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1. Introduction 

Crude oil markets can be volatile and risky. The world crude oil prices have risen 

dramatically during the past decade. However, oil prices did not sustain a constant rise – rather, 

they showed high volatility, reflecting market conditions such as political turmoil, supply 

disruptions, unexpected high demand and speculation. Research conducted by Acadian Asset 

Management Inc. shows that the daily returns on crude oil (West Texas Intermediate) have a 

wider range than that of gold, copper and major U.S. stock market indices through the period of 

1990-2006. In the Canadian crude oil market, the oil price is represented by the Edmonton par 

crude oil price. The percentage change in price over one trade day was as high as 17% and as low 

as -24% between 1998 and 2006. For instance, following the September 11, 2001 attacks, the 

price of oil plummeted as oil traders believed that weakened economies in the U.S. and elsewhere 

would use less oil. In particular, on September 24, the Edmonton oil price fell by 24%, its biggest 

one-day drop through that period. In contrast, on March 23, 1998, the crude oil price increased 

sharply by 17% over one day because of the news that three of the world’s biggest oil producers 

agreed to cut supply. Relative to the average positive daily return of 1.74% and the average 

negative daily return of -1.79% during that period, these cases provide examples of extreme 

events.  

 

Moreover, volatile oil prices may lead to price variability of other energy commodities and can 

have wide-spread impacts on the international economy. Canada’s (known) reserves of oil are 

among the largest in the world. The bulk of Canadian crude oil is exported to the U.S.A., Canada 

being the third largest supplier of oil to that country after Saudi Arabia and Mexico. So, volatility 

in the price of Canadian crude oil impacts significantly on the global economy. Specific examples 

of impacts include the obvious example of gasoline, and hence transportation costs. Other 

examples include the stock market and exchange rates, which can be affected substantially by the 

price of oil (see Nandha and Faff, 2007), as well as the chemical industry. If relevant risk 

management organizations and investors in these markets can not predict and capture the risks 

appropriately, their losses could be huge. The highly volatile behaviour of crude oil prices and the 

substantial impacts of this volatility motivate us to undertake research on modelling oil price 

fluctuations and providing an effective instrument to measure energy price risks. 

In order to better disclose the nature of the risks under extreme situations, and finally 

avoid the risks in the most degree, we need certain risk measures. Extreme value theory (EVT), a 

theory for assessing the asymptotic probability distribution of extreme values, models the tail part 
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of the distribution where the risk exists. This theory is playing an increasingly important role in 

dealing with modelling rare events. While application of EVT is not foolproof, it provides a 

relatively safe method for extrapolating beyond what has been observed (Embrechts et al., 1997). 

On successfully modelling tail-related risks, we then need to find suitable instruments to measure 

these risks. Two popular measures are Value-at-Risk (VaR) and Expected Shortfall (ES). VaR is 

the maximum loss of a portfolio such that the likelihood of experiencing a loss exceeding that 

amount over a specified risk horizon is equal to a pre-specified tolerance level. Expected Shortfall 

measures the mean of the losses that are equal to or greater than VaR. In particular, VaR has 

become one of the most used techniques in risk management. In order to capture the effect of 

market behaviour under extreme events, EVT has been widely adopted in VaR estimation in 

recent years.  

Because extreme value methods are derived from a sound statistical theory, and provide a 

parametric form for the tail of a distribution, these methods are attractive when dealing with 

measuring risks.  There is a large literature that studies extreme value theory for risk measures in 

areas where extreme observations may appear, such as finance, insurance, hydrology, climatology, 

engineering and modern science. Specifically, numerous studies in finance and insurance have 

been conducted, including Embrechts et al. (1997), Reiss and Thomas (1997), Danielsson and de 

Vires (2000), McNeil and Frey (2000), Gencay et al. (2003) and Gilli and Këllezi (2006). 

However, to the best of our knowledge, there is only limited discussion of the application of EVT 

to markets for crude oil, which is a crucial commodity to the world economy. Among the studies 

on Value-at-Risk estimation on energy markets with extreme value approaches, Krehbiel and 

Adkins (2005) examine the price risk in the NYMEX energy complex. This study constructs risk 

statistics for unconditional distributions of daily price changes and applies the conditional 

extreme value method for estimating VaR and related risk statistics. Another research undertaken 

by Marimoutou et al. (2006) explores the daily spot Brent oil prices and compares the 

performances of unconditional and conditional EVT models with that of conventional models 

such as GARCH and historical simulation. 

The remainder of this paper proceeds as follows: section 2 presents an overview of the 

theoretical framework of extreme value theory and the statistical approach of fitting the 

generalized Pareto distribution – the peak over threshold model. Section 3 describes the measures 

of extreme risks – VaR and ES. We discuss the tail modelling of the price time series and assess 

the outcomes in section 4. Point and interval estimates of risk measures are provided in section 5, 

and concluding remarks are given in the final section. 

 



 3

2. Extreme Value Theory and Statistical Approaches 

Extreme value theory relates to the asymptotic behaviour of extreme observations of a 

random variable. It provides the fundamentals for the statistical modelling of rare events, and is 

used to compute tail risk measures. Researchers have contributed abundant theoretical discussion 

on EVT such as Embrechts et al. (1997), Reiss and Thomas (1997), and Coles (2001). Two 

different but related methods may be applied in modelling extremes: block maxima models and 

threshold models. The first way concentrates on the distribution of block maxima, which can be 

modelled by the generalized extreme value (GEV) distribution. The second one identifies realized 

large values over some high threshold, which can be simulated by the generalized Pareto 

distribution (GPD).  

The Fisher-Tippet Theorem (Fisher and Tippett, 1928; Gnedenko, 1943) implies that, if 

maxima are suitably normalized and converge in distribution to a non-degenerate limit, then the 

limiting distribution must be one of the Fréchet, Gumbel and Weibull families, indicating that 

these three classes are the only possible forms of extreme value distributions. Furthermore, these 

three types of distributions can be nested into a single class of continuous probability distributions 

– the GEV distribution (Embrechts et al., 1997). Inspired by the theorem, the distribution of block 

maxima (the maxima for n  observation periods of fixed and equal length) can be modelled by 

fitting the GEV to the set of block maxima. In practice, this approach is subject to pitfalls: one 

key issue in implementing this model is the choice of block size, and another difficulty rises with 

the use of relatively attractive likelihood-based methods for the GEV. More importantly, 

modelling block maxima only uses partial information if other data on extreme values are 

available. This especially may be an issue when one block contains more extremes than another. 

In contrast, threshold models provide a more efficient means to dealing with extremes, as the 

information from the entire time series above some threshold will be used. 

 

2.1. The generalized Pareto distribution 

By introducing the shape parameter ξ, location parameter μ and scale parameter σ, a 

three-parameter generalized Pareto distribution has the following representation1 

                                                 
1 The one-parameter standard GPD is defined as ( ) ( ) 1/1 1 if 0

1 if 0

x
G x

xe

ξξ ξ
ξ

ξ

−⎧ − + ≠⎪= ⎨ −⎪ − =⎩
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1 if 0
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x u

x u
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e
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ξ β

β

ξ ξ
β

ξ

−

⎛ ⎞−
− ⎜ ⎟
⎝ ⎠

⎧ ⎛ ⎞⎛ ⎞−
⎪ − + ≠⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠= ⎨
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    (1) 

 

where (i) 0x u− ≥  when 0ξ ≥ , and 0 /x u β ξ≤ − ≤ −  when 0ξ < , and (ii) 0β > . 

 

The excess distribution above a certain threshold u for a random variable X is referred to as the 

excess distribution function uF  and is defined as 

( ) ( )|uF x P X u x X u= − ≤ >  

for 0 Fx x u≤ < − ; where Fx ≤ ∞  is the right endpoint of F; x  represents exceedances over u ; 

and the above expression can be written as 

( ) ( ) ( )
( )1u

F x u F u
F x

F u
+ −

=
−

 .       (2) 

 

Pickands-Balkema-de Haan Theorem: (Pickands, 1975; Balkema and de Haan, 1974) It is 

possible to find a positive measurable function β , where β  is a function of u , such that 

( ) ( ),
0

| | 0suplim
F F

u
u x x x u

F x G xξ β
→ ≤ ≤ −

− =  

if and only if 2 ( )( )F MDA H xξ∈ . 

That is, provided the underlying distribution belongs to the maximum domain of 

attraction of the GEV, as the threshold u  becomes large, the excess distribution function of 

exceedances over the threshold has approximately a generalized Pareto distribution. This theorem 

suggests that we use the following approximation conditional on a sufficiently high threshold u  

and an appropriately positive β: 3 

( ) ( ), ,u uF x u G x uξ β− ≈ →∞       (3) 

where the exceedances 0x u− ≥  and ( ) ( ), , ,G x u G xuξ β ξ β− = . 

 

                                                 
2 MDA  represents the maximum domain of attraction;  ( )H xξ  represents the GEV. 
3 The two-parameter form is written as ( ) ( ),F x G x uu ξ β≈ →∞  
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The generalized extreme value distribution measures the limiting distribution of 

normalized maxima for a series of i.i.d. random variables, while the generalized Pareto 

distribution describes the limiting distribution of scaled exceedances above certain high 

thresholds (residuals beyond the maxima). The key point from the Pickands-Balkema-de Haan 

Theorem is that, if block maxima have the GEV distribution, then exceedances over some high 

threshold will have an associated GPD. Furthermore, the parameters of the GPD of exceedances 

over a certain threshold are determined by that of the associated GEV of block maxima. The 

shape parameter ξ in the GPD exactly equals that of the corresponding GEV distribution (Coles, 

2001), and acts as the dominant factor in determining the tail properties of the GPD and thus 

measures the fatness of the tail. As for the GEV family, the distribution of exceedances is 

unbounded if 0ξ >  or 0ξ = , while the excess distribution has an upper bound if 0ξ < . The 

condition 0ξ >  associates with a re-parameterized ordinary Pareto distribution; if 0ξ <  then the 

distribution is Pareto type II; and if 0ξ =  then the distribution is exponential. The case of ξ > 0 is 

of our interest, as the corresponding GPD is fat-tailed with a positive tail index, and the larger the 

shape parameter, the heavier is the tail of the distribution. The choice of the threshold and the 

estimation of the parameters conditional on that threshold will be discussed in the next section. 

2.2. The peak over threshold model: a GPD approach 

Based on the Pickands-Balkema-de Haan Theorem, the peak over threshold (POT) model 

focuses on the distribution of exceedances above some high threshold. 

For x – u ≥ 0, we rewrite the excess distribution function (2) as 

( ) ( ) ( )
( )1u

F x F u
F x u

F u
−

− =
−

 ,       (4) 

and then we derive the following expression by rearranging (4): 

 

( ) ( )( ) ( ) ( )1 uF x F u F x u F u= − − +  . 

 

In practice, the application of the POT method involves two steps: choose an appropriate 

threshold, and then fit the GPD function. Provided that the threshold u  is sufficiently high, we 

can use the method of historical simulation to estimate ( )F u  by (1 uN n− ), where n  is the 

total number of sample observations and uN  is the number of observations above the threshold 
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u . By applying maximum likelihood estimation, ( )uF x u−  can be estimated by a GPD 

approximation (Embrechts et al., 1997). We then obtain the tail estimator 

( )
ˆ1/

ˆˆ 1 1 ˆ
uN x uF x

n

ξ

ξ
β

−
⎛ ⎞−

= − +⎜ ⎟
⎝ ⎠

      (5) 

 

The choice of threshold is an issue of balancing bias and variance. Coles (2001) points 

out that if a threshold is too low, it is more likely to violate the asymptotic property of the model 

and cause bias; if a threshold is too high, it will generate few exceedances with which the model 

can be estimated and result in high variance. A basic strategy is to select a threshold as low as 

possible, as long as the limiting approximation of the model can provide a reasonable result. 

McNeil (1997), Danielsson and de Vires (1997) and others have exploited this data-analytic issue, 

but there is still not a clear rule or treatment that we can follow in dealing with such a question. In 

this paper, we apply two approaches: one is to use exploratory tools prior to model estimation; the 

other is to assess the stability of the estimates of parameters, based on fitting the model across a 

range of different thresholds. 

The first approach for threshold selection utilizes the empirical mean excess (ME) plot. A 

mean excess function is the mean of the exceedances over a certain threshold u. For a random 

variable X with right endpoint Fx , its mean excess function is defined as 

( ) ( )|e u E X u X u= − >  

for Fu x< . If the underlying distribution of X u>  has a generalized Pareto distribution, then the 

corresponding mean excess is 

( )
1

ue u β ξ
ξ

+
=

−
         (6) 

where 1ξ <  so that ( )e u  exists. According to equation (6), the mean excess function is linear in 

the threshold u. More precisely, the mean excess function is linear if, and only if, X u>  has a 

generalized Pareto distribution. This important property can help with the selection of the 

threshold. Provided with data, we define the empirical mean excess function as 

( )
( )

1
i

i

n
i X ui

n n
X ui

X u
e u >

>

−
=
∑
∑

       (7) 
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where n represents the number of sample observations that exceed threshold u. The locus of 

( )( ), nu e u  is termed the empirical mean excess plot, and we can choose the threshold u in such a 

way that ( )ne u  is approximately linear for x u≥ . 

A complementary method is to fit the GPD by maximizing the log-likelihood to acquire 

estimates of the shape parameter ξ  and the scale parameter β  corresponding to different 

thresholds, and then determine thresholds for which the estimates of the shape parameter are 

relatively stable. This technique is based on a favourable property of the GPD: above the level of 

a certain threshold, the asymptotic characteristics of the GPD are valid, and thus estimates of the 

shape parameter should be roughly constant. 

Various techniques have been applied in estimating the parameters of the GPD, including 

maximum likelihood estimation (MLE), method of moments and the method of probability-

weighted moments. The method of MLE is adopted in this study. A major reason is that the 

maximum likelihood estimator is asymptotically normal, allowing approximations for standard 

errors and confidence intervals. A detailed introduction to likelihood-based statistical inference 

can be found in Azzalini (1996). Provided a sufficiently high threshold u and the sample 

1{ ,... , }nx u x u− −  with a underlying distribution of GPD, where 0ix u− ≥  for 0ξ >  and 

0 /ix u β ξ≤ − ≤ − , for 0ξ < , the individual probability density function in logarithmic form is 

derived from equation (1): 

( ) ( ) 1log log log 1 i
i

x uf x ξβ ξ
ξ β

⎛ ⎞⎛ ⎞+ −
= − − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 . 

In the case 0ξ = , the individual logarithmic density function is obtained as 

( ) ( ) ( )1log logi if x x uβ
β

= − − −  . 

The log-likelihood function ( ), | iL x uξ β − for the GPD is the logarithm of the joint 

density of the n observations 

( )
( )

( ) ( )

1

1

1log log 1 if 0
, |

1log if 0

n
i

i
i n

i
i

x un
L x u

n x u

ξβ ξ ξ
ξ β

ξ β

β ξ
β

=

=

⎧ ⎛ ⎞⎛ ⎞+ −
− − + ≠⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠− = ⎨

⎪ − − − =⎪⎩

∑

∑
 (8) 

Consequently, we may calculate the estimates of tail index ξ and scale parameter β by 

maximizing the log-likelihood function for the sample corresponding to a suitable threshold u. 
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3. Measures of Extreme Risks 

Risk management in energy markets, especially the market for crude oil, manages pricing 

risks associated with changing market conditions. One of the most frequent questions concerning 

risk management in volatile markets is about extreme quantile estimation. Typical examples of 

such tail-related risk measures are Value-at-Risk (VaR) and Expected Shortfall (ES). This section 

describes how extreme value theory can be applied to model and compute these measures of 

extreme risks. 

3.1. Value-at-Risk and Expected Shortfall 

The origin of the concepts of Value-at-Risk or VaR-like measures can be traced back as 

far as 1922 to capital requirements the New York Stock Exchange imposed on member firms. 

VaR was widely adopted for measuring market risks starting in the early 1990s (Holton, 2002). In 

particular, the Basel Committee on Banking Supervision (1996) at the Bank for International 

Settlements imposed on financial institutions such as banks and investment firms to meet capital 

requirements based upon VaR measures. Value-at-Risk measures the maximum potential losses 

in the market value of, say, a financial portfolio with a given level of confidence over a specified 

period. Essentially, VaR is a high quantile on the distribution of returns. 

Mathematically, let X be a random variable with continuous cumulative distribution 

function xF  that models the return distribution of a risky financial instrument over the specified 

time horizon. For a given probability p, VaR can be defined as the p-th quantile of the distribution 

xF : 

( )1VaR 1p F p−= −         (9)  

where 1F − , the inverse of the distribution function F, is the quantile function. 4 

 

VaR is a good risk measure, but it does not capture all the aspects of market risks. A better 

methodology for risk measurement would be to combine VaR and other complement measure 

vehicles. Artzner et al. (1997, 1999) argue that ES, as opposed to VaR, is a coherent risk measure, 

and thus suggest the use of Expected Shortfall. ES describes the expected size of the return that 

exceeds VaR. This risk measure exhibits some information on the size of the potential returns 

                                                 
4 In terms of  the quantile q, the equivalent expression is ( )1VaR F qq

−= , where 1q p= −  
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given that the return is bigger than VaR. The expression of ES for risk X at given probability level 

p is defined as 

( | )p pES E X X VaR= >        (10) 

3.2. Calculation of VaR and ES 

Traditional approaches to compute VaR include parametric and non-parametric 

approaches. The parametric approach applies historical data on the underlying variable, and 

assumes that the relevant variable owns a normal distribution. The limitation of this approach is 

obvious: the assumption of normality for the underlying distribution is not realistic. For example, 

the financial and commodity data often exhibit the properties of asymmetry and heavy tails. Thus 

the inferences drawn about the future level of the variable is lack of reliability and accuracy. An 

alternative way is known as non-parametric approach, represented by Monte Carlo simulation 

method and historical simulation method. The principle is that specific values can be forecasted 

based on the estimation of a range for the future values, and then VaR can be calculated using 

these values. This approach of measure is still restricted under limitations. On the other hand, the 

extreme value approach based VaR estimation is superior to the traditional parametric and non-

parametric methods in identifying extreme risks (for example, Aragonés et al., 2000).  

For given level of probability p (correspondingly the quantile level is 1q p= − ), the tail 

quantile can be obtained by inverting the tail estimator formula provided in equation (5) 
ˆˆ

ˆ 1ˆp
u

nx u p
N

ξ
β
ξ

−⎛ ⎞⎛ ⎞⎜ ⎟= + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

where ξ̂  and β̂  are the maximum likelihood estimates of the GPD parameters. As VaR is 

exactly the extreme quantile, it can be estimated by 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

−

1ˆ
ˆ

ˆ

~ξ

ξ
β p

N
nuRaV

u
p  .      (11) 

An equivalent expression of formula (10) is 

( | )p p p pES VaR E X VaR X VaR= + − >      (12) 

where the second term represents the mean of the excess distribution ( )
pVaRF x  above the 

threshold pVaR . Applying the Pickands-Balkema-de Haan Theorem, if the threshold pVaR  for 
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( )1 p F u− >  is sufficiently high, then the excess distribution above this threshold is a GPD, 

implying the following relation 

( ) ( ) ( ),p p
VaR VaR u

F x G x
ξ β ξ+ −

=  . 

Thus, the mean of the excess distribution ( )
pVaRF x can be easily calculated as 

( )( ) ( )) / 1pVaR uβ ξ ξ+ − −  

where 1ξ < . Substituting this result into equation (12), we obtain the expression of ES: 

ξ
ξβ

ξ ˆ1

ˆˆ
ˆ1

ˆˆ
−
−

+
−

=
uRaV

SE p
p  .       (13) 

Correspondingly, the explicit form of the ES estimator is 

ξ
ξβ

ξ
β

ξ

ξ

ˆ1

ˆˆ
1ˆ

ˆ
ˆ1

1ˆ
ˆ

−
−

+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
=

−
up

N
nuSE

u
p  .    (14) 

McNeil (1999) stresses that formula (13) indicates the importance of the shape parameter ξ  in 

tail estimation, and essentially ξ  determines how VaR and ES differ as risk measures. 

 

4. Modelling the Tails of Return Distributions Using EVT 

Let us now return to our primary objective – analyzing the volatility of daily crude oil prices 

by applying the extreme value theory to model the tails of the distribution for daily returns. In this 

section we describe the historical data for spot oil prices on the Canadian market, the preliminary 

tests undertaken on the data and exploratory techniques, the determination of thresholds, the 

fitting of the GPD, and the examination of tail modelling. The empirical analysis has been 

undertaken by writing program code that was executed using the EViews 5 econometrics package. 

4.1. Data description 

There are four key players in the Canadian oil market: Imperial Oil, Petro-Canada, Shell 

Canada and Suncor Energy. The Edmonton par crude oil prices refer to the average prices of par 

crude postings at Edmonton from these integrated oil companies. Our raw data represents per-

cubic-meter oil prices in Canadian dollars over the period January 4, 1998 through December 31, 
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20065. After preliminary treatment6 to the raw data, we focus on the daily returns of Canadian 

crude oil prices, measured as differences in the natural logarithms of the price.  
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Fig. 1. Daily oil prices (top) and daily logarithmic returns (bottom). 
 

There are 2,319 adjusted observations, including 1,018 observations of gains and 897 

observations of losses. The plot of the daily crude prices (Fig. 1, top) shows a substantial increase 

since 1998 with lots of fluctuations, and the graph of daily returns (Fig. 1, bottom) confirms the 

volatility of the Canadian crude oil market. 

4.2. Preliminary tests and exploratory analysis 

The Jarque-Bera (1980) test uses sample skewness and kurtosis to measure the deviation 

of a distribution from normality. Under the null hypothesis, both the skewness and excess kurtosis 

                                                 
5 Price data were retrieved from the “Summary of Par Crude Postings at Edmonton – Daily, Crude Oil 
Data”, Natural Resources Canada. 
6 Treatment of non-trade-day data: duplicated data on Saturday and Sunday are removed in order to better 
describe the price movements in trade days. For same reason, data on fixed-date Canadian public holidays 
including January 1, July 1 and December 25 and 26 are also eliminated. The elimination of the duplicated 
data on weekends and holidays does not affect data accuracy. 
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are zero. In our sample, the Jarque-Bera statistic is very large and the associated p-value 

essentially equals zero, suggesting that the normality of the return distribution is unrealistic. The 

larger kurtosis value (kurtosis = 16.2) relative to that under the normal distribution implies the 

existence of fat tails, and the statistic also shows the return distribution skews to the left. Krehbiel 

and Adkins (2005) examine different spot market commodities of the NYMEX energy complex, 

and conclude that the commodity returns are not normally distributed and exhibit the asymmetry 

and heavy tails; in particular, all empirical distributions demonstrate significant negative 

skewness. Our finding is in line with their study. Because of the existence of asymmetry of the 

return distribution in crude oil market, it is necessary to model left and right tails separately in 

order to capture their distinct characteristics. For the negative one, we follow the rule that the 

absolute values of losses are examined. 

McNeil and Frey (2000) propose a conditional extreme value method: first a GARCH-

type model is fitted to the return data using quasi-maximum likelihood, and then a generalized 

Pareto distribution approximation is fitted to the tails of the innovations. Following this thought, 

we fit various forms of GARCH-type models. The results show that there is no evidence 

indicating the existence of conditional heteroskedasticity in our sample data. Our finding from 

this preliminary analysis coincides with the conclusion of Danielsson and de Vires (2000): for 

long time horizons an unconditional approach is better suited. For this reason, the GARCH-GPD 

specification is not adopted in our study. 

A popular tool in conducting exploratory data analysis is the quantile-quantile (QQ) plot. 

The QQ plot is a graphical technique to check whether our sample data is consistent with some 

known distribution and thus can be used to assess goodness of fitting. The quantile function Q is 

the generalized inverse function of the cumulative distribution function F: 

( ) ( )1 where 0 1Q p F p p−= < <  

The quantity ( )1
px F p−= defines the p th−  quantile of the distribution function F. A QQ plot 

compares the quantiles of the empirical distribution function with the quantiles of the reference 

distribution model. If the empirical data comes from the family of reference distribution, the plot 

will be approximately linear. If the plotted values deviate far from a straight line, the sample 

likely comes from a different distribution. For a normal QQ plot, the points on the QQ plot should 

have an S shape if the sample data has heavy tails relative to a normal distribution. 

Fig. 2 illustrates the QQ plots of daily returns against the normal and the Student’s t 

distribution respectively. The plots suggest that the underlying distribution of daily returns does 

not fit the normal or Student’s t distribution. The plot curves down to the right, implying that the 
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data has a heavier right tail compared with the normal distribution; on the contrary, the plot 

curves up to the left, which indicates that the data has a fatter left tail than the normal distribution. 

This property confirms the heavy-tailed behaviour of the crude oil daily price change series. 

Compared to the Student’s t distribution, the underlying distribution of daily returns fits to some 

degree. There is still evidence showing that the distribution of our sample data is heavier in the 

tail against the Student’s t distribution. In addition, we examine the QQ plots of daily price 

changes against quantiles from various standard statistical distributions. Essentially, no 

distribution matches the sample data exactly. 
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Fig. 2. QQ plots for daily returns against the normal and the Student’s t distributions. 

4.3. Determination of thresholds 

 Choosing some suitable threshold is critical in order to adopt the POT method to model 

the tails of the distribution of daily returns. Two techniques can contribute to the determination of 

an appropriate threshold level: one is the mean excess plot and the other is the maximum 

likelihood estimation to a parametric GPD. 

The ME plot is helpful in detecting graphically the quantile above which the Pareto’s 

relationship is valid. Section 2.2 details that the empirical mean excess plot is approximately 

linear in the threshold u given that the underlying distribution of sample data is a GPD. More 

specifically, the ME plot of the data can be used to distinguish between light- and heavy-tailed 

models: the plot of a heavy-tailed distribution shows an upward trend, a medium tail shows a 

horizontal line, and the plot is downward-sloped for light-tailed data. A common ground in our 

sample data is that both the ME plots of positive and negative returns have an upward-trend part 



 14

followed by an irregular portion in the far end. The initial and small part of the gain plot is 

downward-sloping until u ≈ 0.012, followed by a roughly upward-sloping straight line until 

u ≈ 0.073, where upon it varies sharply. The case of losses shows an approximate linearity with 

slightly upward trend in the threshold from u = 0 to u ≈ 0.064. Therefore, there is some evidence 

to choose thresholds from 0.012 to 0.073 for the right tail and from 0.000 to 0.064 for the left tail 

based on the criterion of linearity in the ME plots shown in Fig. 3. 
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Fig. 3. The ME plots for positive and negative returns. 
 

 As a means of threshold selection, the ME plots may be difficult to interpret, and the 

results can be treated as preliminary conclusions. A further step is to apply the GPD fitting and 

look for stability of shape parameter estimates. We fit the exceedances of daily returns beyond the 

associated threshold in each tail to the GPD. Because the maximum likelihood estimator of the 

shape parameter is asymptotically normal, we can calculate associated approximate standard 

errors and construct confidence intervals for this parameter. The plots of the shape parameter 

estimates against different threshold levels are shown in Fig. 4. The upper and lower dashed lines 

constitute confidence intervals at an approximate 95% level. There exists some scope of the 



 15

threshold that the estimated shape parameter is relatively steady: from 0.006 to 0.046 for the tail 

of gains, and from 0.000 to 0.048 for the tail of losses. The estimated shape parameter ξ̂  and 

scale parameter β̂  as well as their associated standard errors under different thresholds for both 

tails are listed in Table 1. 

In order to apply extreme value theory, the threshold should be sufficiently large so that 

only the tail of the distribution is being analyzed. When the threshold is close to zero, there are 

too many observations included. Practical experience suggests it is reasonable including 

observations up to roughly one-fifth of the total number of observations for both positive returns 

and negative returns. This is somewhat arbitrary, but provides a reasonable compromise. 

Combining this restriction and results from the ME plots and the shape parameter plots, we 

choose the range of the threshold from 0.027 to 0.046 for positive returns and from 0.028 to 0.048 

for negative returns. 
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Estimates of Shape Parameter (Negative Daily Returns)
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Fig. 4. Estimates of the shape parameter ξ of the GPD for both returns. 
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Table 1 
Maximum likelihood parameter estimation under different thresholds for both returns 

 Parameter estimates for positive returns  Parameter estimates for negative returns 

 u =0.006 u =0.027 u =0.046  u =0.000 u =0.028 u =0.048 

ξ̂  
(s.e.) 

0.0569 
(0.0348) 

0.1272 
(0.0828) 

0.1704 
(0.1784)  0.0388 

(0.0199) 
0.0935 

(0.0471) 
0.1277 

(0.0851) 

β̂  
(s.e.) 

15.1490 
(0.8049) 

14.7867 
(1.5860) 

15.8048 
(3.2247)  17.5690 

(0.7628) 
17.6787 
(1.7990) 

18.0102 
(3.8846) 

 

4.4. Examination of tail modelling 

 Extreme value theory suggests that the excess distribution above a suitable threshold of 

daily returns should follow a generalized Pareto distribution. To determine how the GPD fits the 

tails of the return distribution, we plot the empirical distribution of exceedances along with the 

cumulative distribution simulated by a GPD and compare the results visually. Fig. 5 provides the 

plots corresponding to different threshold levels for gains and losses, respectively. For gains, the 

plots show the GPD fitting to 201 exceedances at the threshold 0.027u =  with the shape 

parameter estimate ξ̂  = 0.127 (top, left), and the GPD fitting to 63 exceedances at the threshold 

0.046u =  with the shape parameter estimate ξ̂  = 0.170 (top, right). For losses, the plots give the 

GPD fitting to 184 exceedances at the threshold 0.028u =  with the shape parameter estimate of 

ξ̂  = 0.094 (bottom, left), and the GPD fitting to 64 exceedances at the threshold 0.048u =  with 

the shape parameter estimate ξ̂  = 0.128 (bottom, right). For both positive and negative returns, 

the graph of the empirical excess distribution function follows closely the trace of a 

corresponding GPD, implying that the GPD models the exceedances very well. Two points are 

noticeable in the plots: as the increase of the threshold, the fit is getting less precise for both gains 

and losses; at an either lower or higher threshold level, positive daily return series fits a GPD 

slightly better than negative returns does. 

 The survival function is the probability of observing a value from the series x at least as 

large as some specified value u. It equals one minus the cumulative distribution function7. The 

survival functions plotted in Fig. 6 under different thresholds for both daily gains and losses 

depict similar facts as to what has happened in the excess distribution functions.  

 

                                                 
7 ( ) ( )1S x F xu = −  
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Positive Daily Returns (u = 0.027, observations=201)
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Positive Daily Returns (u = 0.046, observations=63)
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Negative Daily Returns (u = 0.028, observations=184)
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Negative Daily Returns (u = 0.048, observations=64)
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Fig. 5. Excess distribution functions for positive and negative returns. 
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Positive Daily Returns (u = 0.046, obs = 63)
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Negative Daily Returns (u = 0.028, obs = 184)
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Negative Daily Returns (u = 0.048, obs = 64)
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Fig. 6. Survival functions for positive and negative returns. 
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 Overall, based on different fittings with different values of the threshold and associated 

parameter estimates, the GPD models the tail behaviour of our daily returns very well and the fits 

exhibit reasonable robustness to the choice of thresholds. 

 

5. Computation of Extreme Risk Measures 

We conduct one-period ahead return estimation in both tails of the return distribution at 

two tail quantiles. Point estimation of VaR and ES follow the formula in equations (11) and (14). 

Interval estimates are generated using the delta method (see Oehlert, 1992). Table 2 provides the 

estimates of VaR and ES and their respective confidence intervals for both positive and negative 

returns, given different levels of the threshold and different tail quantiles. 

 
Table 2 
Point and interval estimates of VaR and ES 

Value-at-Risk for positive returns 

Quantile Threshold Estimate CI Lower CI Upper 
99-level u = 0.027 0.0637 0.0579 0.0696 
99-level u = 0.046 0.0632 0.0580 0.0684 
95-level u = 0.027 0.0354 0.0339 0.0370 
95-level u = 0.046 0.0368 0.0325 0.0412 

Value-at-Risk for negative returns 
Quantile Threshold Estimate CI Lower CI Upper 
99-level U = 0.028 0.0684 0.0619 0.0750 
99-level U = 0.048 0.0675 0.0604 0.0747 
95-level U = 0.028 0.0363 0.0348 0.0379 
95-level U = 0.048 0.0377 0.0330 0.0424 

Expected Shortfall for positive returns 
Quantile Threshold Estimate CI Lower CI Upper 
99-level U = 0.027 0.0860 0.0723 0.0998 
99-level U = 0.046 0.0858 0.0712 0.1005 
95-level U = 0.027 0.0536 0.0492 0.0580 
95-level U = 0.046 0.0540 0.0508 0.0572 

Expected Shortfall for negative returns 
Quantile Threshold Estimate CI Lower CI Upper 
99-level U = 0.028 0.0921 0.0812 0.1029 
99-level U = 0.048 0.0910 0.0780 0.1040 
95-level U = 0.028 0.0567 0.0521 0.0613 
95-level U = 0.048 0.0568 0.0542 0.0595 
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In this study, Value-at-Risk measures the best/worst case scenario on the market value of 

the Edmonton par crude oil over one trade day and given a specified degree of confidence. We 

first consider the cases of point estimates under the lower threshold for both tails (0.027 for the 

right tail and 0.028 for the left tail) with statistics shown in Table 2. For example, we calculate 

VaR as 0.0637 at the 99th percentile for the right tail. That is, given usual conditions, we expect a 

daily change in the value of par crude oil in the Edmonton market would not increase by more 

than 6.37%. In other words, the market value, with a probability of 1%, would be expected to 

gain by $63,700 or more if we have an investment of $1 million in that market. On the other hand, 

VaR is estimated as 0.0684 at the 1st percentile for the left tail. This implies that, for the lowest 

1% negative daily returns, the worst daily loss in the market value may exceed 6.84% in 

expectation. Put differently, if we invest $1 million in Canadian par crude oil, we are 99% 

confident that our daily loss at worst will not exceed $68,400 during one trade day. Similarly, at a 

lower quantile of 95-level, the estimated VaR is 0.0354 for gains and 0.0363 for losses. We can 

state that, with 95% confidence, the expected market value of par crude oil would not gain by 

more than 3.54% for the best case scenario or lose more than 3.63% for the worst case scenario 

within one-day duration. Under the higher threshold for both tails (0.046 for the right tail and 

0.048 for the left tail), the estimates of VaR are very close to their corresponding values under  

the lower threshold, and the estimates may or may not be larger than that under a lower threshold. 

 Some characteristics of the estimation can be summarized as follows: (1) under different 

thresholds, the estimates of VaR exhibit strong stability; (2) given the quantile level, under either 

the lower or higher threshold, the corresponding VaR estimate in the left tail is larger than that in 

the right tail, but the difference is small, implying that the behaviour difference in both tails is 

likely to be small. 

Krehbiel and Adkins (2005) present risk statistics results for the 4,102 conditional-EVT 

backtest trials in the West Texas Intermediate (WTI) crude oil spot market between December 

1986 and April 2003. The average of VaR calculated at the 99-level quantile is 0.0528 for the 

right tail and 0.0677 for the left tail. Compared with their results, we have similar estimates of the 

left-tail VaR, while their estimate in the right tail is significantly smaller than ours. 

 The usefulness of VaR estimates crucially depends on their precision. The most 

straightforward way to examine this is to construct confidence intervals. For instance, we discuss 

the right tail here. An approximate 95% confidence interval constructed for the 99-level quantile 

VaR is [0.0579, 0.0696] under 0.027u =  and [0.0580, 0.0684] under 0.046u = ; for the 95-

level quantile VaR the associated 95% confidence intervals are [0.0339, 0.0370] and [0.0325, 
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0.0412]. Obviously the two confidence intervals under different thresholds overlap considerably 

for both quantile levels. In the case of the left tail, the interval estimates tell a similar story. 

 Table 2 also provides the estimates and confidence intervals of ES under various 

combinations of different quantile levels and thresholds. The estimates and intervals exhibit 

similar characteristics to those observed from the VaR. In contrast with the results provided by 

Krehbiel and Adkins (2005), our estimates of ES are a little larger in the left tail and more than 30 

percent larger in the right tail. Noticeably, in our study, the left tail ES exceeds VaR by a slightly 

greater margin than the right rail ES exceeds VaR.  

 Researchers have conducted sound studies on the tail distribution modelling by applying 

some methods of univariate extreme value theory, especially in the financial field. An important 

argument is that the EVT approach well captures the features of the innovation distribution and 

can provide more accurate estimates of risk measures compared with other approaches (for 

example, McNeil, 1997; Gencay et al., 2003; Fernandez, 2005), and one can obtain better 

estimates with the application of the GPD fitting of the excess distribution based on threshold 

models (for example, Coles, 2001; Gilli and Këllezi, 2006; Marimoutou et al., 2006). This 

confirms our belief of choosing the POT method to apply the extreme value theory. Overall, the 

assessment of our results shows that the point and interval estimations are stable and reliable, 

implying that this approach of modelling extreme values can be used to further application of 

extreme events. Some studies, including Krehbiel and Adkins (2005), also claim that the upper 

and lower tails behave differently, and thus should be treated separately while estimating risk 

measures. Evidences from our empirical study show the small difference in risk statistics on both 

tails, implying that the thickness of two tails is likely to be similar. 

 

6. Conclusions 

The high volatility of prices in oil markets requires the implementation of effective risk 

management. Extreme value theory is a powerful tool to estimate the effects of extreme events in 

risky markets based on sound statistical methodology. This study exhibits how EVT can be used 

to model tail-related risk measures such as Value-at-Risk and Expected Shortfall by applying it to 

the daily returns of crude oil prices in the Canadian spot market. Our application captures the 

heavy-tailed behaviour in daily returns and the asymmetric characteristics in distributions, 

suggesting us to treat positive and negative returns separately. An unconditional approach is 

favoured as no evidence indicates the existence of conditional heteroskedasticity in our sample 

data. In the context of applying EVT, the peak over threshold method provides a simple and 
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effective means to choose thresholds and estimate parameters. By assessing empirical excess 

distribution functions and survival functions with associated theoretical distribution simulations, 

we find the goodness of fit in tail modelling. Furthermore, as the increase of the threshold, the fit 

is getting less precise for both gains and losses; at an either lower or higher threshold level, 

positive daily return series fits a GPD slightly better than negative one does. The point and 

interval estimates of VaR and ES computed under different high quantile levels exhibit strong 

stability through a range of the selected thresholds, implying the accuracy and reliability of the 

estimated quantile-based risk measures. 

Our EVT-based Value-at-Risk approach provides quantitative information for analyzing 

the extent of potential extreme risks in energy markets, particularly the crude oil markets. 

Interested organizations and corporations could employ this technique as one of the means of risk 

management. For those who invest in the Canadian crude oil market, our estimates of VaR and 

ES provide quantitative indicators for their investment decisions. 
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