLE MOMENTS OF THE MLE FOR 

THE BINARY LOGIT MODEL 
 

1. Introduction 

Qualitative response (QR) models, which are very widely used in empirical economics and 

elsewhere, have the characteristic that the dependent variable is qualitative, rather than 

quantitative. To make the model estimable, these qualitative attributes are “coded” numerically so 

as to partition the sample data appropriately. There is a vast and readily accessible literature 

relating to inference in the context of these models - for example, see Maddala (1983), 

Wooldridge (2002), Hensher et al. (2005) and Cameron and Trivedi (2005). 

 

The binary choice model is the most widely used of the QR models. In this model the dependent 

variable is coded as unity or zero according to whether some event occurs or not. In this case, it is 

well known that conventional (linear) regression methods are inappropriate: the predicted 

probabilities can be negative, or exceed unity; the error must be heteroskedastic; and the error 

term clearly cannot follow a normal distribution. These problems can be overcome by making the 

probability of the event of interest a non-linear, rather than a linear function of the covariates. In 

particular, if this function is taken to be a cumulative distribution function, it will be 

monotonically non-decreasing, and bounded between zero and unity. Usually, the distribution that 

is chosen for this purpose is the normal distribution (giving rise to the Probit model), the logistic 

distribution (which gives us the Logit model), the Weibull distribution, or the extreme value 

distribution. Different distributions lead to different non-linear models with somewhat different 

features. The Logit and Probit models are the two that are encountered most frequently in 

practice, and they generally yield similar (scaled) estimates. In each of these two cases the 

likelihood function is strictly concave, so it has a unique maximum. 

 

The likelihood functions for QR models satisfy the usual regularity conditions, so the maximum 

likelihood estimators (MLE’s) are weakly consistent and best asymptotically normal. The strong 

consistency of the estimator for the Logit model has been established by Gourieroux and 

Montfort (1981). Surprisingly, there have been very few studies of the finite sample properties of 

the MLE for QR models. In this paper we derive analytic expressions for some of the finite 

sample properties of the MLE of the parameters in the Logit model. The approach that we use 

could also be used to extend our results to other QR models.  
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The next section discusses some of the related literature, and section 3 introduces the Logit 

model. In section 4 we present some results due to Rilstone et al. (1996) and use them to derive 

analytic expressions for the bias and MSE of the MLE in the Logit model. Some numerical 

results follow in section 5; and the final section provides our conclusions. 

  

2. Related Literature 

Amemiya (1980) derived the approximate n-2-order mean squared error (MSE) of the MLE and 

the minimum chi-square estimator (MCSE) of the binary Logit model and provided some 

numerical results for the relative quality of these two estimators, based on their MSE’s. The 

MCSE was first introduced by Berkson (1944) for the binary Logit model, and Taylor (1953) 

showed that the MCSE estimator and the MLE have the same asymptotic normal distribution. 

Berkson (1955) approximated the finite-sample bias and MSE of the MLE and the MCSE 

estimator for some particular samples of data, and showed that the MCSE is preferred to the MLE 

in terms of MSE in all of the cases he considered. Following Amemiya’s work, several studies 

advanced Berkson’s and Amemiya’s results. Ghosh and Sinha (1981) provided the theory to give 

necessary and sufficient conditions for improving the MSE of the MLE, and applied these to 

Berkson’s models and data. They also showed the relative MSE ranking of the MLE and the 

MCSE is model-specific. Davis (1984) found some examples in which the MLE has smaller MSE 

than the MCSE estimator, and Hughes and Savin (1994) provided further results indicating that 

the choice between these two estimators is not straightforward. Another somewhat related study 

is that of Mackinnon and Smith (1998). They discussed methods for reducing the bias of 

consistent estimators that are biased in finite samples, and applied their methods to the parameter 

estimator in the AR(1) model and the Logit model. Finally, Li (2005) used a Monte Carlo 

experiment to examine some of the small sample properties of the MLE for three different models 

- the Probit model, the Logit model and the binary choice model where the underlying 

distribution is the Extreme Value distribution. She also considered the case where the underlying 

distributional process is mis-specified, and found that this increases the MSE for each of the 

estimators. 

 

In this paper, we will apply Rilstone et al.’s (1996) results to derive analytic expressions for the 

bias and MSE functions for the MLE in the Logit model with stochastic covariates. This approach 

was also used by Rilstone and Ullah (2002) in the context of Heckman’s sample selection 

estimator. Based on the analytic bias and MSE expressions, we can derive a bias-corrected 

estimator and the standard error associated with the bias-corrected estimator. We also provide 
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some numerical evaluations based on these analytic results. These numerical evaluations show 

that the bias correction works very well. In order to apply Rilstone et al.’s results, we need to 

assume that both the dependent and independent variables are random and that the observations 

are i.i.d.. This makes our results incomparable with Amemiya’s and Davis’s results. Because all 

of the observations are i.i.d random, the expectations of the random variables or any function of 

the random variables are the same for all of the observations, which simplifies the application of 

Rilstone et al.’s results.  

 

3.  The Logit Model and the Maximum Likelihood Estimator 

In a binary choice model we can use a latent dependent variable to incorporate the effects of 

covariates. The latent regression is: 

εβ +′= ii Xy*  ,         (1) 

where *y  is the latent dependent variable, and the row vector,  iX ′ , represents the ith observation 

on all of the covariates.  

 

Then, the dependent variable can be defined as, 

aXy ii ≥+′= εβ if    ;1  

aXy ii <+′= εβ if    ;0         (2) 

where a  is the threshold. As is well understood, as long as an intercept is included among the 

regressors, the threshold value for determining the dependent variable is actually irrelevant, and 

may be set to zero. Then, (1) and (2) can be simplified to  

   εβ +′= iii Xy*  

and    0 if    ;1 * ≥= ii yy                                                              

0 if    ;0 * <= ii yy .      (3) 

The basic model can be structured as: 

)()1Pr( βiii XFXyP ′===  

)(1)0Pr(1 βiii XFXyP ′−===− . 

The form of the cumulative distribution function, )( βiXF ′ , will determine which particular 

model is used. In this paper, we focus on the Logit model:  

 



 4

iiii XFXyP Λ=′=== )()1Pr( β        (4) 

where  

)exp(1
)exp(
β

β

i

i
i X

X
′+

′
=Λ          (5) 

is the c.d.f. for the Logistic distribution. 

 

The MLE for the parameter vector in (4) is derived as follows. The (conditional) joint data 

density function for the sample is: 

∏∏
==

Λ−Λ====
01

2211 )1(),,,,Pr(
ii y

i
y

inn XyYyYyY βL , 

so the (conditional) likelihood function is: 

∏
=

−Λ−Λ=
n

i

y
i

y
i

iiyXL
1

)1()1(),(β , 

and the (conditional) log-likelihood function is: 

[ ]∑
=

Λ−−+Λ=
n

i
iiii yyL

1
)1log()1(loglog . 

The log-likelihood equations are: 

[ ] 0)(log
1

=Λ−=
∂

∂ ∑
=

n

i
iii XyL

β
 .            (6) 

The MLE of β  is the solution to (6). Since the log-likelihood function is strictly concave, the 

MLE is unique, but as (6) is highly non-linear in the parameters, it must be solved numerically. 

That is, the MLE cannot be written as closed-form expression, and this is what substantially 

complicates the task of evaluating the characteristics of its (finite-sample) sampling distribution.  

 

4.  Analytic Results 

Before we derive the analytic results for the Bias and MSE of the MLE in the Logit model, we 

first introduce the results of Rilstone et al. (1996). The class of estimators considered by Rilstone 

et al. (RSU) includes those which can only be expressed implicitly as a function of the data. 

Suppose we have a regression model of the form 

iii Xfy εβ += );( . 

The regressor vector, iX , can include any endogenous or exogenous variables. In order to make 

the derivation simple, RSU assume that all of the variables are random. Let ) ,( iii XyZ =  and 
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let ,1Z ,2Z K ,3Z  be a sequence of m  dimensional i.i.d. random vectors. 0θ  represents the true 

parameter vector, which could include only β , or any other parameters of interest. The estimator 

θ̂  can be written in the form: 

∑ ==
=

n

i
in g

n 1
0)ˆ(1)ˆ( θθψ  ,                    (7) 

where ),()( θθ iii zgg =  is a 1×k  vector involving the known variables and the parameters, and 

0)]([ =θigE  only for the true value 0θ . Preceding the derivation of Lamma 1 below, RSU 

made some assumptions about the function )(θig . (See Ullah, 2004, p.31.) 

 

Assumption 1  

The sth order derivatives of )(θig exist in a neighborhood of θ  and ∞<∇
2

)(θi
s gE , where 

A , for a matrix A , denotes the usual norm, trace 2/1][ AA ′ , and )(θAs∇  is the matrix of sth 

order partial derivations of a matrix )(θA  with respect to θ  and obtained recursively. 

 

Assumption 2  

For some neighborhood of θ, )1())(( 1
pn O=∇ −θψ . 

 

Assumption 3  

ii
s

i
s Mgg 00 )()( θθθθ −≤∇−∇  for some neighborhood of 0θ , where Mi satisfies the 

condition ∞<≤ CME i , K 2, ,1=i  

 

In the following, we will suppress the argument for any function of θ  when there is no 

confusion. So, )(θig will be written as ig . Then, RSU derived the following Lemma. 

 

Lemma 1 (RSU, 1996; Ullah, 2004, p.32) 

Let assumptions 1-3 hold for some 2≥s . Then the bias of θ̂  to order )( 1−nO  is  

⎭
⎬
⎫

⎩
⎨
⎧ ⊗−= ][

2
11)ˆ( 11211 ddHdVQ

n
B θ  ,       (8) 
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where i
j

j gH ∇= , 1][ −∇= igQ ,  ][ iii ggV ∇−∇= , and ii Qgd = . A bar over a function 

indicates its expectation, so that ][ ii gEg ∇=∇ . Further, if Assumptions 1-3 hold for some 

3≥s , then the MSE of θ̂  to order )( 2−nO  is  

)(1)(11)ˆ( 44332221 Π′+Π+Π+Π′+Π+Π=
nnn

MSE θ       (9)  

where  

111 dd ′=Π  

{ }11122
1

1112 ][ dddHddVQ ′⊗+′−=Π  

{ }QVddVVddVVddVQ  1221212122113 ′′+′′+′′=Π

 { } QHddddddddddddHQ 212212121221124
1  ]][[]][[][][  ′′⊗′⊗+′⊗′⊗+′⊗′⊗+

 { } QHdddVdddVdddVQ 21221212122112
1  ][][ ′′⊗′+′⊗′+′⊗′−

 { }QVdddVdddVdddHQ  ][][ 12212121221122
1 ′′⊗+′′⊗+′′⊗−  

{ }1221212122114  ddQVVddQVVddQVVQ ′+′+′=Π

 { }1222121221221212
1 ][][][ dddHQVdddHQVdddHQVQ ′⊗+′⊗+′⊗−

 { }1221212122112
1 ][][][ dddWdddWdddWQ ′⊗+′⊗+′⊗+

 { }12212121221122
1 ][][][ ddQVdddQVdddQVdHQ ′⊗+′⊗+′⊗−

 { }12221212212212124
1 ][][][  dddHQddddHQddddHQdHQ ′⊗⊗+′⊗⊗+′⊗⊗+

 { }12212121221122
1 ][][][ dddQVdddQVdddQVHQ ′⊗+′⊗+′⊗−                 

{ }12212212122211224
1 ]][[]][[]][[ ddddHQddddHQddddHQHQ ′⊗⊗+′⊗⊗+′⊗⊗+

 { }12212121221136
1 ][][][ ddddddddddddHQ ′⊗⊗+′⊗⊗+′⊗⊗−    (10) 

where ][ 22
iii ggW ∇−∇= . 

 

Now we apply the above Lemma to derive the bias and MSE of the MLE in the Logit model. 

First, we assume that both the dependent and independent variables in the Logit model are 

random, and the observations are i.i.d. Comparing (6) and (7), we can see that for the Logit 

model, we should set iiii Xyg )( Λ−= , and we know that E(gi│Xi) = 0, then according to the 

law of iterated expectations, E(gi) = 0.   
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Now we have the following results: 

 

iiii XXg ′Λ−=∇ )1( ;               )( )1(
1 iiii XXEgH ′Λ−=∇=  

)()2(2
iiiii XXXg ′⊗′Λ−=∇ ;          )]([ )2(2

2 iiiii XXXEgH ′⊗′Λ−=∇=  

)()3(3
iiiiii XXXXg ′⊗′⊗′Λ−=∇ ;        )]([ )3(3

3 iiiiii XXXXEgH ′⊗′⊗′Λ−=∇=  

1)1(1 )]([)( −− ′Λ−=∇= iiii XXEgQ ;          iiiiiiii XyXXEQgd )()]([ 1)1( Λ−′Λ−== −  

)( )1()1(
iiiiiiiii XXEXXggV ′Λ+′Λ−=∇−∇=  

)]([)( )2()2(22
iiiiiiiiiii XXXEXXXggW ′⊗′Λ+′⊗′Λ−=∇−∇=   ,    (11) 

where )(s
iΛ  is the sth order derivative of iΛ  with respect to the argument of βiX ′  and  

2
)1(

)]exp(1[
)exp(
β
β

i

i
i X

X
′+
′

=Λ  

3
)2(

)]exp(1[
)]exp(1)[exp(

β
ββ

i

ii
i X

XX
′+

′−′
=Λ  

4

2
)3(

)]exp(1[
})][exp()exp(41){exp(

β
βββ

i

iii
i X

XXX
′+

′+′−′
=Λ   .    (12) 

Then we can derive the following theorem and corollary. 

 

Theorem 1 

If assumptions 1-3 hold for some 2≥s . Then the bias of the MLE in the Logit model, to the 

order of )( 1−nO  is 

vecQHQ
n

Bias 22
1)ˆ( =β       (13) 

Further if Assumptions 1-3 hold for some 3≥s , then the MSE of MLE in the Logit model to 

order )( 2−nO  is  

   )(1)(11)ˆ( 44332221 Π′+Π+Π+Π′+Π+Π=
nnn

MSE β   (14)  

where  

Q−=Π1  

{ }{ }QXQXQXvecEHQXQXVEQ 111
)2(

122
1

111
)1(

12 )]([)( ′′Λ−′Λ−=Π  
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{ } { )())((   ])([ 24
1

122
)1(

213 QQvecQvecQHQQVQXXQVEQ ⊗+′+′′Λ=Π

 { } } QHQQXXvecXXvecEQQ 221
)1(

212
)1(

1 )(]))([()( ′⊗′′Λ′Λ⊗+  

{ 21221
)1(

2
)1(

124
1

114 )()[()( )( XQXQXvecHXEQQHQQQVVQE ′′⊗ΛΛ⊗+−=Π
 }QXQXQXvecXQXQXvec ])()( 122221 ′′+′′+           

[{ 22112
)1(

2
)1(

124
1 ))(( XQXQXQXvecHQEHQ ′⊗′ΛΛ+

 ]}QXQXQXQXvecHQXQXQXQXvecHQ 1212221122 ))(())(( ′⊗′+′⊗′+  

[{ 21122211
)1(

2
)1(

136
1 ))(())(( XQXQXQXvecXQXQXQXvecEHQ ′⊗′+′⊗′ΛΛ−

 ]}QXQXQXQXvec 1212 ))(( ′⊗′+        (15) 

 

Now we consider a simple case of (4) with only one regressor, which implies that the constant 

term α  in the latent regression model (1) equals the true threshold α  in (2). For this simple 

model, we derive the following corollary. 

 

Corollary 1 

If assumptions 1-3 hold for some 2≥s . Then the bias of the MLE of  β in the Logit model with 

only one regressor, to the order of )( 1−nO , is 

22)1(

3)2(

)]([
)(

2
1)ˆ(

ii

ii

xE
xE

n
Bias

Λ
Λ

−=β  .     (16) 

Further if Assumptions 1-3 hold for some 3≥s , then the MSE of the MLE of β  in the Logit 

model with only one regressor, to order )( 2−nO  is  

  )(1)(11)ˆ( 44332221 Π′+Π+Π+Π′+Π+Π=
nnn

MSE β    (17)    

where  

)(
1

2
1

)1(
1

1 XE Λ
=Π  

⎭
⎬
⎫

⎩
⎨
⎧

Λ
Λ

+Λ−Λ
Λ

−=Π
)(2

)]([
)]([)(

)]([
1

2
1

)1(
1

23
1

)2(
122

1
)1(

1
22

1
)1(

132
1

)1(
1

2 XE
XE

XEXE
XE

 

 
)(4
)]([3

)]([)(
)]([

1
2

1
)1(

1

23
1

)2(
122

1
)1(

1
22

1
)1(

132
1

)1(
1

3
⎭
⎬
⎫

⎩
⎨
⎧

Λ
Λ

+Λ−Λ
Λ

=Π
XE
XE

XEXE
XE

 

⎭
⎬
⎫

⎩
⎨
⎧

Λ−
Λ
Λ

+Λ−Λ
Λ′

=Π ])(
)(2

)]([3
)]([)(

)]([
1 4

1
)3(

12
1

2
1

)1(
1

23
1

)2(
122

1
)1(

1
22

1
)1(

132
11

4 XE
XE
XE

XEXE
XE

(18) 
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The proofs of Theorem 1 and Corollary 1 are given in the Appendix. 

 

5.  Numerical Evaluations 

In this section, we present some numerical results based on Corollary 1. These evaluations are 

undertaken for the one-regressor Logit model with different distributional assumptions for the 

covariates, and different sample sizes. We choose values for the parameters which ensure a 

sensible signal/noise ratio for the model. The latter is determined by considering the goodness-of-

fit for the model - specifically the measure suggested by Efron (1978): 

   
∑
∑

=

=

−

−
−= n

i i

n

i ii
Ef

yy

Py
R

1
2

1
2

2

)(

)ˆ(
1  .    (19) 

Here, we replace the predicted probability iP̂  with the iP  calculated from *
iy . Usually, with the 

cross-section data, only modest goodness-of-fit values are achieved. Therefore, we choose 

parameter values to ensure that this goodness-of-fit measure is of the order 0.7 to 0.8.   

 

The distributions from which the regressor values are generated include both symmetric and 

asymmetric examples - the standard normal distribution, the uniform distribution on [-2 , 2], and 

the Chi-Square distribution with 3 degrees of freedom. In Tables 1 to 3 the first two columns give 

the true value for the parameter and the sample size. The third column, β̂ , is the average MLE of 

β  based on 2,000 replications of a Monte Carlo experiment.  

 

Specifically, the steps associated with this experiment are: 

(i) Set a value for the parameter. 

(ii) Generate an (nx1) vector of observations for the random regressor X,. 

(iii) Generate (nx1) vectors of observations for y* and y based on (3) with a 

Logistic-distributed disturbance term. 

(iv) Estimate a Logit model based on y and X, and record the MLE forβ  and the 

asymptotic standard error of the MLE of β . 

(v) Repeat steps (ii)-(iv) 2,000 times. 

(vi) Calculate the averages of the 2,000 MLE’s of β  and of its asymptotic 

standard error to get the values referred to as β̂  in column (1) and ASE( β̂ ) 

in column (6) of the tables.  



 10

Two bias-adjusted estimators, BCβ̂  and BCβ~ , are then defined as follows: 

   )ˆ(ˆˆ βββ BBC −= ,    

and   )ˆ(ˆˆ~ βββ BBC −= , 

where )ˆ(βB  is the bias based on (16) and the true parameter β , and )ˆ(ˆ βB  is the bias based on 

(16) and the MLE β̂ . In practice, BCβ̂  is an infeasible estimator as it involves the true parameter. 

However, BCβ~  is the feasible counterpart to this estimator. Given the complication involved in 

deriving the properties of BCβ~ , here we focus on β̂  and BCβ̂ . The sixth column in the tables 

gives the asymptotic standard error from the maximum likelihood estimation across the 2,000 

repetitions. The standard deviation, SD( BCβ̂ ) and the standard error, SE( BCβ̂ ), corresponding to 

the bias-adjusted estimators BCβ̂ , are provided in the following two columns. They are defined as 

follows: 

   SD( BCβ̂ ) )ˆ()ˆ()ˆ()ˆ()ˆ( βββββ BBMSEVarVar BC ′−===  ,   (20) 

and  SE( BCβ̂ ) )ˆ(ˆ)ˆ(ˆ)ˆ(ˆ βββ BBSEM ′−= .     (21) 

 

From (20) and (21), we can also see that SD( BCβ̂ ) and SE( BCβ̂ ) are also the second order 

approximations to the standard deviation and the standard error of β̂ . In the last two columns, we 

report the MSE of β̂  and BCβ̂ . MSE( β̂ ) is based on equation (17) and the true parameter value. 

MSE( BCβ̂ ) is the square of SD( BCβ̂ ), because BCβ̂  is unbiased. From (20), we can see 

MSE( BCβ̂ ) is always smaller than MSE( β̂ ). 

 

The Monte Carlo experiment and the calculation of Bias and MSE in (16) and (17) were 

conducted with code written for the SHAZAM package (Whistler, et al., 2001). Tables 1 to 3 

report the results for cases where the regressor follows the standard normal distribution, the 

uniform distribution on [-2, 2] and the chi-square distribution with three degrees of freedom, 

respectively. From the information in the tables, we can conclude the following. The bias-

corrected estimator yields some efficiency gains over the uncorrected MLE, in terms of MSE. 

Further, from the columns for ASE( β̂ ), SE( β̂ ) and SD( β̂ ), we can see that both the asymptotic 
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and the finite-sample standard errors tend to overestimate the finite-sample standard deviation of 

the MLE, and the asymptotic standard error tends to be worse in this respect than the finite-

sample standard error of the MLE. Comparing SD( BCβ̂ ) and SE( BCβ̂ ), we can see that the 

standard error of the bias-corrected estimator tends to overestimate the true standard deviation. 

Further, we also see that there are gains from bias-correction, regardless of whether this is based 

on the true analytic bias or the estimated analytic bias. Moreover, these gains increase with the 

sample size. For all the cases we consider, the bias is positive.  

 

6.  Conclusions 

In this paper we apply results from Rilstone et al. (1996) to derive analytic expressions for the 

first two moments of the MLE for the standard Logit regression model, and undertake some 

numerical evaluations to illustrate our analytic results. Our analysis extends the very limited 

literature on this topic, notably by allowing for random covariates.  The analytic expressions that 

we derive are complex, but some simple numerical evaluations provide some clear messages. 

First, the bias correction of the MLE also leads to gains in efficiency. Second, the accuracy of the 

corrected estimator generally increases as the sample size increases. Third, the estimated 

analytical results are closer to the analytical results as the sample size increases. Finally, the 

asymptotic standard error overestimates the finite-sample standard deviation of the MLE. These 

results are consistent with the argument that the results derived from the large- n approximations 

lie between the true value and the asymptotic approximations, and that their accuracy increases as 

the sample size increases. 

 

The techniques that are used in this paper can be applied readily to determine the first two 

moments of other maximum likelihood estimators that are defined only implicitly because the 

likelihood equations cannot be solved analytically. For example, work in progress deals with such 

estimators for models of count data. 
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Table 1:  Parameter Estimator and Standard Error Estimates 

With Standard Normal Regressor 

β         n           β̂           BCβ̂         BCβ~      ASE( β̂ )  SD( β̂ )  SE( β̂ )  MSE( β̂ ) MSE( BCβ̂ )                                           

(SD( BCβ̂ )) (SE( BCβ̂ ))   
 

1.4 100 1.4655 1.4222 1.4197 0.3262 0.2974 0.3053 0.0903 0.0884 
 200 1.4210 1.3993 1.3989 0.2247 0.2159 0.2178 0.0471 0.0466 

 
1.5 100 1.5770 1.5298 1.5267 0.3425 0.3096 0.3192 0.0981 0.0958 
 200 1.5185 1.4948 1.4945 0.2347 0.2252 0.2269 0.0513 0.0507 

 
1.6 100 1.6785 1.6273 1.6240 0.3587 0.3222 0.3323 0.1064 0.1038 
 200 1.6208 1.5952 1.5947 0.2455 0.2348 0.2369 0.0558 0.0551 

 
1.7 100 1.7708 1.7154 1.7123 0.3731 0.3352 0.3446 0.1154 0.1123 
 200 1.7205 1.6928 1.6923 0.2564 0.2448 0.2469 0.0607 0.0599 

 
1.8 100 1.8633 1.8034 1.8006 0.3888 0.3485 0.3571 0.1250 0.1215 
 200 1.8195 1.7895 1.7891 0.2677 0.2551 0.2571 0.0660 0.0651 

 
1.9 100 1.9722 1.9078 1.9044 0.4069 0.3622 0.3722 0.1353 0.1312 
 200 1.9304 1.8982 1.8974 0.2807 0.2657 0.2689 0.0716 0.0706 

 
2.0 100 2.0835 2.0143 2.0102 0.4263 0.3761 0.3880 0.1463 0.1415 
 200 2.0285 1.9939 1.9932 0.2928 0.2765 0.2797 0.0777 0.0765 

 
2.1 100 2.1928 2.1186 2.1138 0.4457 0.3904 0.4038 0.1579 0.1524 
 200 2.1235 2.0864 2.0858 0.3046 0.2877 0.2904 0.0841 0.0828 

 
2.2 100 2.2663 2.1869 2.1834 0.4593 0.4049 0.4147 0.1702 0.1640 
 200 2.2282 2.1885 2.1878 0.3179 0.2991 0.3024 0.0910 0.0895 

 
2.3 100 2.3675 2.2828 2.2789 0.4788 0.4197 0.4299 0.1833 0.1761 
 200 2.3375 2.2952 2.2941 0.3322 0.3108 0.3152 0.0984 0.0966 
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Table 2: Parameter Estimator and Standard Error Estimates 

With Uniform Distribution (-2, 2) Regressor 

 β         n         β̂          BCβ̂         BCβ~        ASE( β̂ )  SD( β̂ )  SE( β̂ )    MSE( β̂ ) MSE( BCβ̂ )                                         

(SD( BCβ̂ )) (SE( BCβ̂ ))   

 
1.4 100 1.4807 1.4437 1.4401 0.2874 0.2584 0.2678 0.0681 0.0668 
 200 1.4126 1.3941 1.3939 0.1946 0.1872 0.1883 0.0354 0.0350 

 
1.5 100 1.5843 1.5428 1.5388 0.3032 0.2701 0.2804 0.0747 0.0730 
 200 1.5194 1.4986 1.4982 0.2055 0.1963 0.1981 0.0390 0.0385 

 
1.6 100 1.6582 1.6119 1.6089 0.3145 0.2824 0.2898 0.0819 0.0797 
 200 1.6267 1.6035 1.6028 0.2172 0.2059 0.2086 0.0429 0.0424 

 
1.7 100 1.7619 1.7104 1.7070 0.3317 0.2952 0.3033 0.0898 0.0871 
 200 1.7286 1.7028 1.7020 0.2288 0.2161 0.2190 0.0473 0.0467 

 
1.8 100 1.8639 1.8069 1.8031 0.3504 0.3084 0.3171 0.0984 0.0951 
 200 1.8265 1.7980 1.7973 0.2406 0.2266 0.2295 0.0522 0.0514 

 
1.9 100 1.9751 1.9122 1.9074 0.3716 0.3221 0.3326 0.1077 0.1038 
 200 1.9343 1.9028 1.9017 0.2543 0.2377 0.2416 0.0575 0.0565 

 
2.0 100 2.0665 1.9972 1.9927 0.3888 0.3361 0.3457 0.1178 0.1130 
 200 2.0313 1.9966 1.9956 0.2672 0.2492 0.2528 0.0633 0.0621 

 
2.1 100 2.1790 2.1028 2.0972 0.4113 0.3505 0.3621 0.1287 0.1229 
 200 2.1396 2.1015 2.1001 0.2823 0.2610 0.2659 0.0696 0.0681 

 
2.2 100 2.3119 2.2286 2.2200 0.4393 0.3652 0.3819 0.1403 0.1334 
 200 2.2355 2.1938 2.1925 0.2963 0.2733 0.2778 0.0764 0.0747 

 
2.3 100 2.4312 2.3402 2.3295 0.4668 0.3801 0.3999 0.1527 0.1445 
 200 2.3412 2.2957 2.2940 0.3122 0.2860 0.2913 0.0839 0.0818 
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Table 3: Parameter Estimator and Standard Error Estimates  

With Chi-Square (3) Regressor 

  β        n         β̂           BCβ̂         BCβ~     ASE( β̂ )      SD( β̂ )  SE( β̂ )   MSE( β̂ ) MSE( BCβ̂ )                                        

(SD( BCβ̂ )) (SE( BCβ̂ ))   

 
1.7 200 1.8024 1.7204 1.7086 0.3651 0.2421 0.2574 0.0653 0.0586 
 500 1.7455 1.7127 1.7107 0.2206 0.1772 0.1838 0.0325 0.0314 

 
1.8 200 1.9066 1.8130 1.7996 0.3898 0.2570 0.2720 0.0748 0.0661 
 500 1.8502 1.8127 1.8103 0.2361 0.1918 0.1992 0.0382 0.0368 

 
1.9 200 1.9962 1.8901 1.8770 0.4113 0.2711 0.2836 0.0848 0.0735 
 500 1.9521 1.9097 1.9069 0.2512 0.2067 0.2146 0.0445 0.0427 

 
2.0 200 2.0917 1.9720 1.9585 0.4346 0.2841 0.2947 0.0950 0.0807 
 500 2.0557 2.0078 2.0046 0.2667 0.2219 0.2305 0.0515 0.0492 

 
2.1 200 2.2114 2.0769 2.0591 0.4641 0.2956 0.3063 0.1055 0.0874 
 500 2.1622 2.1085 2.1046 0.2832 0.2374 0.2471 0.0592 0.0563 

 
2.2 200 2.3383 2.1879 2.1640 0.4962 0.3052 0.3148 0.1158 0.0932 
 500 2.2645 2.2044 2.2000 0.2989 0.2531 0.2633 0.0677 0.0640 

 
2.3 200 2.4645 2.2970 2.2661 0.5281 0.3127 0.3184 0.1258 0.0978 
 500 2.3656 2.2987 2.2939 0.3148 0.2689 0.2794 0.0768 0.0723 

 
2.4 200 2.5582 2.3723 2.3406 0.5519 0.3173 0.3169 0.1352 0.1007 
 500 2.4628 2.3885 2.3836 0.3302 0.2849 0.2949 0.0867 0.0812 

 
2.5 200 2.6745 2.4690 2.4314 0.5822 0.3183 0.3087 0.1436 0.1013 
 500 2.5643 2.4821 2.4767 0.3465 0.3009 0.3112 0.0973 0.0905 

 
2.6 200 2.7732 2.5467 2.5070 0.6082 0.3149 0.2943 0.1504 0.0991 
 500 2.6750 2.5844 2.5777 0.3644 0.3169 0.3288 0.1086 0.1004 
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Appendix: Proof of Theorem 1 and Corollary 1 

 

Proof of Theorem 1 

First, for the Logit model in (4), we know the following propositions. 

i
j

i XyE Λ=)(        (22) 

By applying (11) and the law of iterated expectations, we can derive the following results.  

011 =dV          

02211 =′′VddV     

02121 =′′VddV         

 02211 =′⊗′ dddV  

0][ 2121 =′⊗′ dddV        

 0][ 1221 =′⊗′ dddV  

02211 =′′⊗ Vddd         

 0][ 2121 =′′⊗ Vddd  

0][ 1221 =′′⊗ Vddd        

 02121 =′ddQVV  

01221 =′ddQVV         

 0][ 22121 =′⊗ dddHQV  

0][ 21221 =′⊗ dddHQV       

 0][ 12221 =′⊗ dddHQV  

0][ 2211 =′⊗ dddW        

 0][ 2121 =′⊗ dddW  

0][ 1221 =′⊗ dddW        

 0][ 2211 =′⊗ ddQVd  

0][ 2121 =′⊗ ddQVd        

 0][ 1221 =′⊗ ddQVd  
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0][ 2211 =′⊗ dddQV        

 0][ 2121 =′⊗ dddQV  

0][ 1221 =′⊗ dddQV          

vecQdd −=⊗ 11      

)( 111
)1(

1111 QXQXVEddV ′Λ=′       

{ }QXQXQXvecEddd 111
)2(

1111 )]([][ ′′Λ=′⊗  

])([ 122
)1(

211221 VQXXQVEVddV ′′Λ=′′    

))((][][ 2211 ′=′⊗′⊗ vecQvecQdddd  

QQdddd ⊗=′⊗′⊗ ]][[ 2121  

QQVEVddQVV 112211 −=′  

{ } )(]))([()(]][[ 21
)1(

212
)1(

11221 QQXXvecXXvecEQQdddd ⊗′′Λ′Λ⊗=′⊗′⊗  

QXQXQXvecHXQQEdddHQd 21221
)1(

2
)1(

122121 )]()[)((][ ′′⊗⊗ΛΛ=′⊗⊗  

QXQXQXvecHXQQEdddHQd 22121
)1(

2
)1(

121221 )]()[)((][ ′′⊗⊗ΛΛ=′⊗⊗  

QXQXQXvecHXQQEdddHQd 12221
)1(

2
)1(

112221 )]()[)((][ ′′⊗⊗ΛΛ=′⊗⊗  

QXQXQXQXvecHQEddddHQ 22112
)1(

2
)1(

122112 ])([]][[ ′⊗′ΛΛ=′⊗⊗  

QXQXQXQXvecHQEddddHQ 21122
)1(

2
)1(

121212 ])([]][[ ′⊗′ΛΛ=′⊗⊗  

QXQXQXQXvecHQEddddHQ 12122
)1(

2
)1(

112212 ])([]][[ ′⊗′ΛΛ=′⊗⊗  

QXQXQXQXvecEdddd 2211
)1(

2
)1(

12211 ])([][ ′⊗′ΛΛ=′⊗⊗  

QXQXQXQXvecEdddd 2112
)1(

2
)1(

12121 ])([][ ′⊗′ΛΛ=′⊗⊗  

QXQXQXQXvecEdddd 1212
)1(

2
)1(

11221 ])([][ ′⊗′ΛΛ=′⊗⊗    (23) 

Therefore, based on Lemma 1 and (23), Theorem 1 is proved. 

 

Proof of Corollary 1 

When the Logit model only include one regressor, (23) reduces to  

011 =dV          

02211 =′′VddV  
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02121 =′′VddV          

 02211 =′⊗′ dddV  

0][ 2121 =′⊗′ dddV         

 0][ 1221 =′⊗′ dddV  

02211 =′′⊗ Vddd          

 0][ 2121 =′′⊗ Vddd  

0][ 1221 =′′⊗ Vddd           

 02121 =′ddQVV   

01221 =′ddQVV           

 0][ 22121 =′⊗ dddHQV  

0][ 21221 =′⊗ dddHQV        

 0][ 12221 =′⊗ dddHQV  

0][ 2211 =′⊗ dddW         

 0][ 2121 =′⊗ dddW  

0][ 1221 =′⊗ dddW         

 0][ 2211 =′⊗ ddQVd  

0][ 2121 =′⊗ ddQVd         

 0][ 1221 =′⊗ ddQVd  

0][ 2211 =′⊗ dddQV         

 0][ 2121 =′⊗ dddQV  

0][ 1221 =′⊗ dddQV  

)(
1

2
1

)1(
1

11 XE
dd

Λ
−=⊗  

22
1

)1(
1

22
1

)1(
1

111 )]([
)(1

XE
XEddV

Λ
Λ

−=′  
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32
1

)1(
1

3
1

)2(
1

111 )]([
)(][

XE
XEddd

Λ
Λ

−=′⊗  

)(
)]([)(

2
1

)1(
1

22
1

)1(
1

22
1

)1(
1

1221 XE
XEXEVddV

Λ
Λ−Λ

=′′  

22
1

)1(
1

2211 )]([
1][][
XE

dddd
Λ

=′⊗′⊗  

22
1

)1(
1

2121 )]([
1]][[
XE

dddd
Λ

=′⊗′⊗  

=′⊗′⊗ ]][[ 1221 dddd 22
1

)1(
1 )]([
1
XE Λ

 

  22
1

)1(
1

22
1

)1(
1

2211 )]([
)(1

XE
XEddQVV

Λ
Λ

−=′      

 32
1

)1(
1

3
1

)2(
1

22121 )]([
)(][

XE
XEdddHQd

Λ
Λ

=′⊗⊗  

32
1

)1(
1

3
1

)2(
1

21221 )]([
)(][

XE
XEdddHQd

Λ
Λ

=′⊗⊗  

32
1

)1(
1

3
1

)2(
1

12221 )]([
)(][

XE
XEdddHQd

Λ
Λ

=′⊗⊗  

 32
1

)1(
1

3
1

)2(
1

22112 )]([
)(]][[

XE
XEddddHQ

Λ
Λ

=′⊗⊗  

32
1

)1(
1

3
1

)2(
1

21212 )]([
)(]][[

XE
XEddddHQ

Λ
Λ

=′⊗⊗  

32
1

)1(
1

3
1

)2(
1

12212 )]([
)(]][[

XE
XEddddHQ

Λ
Λ

=′⊗⊗  

=′⊗⊗ 2211 ][ dddd 22
1

)1(
1 )]([
1
XE Λ

 

=′⊗⊗ 2121 ][ dddd 22
1

)1(
1 )]([
1
XE Λ

 

=′⊗⊗ 1221 ][ dddd 22
1

)1(
1 )]([
1
XE Λ

      (24) 

Based on (24) and Lemma 1, Corollary 1 is proved. 
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