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Abstract 
 

We model the length of time that it takes for a patent application to be granted by the U.S. Patent 

and Trademark Office, conditional on the patent actually being awarded eventually. Survival 

analysis is applied and both the nonparametric Kaplan-Meier and parametric accelerated failure time 

models are used to analyze the data. We find that the number of claims a patent makes, the number 

of citations a patent makes, the patent’s technological category, and the type of applicant all have 

significant effects on the duration that a patent is under consideration. A log-normal survival model 

is the preferred parametric specification, and the results suggest that the hazard function is non-

monotonic over time. 
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 1. Introduction 

In this paper we model the length of time that is taken for patents to be granted by the U.S. Patent 

and Trademark Office (USPTO), conditional on the patents ultimately being awarded. We are  

motivated in part by the understanding that the 21st century economy is “one in which knowledge 

- particularly the technological knowledge that forms the foundation for industrial innovation - is 

an extremely important economic commodity.” (Jaffe et al., 2002, p.451). The idea of patenting is 

a kind of “double-edged” sword. On one hand, a patent for an invention grants the inventor a 

property right to exclude others from making, using, or offering for sale the invention throughout 

U.S. or from importing the invention into the U.S. for a limited period of time. It provides the 

patent owner with protection and leverage of an intangible asset. The anticipation of receiving 

patents increases the motivation for useful invention. On the other hand, patents generate 

monopoly rights to explore an invention, with associated social costs arising from the barriers to 

entry on the part of other inventors. 

  

This paper is also motivated by the need to “quantify the extent and impact of knowledge 

spillovers through utilization patent citations to identify a paper trail that may be associated with 

knowledge flows between firms.” (Jaffe et al., 2002, p.403). We believe that data relating to 

patents offer an opportunity to quantify certain aspects of the role of knowledge in the modern 

economy. We are concerned with how the patent system affects the rate and direction of 

technological changes, and we are trying to explore question such as, which broad types of 

technologies obtain patent approval faster than others; whether U.S. inventions get patents 

granted more quickly than their foreign counterparts, which may contribute to the U.S. leading 

technology and economy status in the world, etc.  

 

Recently, Popp et al. (2004) conducted similar research using a slightly earlier version of the 

NBER patent database that we use in this study, augmented by additional data from the USPTO.1 

Specifically, they used least squares and quantile regression analysis to model the (logarithm of 

the) length of time that expires between the lodging of a patent application, and its final approval. 

However, in the context of survival modeling, this log-linear specification amounts to an 

accelerated failure time model with the very restrictive assumption of a constant hazard. 

Implicitly, an underlying exponential distribution is being assumed – an assumption that we show 

in this paper is overwhelmingly rejected by these data. A more comprehensive and flexible 

analysis of such duration data is required, and apparently no such modelling has been undertaken 

to date with U.S. or other international patent data.  
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Survival analysis deals directly with the conditional probability of an event taking place. The 

question here is: “what is the probability that a patent will be granted at time t+1, given that the 

application process has lasted up to time t?” The natural way of thinking about that probability 

that a patent will be granted some time in the future depends on the inherent factors that affect the 

application process, such as the type of applicant, the number of claims of originality that are 

made, the number of citations made to other patents, the technological field in which the 

invention lies, and so on. The characteristics of the patent examiners themselves (such as years of 

experience) may also affect the duration of patent-awarding process (e.g., Cohen and Merill, 

2003), but we do not have access to such information. 

 

We first use the nonparametric Kaplan-Meier estimator to conduct a preliminary analysis of the 

life-cycle of the patent-granting process. Then parametric accelerated failure time models, with 

various distributional assumptions, and covariates are estimated by maximum likelihood. From 

the latter results, we conclude that the number of claims a patent makes, the number of citations a 

patent makes, the technological category of the invention, and the type of applicant are all 

significant factors that affect the duration of time between the lodging of the patent application, 

and its subsequent award. We also find that duration dependence is positive for the first 3.4 years 

of the application process, and then negative. 

 

The rest of the paper is organized as follows. Section 2 introduces important concepts for survival 

analysis. Section 3 presents the estimation methods. Section 4 gives description of the data, and 

the variables included in the estimation of our models. Section 5 presents the results of our study, 

and Section 6 offers our conclusions and some suggestions for further related research. 

 

2. Survival Analysis 

Duration data measure how long a situation lasts, or how much time elapses before a particular 

event takes place. The data show when the underlying data-generating process changes from one 

“state” to another “state”. Examples from outside of economics include how long a machine part 

will last before breaking down, and how long a patient can survive after a surgical procedure.  

Economic examples include the length of time a person remains unemployed (e.g., Kiefer et al., 

1985; Nickell, 1979; and Sider, 1985); how long a labour dispute lasts (e.g., Kennan, 1985); the 

time that elapses between changes to official interest rates (e.g., Shih and Giles, 2006); and how 

long a particular type of exchange rate regime lasts (e.g., Yu, 2005). There are many additional 
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examples of economic phenomena that involve duration data. Comprehensive discussions that 

have an economic orientation are provided by Kiefer (1988) and Lancaster (1990), for example.  

 

The purpose of duration (survival) analysis is to model the underlying distribution of the “failure 

time” variable and to assess the dependence of this variable on covariates. An intrinsic 

characteristic of duration data is the possibility of observations being censored. Another 

characteristic of duration data is that the dependent variable cannot be negative. Thus a 

transformation of the survival time, such as logarithmic transformation, may be appropriate.  

 

We use survival analysis to model the time taken between the application for, and granting of, a 

patent. The nonnegative random variable T is defined here as the duration (or spell) between the 

application and grant dates. The unconditional probability that the spell will be shorter than some 

given value t is given by the cumulative distribution function, written as F(t) = Pr.(T < t), and the 

associated probability density function is f(t) = dF(t)/dt. Survival analysis makes use of the 

complement to the cumulative distribution function, referred to as the survival function, which is 

written as S(t) = 1 - F(t ) = )( tTP ≥ . That is, the survival function measures the probability that 

the random variable T will equal or exceed the value t. The hazard function captures the 

conditional probability that the spell will terminate at time T = t, given that it has survived until 

time t.  It is given by   

 

)(/)(]/)|.([Pr)(
0

tStfdttTdttTtLimitt
dt

=>+<<=
→

λ . 

 

Essentially, λ(t) is the instantaneous rate at which spells will be completed at duration t, given 

that they have lasted until t.  

 

The hazard function provides a convenient definition of duration dependence. Positive (negative) 

duration dependence exists at the point t* when dλ(t) / dt  > ( < ) 0 at t = t*. If dλ(t) / dt = 0 for 

every t we have a so-called “memory-less” system. It is possible that the hazard function evolves 

with time in a non-monotonic fashion alternating between positive and negative dependence. Not 

all distributions will allow for this possibility. Finally, the integrated (or cumulative) hazard 

function, defined as Λ(t) = )(log)(0 tSduut −=∫ λ , is also a useful function for diagnostic 

purposes in practice. Typically, we look for an integrated hazard function that is an (upward-

sloping) straight line as a sign that the model has been correctly specified. 
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3.  Estimation Methods 

3.1 Nonparametric Kaplan-Meier Estimator  

The Kaplan-Meier estimator is a nonparametric approach. The random spell is written as T* in 

the absence of censoring. If there is censoring at time C, then the observed random variable is T = 

min. (T* , C). Suppose that there are k completed spells in our sample of size n, where k < n since 

some observations are censored, and because of ties. Ties occur when two or more observations 

have the same duration. We can define a variable δ that takes the value unity if the observation is 

censored, and zero otherwise. We assume that if T = t and δ = 1, censoring happens immediately 

after time T. Suppose the completed spells from smallest to largest, t 1 < t 2 <…< t k . Let h j  be the 

number of completed spells of duration t j , for j = 1,…, K.  In the absence of ties the h j  are all 

equal to unity in value. Let m j  be the number of observations censored between t j and t 1+j ; m k  

is the number of observations with duration greater than t j , the longest complete spell. Let n j be 

the number of spells neither completed nor censored before duration t j :  

n j  = ∑
≥

+
K

ji
ii hm )(  

Recall that the hazard, λ(tj), is the rate at which spells are completed at duration tj, conditional 

upon the spell having a duration of at least tj. So, a natural estimator for λ(t j ) is: 

 λ̂ (t j ) = h j / n j , 

i.e., the number of “failures” at duration t j , divided by the number of spells “at risk” at duration 

t j . The corresponding estimator for the survival function is 

^
S  (t j ) =∏

=

−
j

i
iii nhn

1

/)( =∏
=

−
j

i
i

1

^
)1( λ , 

which is the so-called “product-limit” estimator. The integrated hazard can be estimated by  

  ∑
≤

=Λ
ji

ij tt
^^

)()( λ .  

The Kaplan-Meier survival, hazard, and integrated hazard functions that are reported below were 

obtained by writing program code for the SHAZAM econometrics package (Northwest 

Econometrics, 2004). 
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3.2   Parametric Models 

Another approach is the parametric method which requires an assumption about the underlying 

distribution of the random variable T. Using a parametric approach also allows us to model the 

relationship between survival (typically in the form of the hazard function) and one or more 

explanatory variables (or covariates). While many different parametric models may be used in 

survival analysis, the most common ones (and the ones that we consider) are based on the 

Exponential, Weibull, Log-Normal and Log-Logistic distributions.  

 

 

Table 1 

Distribution Density Function f(t) Survival Function S(t) Hazard Function λ(t) 

 

Exponential θ exp(-θ t) 

 

Exp(-θ t) θ 

Weibull θ p(θ t) 1−p exp(-(θ t) p ) 

 

Exp[- (θ t) p ] θ p (θ t) 1−p  

Log-Normal [p/ (θ t)]φ (-plog(θ t)) Ф(-plog(θ t)) [p/( θ t)]φ (-plog(θ t))/ Ф(-plog(θ t)) 

Log-Logistic θp(θt) 1−p /(1+ (θ t) p ) 2  1 / (1+( θ t) p ) θ p(θ t) 1−p /(1+( θ t) p ) 

 

 

Table 2 

Distribution Density Function f(w) Survival Function S(w) 

Exponential exp(-exp(w)) exp(-w) 

Weibull exp(w-exp(w)) exp(-exp(w)) 

Log-Normal φ (w) Ф(-w) 

Log-Logistic exp(w)(1+ exp(w)) 2−  1/(1+ exp(w)) 

 

 

The one-parameter Exponential distribution is “memory-less”, in the sense that its hazard 

function is constant so there is no duration dependence. This very restrictive distribution is a 

special case of the two-parameter Weibull distribution, which can exhibit either positive or 
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negative duration dependence - the hazard function increases or decreases monotonically 

according to whether the shape parameter, p, is larger or smaller than unity.  The two-parameter 

Log-Normal and Log-Logistic distributions can have non-monotonic hazards, so they can capture 

situations where the duration dependence increases and decreases, over different spell lengths.  

The density functions f(t), survival functions S(t),  and hazard functions λ(t) for each of these four 

models appear in Table 1, where φ (.) and Ф(.) are the density and cumulative distribution 

functions for the standard normal distribution. 
 

When we incorporate a vector of covariates, x, maximum likelihood estimation of the parameters 

is facilitated by the log-linear transformation, σβ /]')[log( xtw −= , where )'exp( xβθ −= , 

and  σ/1=p . After this transformation, the covariates enter w linearly. Because the regression 

coefficients are expressed in terms of the log of the duration times, they convey information about 

the expected failure times. So, this model is sometimes referred to as a “log expected failure time 

model” or simply an “accelerated failure time” (AFT) model.  With this change of variables, the 

densities and survival functions for w for the four distributions are presented in Table 2. It is 

worth noting that only in the case of the Weibull distribution does the AFT model coincide with 

the well-known proportional hazard model for duration data. 

 

We have used the EViews econometric package (Quantitative Micro Software, 2004), to estimate 

the various parametric models that are in Table 2. EViews does not incorporate dedicated 

commands for survival analysis so we constructed LOGL “objects” to formulate and implement 

the various maximum likelihood estimators.  

 

4. Data Characteristics 

Our data-set relates to all of the utility patents granted in the U.S. between January 1 1963 and 

December 30, 1999 (37 years).2 The total number of observations (patents) is 2,923,922. The data 

are provided in the “NBER Patent-Citation Data File”, which is supplied in electronic form by 

Jaffe and Trajtenberg (2002). A detailed discussion of the history and characteristics of this data-

file is provided by Hall et al. (2002). The patent data themselves were procured from the USPTO, 

except for the citations from patents granted in 1999, which come from MicroPatent. (Hall et al., 

2002, p.408.) 

 

Our study conditions on a patent being awarded, as no other information is available. The earliest 

grant year available is 1963, but no application year information is available for patents granted 
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before 1967, so we restricted our sample to patents with a grant year no earlier than 1967. An 

inspection of the data revealed that there are some patents with exceptionally long time-lags 

between application (all prior to 1963) and the award of the patent.3 These outlier applications 

were apparently “militarily sensitive”, and were eliminated by setting the sample to have an 

application year later than or equal to 1963. This yielded a sample with 2,693,365 observations. 

Our sample is free of “obvious errors” reported by Popp et al. (2004, p.14), such as grant dates 

that precede application dates. Our parametric modelling includes the covariate “number of 

claims”. As no claims information is available for granted patents until 1975, we constrained the 

sample to application years no earlier than 1963 and non-zero number of claims. This reduces the 

sample to 1,983,420 observations.  By way of comparison the non-parametric Kaplan-Meier 

analysis is conducted with both the full and reduced samples. There is no censoring problem in 

our data because the study conditions on the awarded patents and the selected sample includes 

patents for which both application year and grant year information available.  

 

Our data contains the grant date for all patents in the file (i.e., of all utility patents granted since 

1963) and the application year for patents granted since 1967. The duration for each patent’s 

consideration is calculated in years. For patents whose grant year equals the application year, we 

have coded the duration to 0.5 years. The summary statistics for the duration data, and the 

covariates used in the parametric modeling are shown in Table 3. 

 

A key data item in the patent database is the number of citations (“CITES”) made in an 

application. Patent citations serve an important legal function, as they determine the scope of the 

property rights awarded by the patent. The applicant has a legal duty to disclose any knowledge 

of the “prior art”.4 The number of claims (“CLAIMS”) made in a patent application specify in 

detail the distinct “components,” or building blocks, of the patented invention, and hence their 

number may be indicative of the scope of the invention (Jaffe et al., 2002, p.43), and also the 

scope of protection afforded by the patent. Positive relationships are expected between the 

duration variable and both the number of citations and number of claims made in the application, 

as increases in each will complicate the task facing the patent examiner. 

 

 

The USPTO has developed a highly elaborate classification system for the technologies to which 

the patented inventions belong, consisting of about 400 main (3-digit) patent classes, and over 

120,000 patent subclasses. For the vast majority of uses one is likely to resort to only the original 
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3 – digit patent class, and serving as controls in regressions, six main categories are aggregated 

here in the database. We code the technological categories by dummy variables, CATi, (i = 1,…,6)  

as follows: Chemical (excluding Drugs); Computers and Communications;  Drugs and Medical; 

Electrical and Electronics; Mechanical; and Others.  For modeling purposes, and to avoid the 

“dummy variable trap”, we normalize on CAT6, and we have no prior expectations regarding the 

signs of the marginal effects of these variables. 

 

 

The USPTO also classifies patents by type of “assignees” (applicants), and we have coded 

dummy variables for the main types of assignees (ASSi; i = 1,…,7): Unassigned;  U.S. Non-

Government organization (mostly corporations); Non-U.S. non-Government organizations 

(mostly corporations); U.S. individuals; Non-U.S. individuals; U.S. Federal Government; Non-

U.S. Governments. For regression purposes we normalize on the first category.5 Our only prior 

expectations are that the U.S assignees will have smaller marginal effects than their non-U.S. 

counterparts. 

 

Other variables that may be important include the year in which the application is lodged or the 

patent is granted. These were found to be insignificant after controlling for other covariates and 

are not discussed further.6  It has also been suggested that observable characteristics among the 

patent examiners, including their experience at the USPTO, their degree of technological 

specialization may have an important impact on patent approval times (Cohen and Merill, 2003, 

p.22). The additional data procured from the USPTO by Popp et al. (2004) and used in their study 

included information regarding the experience of the patent examiners, and the number of 

drawings and sheets for each application. Interestingly, the last of these variables entered their 

regressions with an unanticipated negative coefficient, though it was statistically insignificant; 

and although examiner experience reduced the examination duration, as expected, this variable 

was barely significant (taking account of the very large sample size).7 
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Table 3 
Summary Statistics 

 
Observations            
N = 1,983,420            
(N= 2,693,365)            
 Application 

Year 
Grant 
Year 

Duration CLAIMS CITES CAT 1  CAT 2  CAT 3  CAT 4  CAT 5  CAT 6  

Mean 1986 1988 1.8908 12.0839 7.4934 0.2041 0.1091 0.0829 0.1709 0.2222 0.2107 
   (1.9980)         
Median 1987 1989 2.0000 10.0000 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
   (2.0000)         
Maximum 1998 1998 34.0000 868.0000 770.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
   (35.0000)         
Minimum 1963 1975 0.5000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
   (0.5000)         
Sum      404859 216452 164482 338877 440765 417985 
            
Percentage      20.41% 10.91% 8.29% 17.09% 22.22% 21.07% 
            
 ASS 1  ASS 2  ASS 3  ASS 4  ASS 5  ASS 6  ASS 7      

            
Mean 0.1750 0.4374 0.3597 0.0068 0.0033 0.0137 0.0041     
            
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000     
            
Maximum 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000     
            
Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000     
            
Sum 347064 867586 713419 13414 6557 27156 8224     
            
Percentage 17.50% 43.74% 35.97% 0.68% 0.33% 1.37% 0.41%     
 
Note: Figures in parentheses correspond to a sample size with N = 2,693,365. 
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Using the variables described in Table 3, we define wt as: 

wt = [log (t) - β 1  - β 2 CLAIMS - β 3 CITES - i
i

i ASS∑
=

+

7

2
2β  - i

i
i CAT∑

=
+

5

1
9β  -

)*(
7

2
13 i

i
i ASSCLAIMS∑

=
+β - )*(

7

2
19 i

i
i ASSCITES∑

=
+β - )*(

5

1
26 i

i
i CATCITES∑

=
+β -

)*(
5

1
31 i

i
i CATCLAIMS∑

=
+β ]/σ,    

where σ is a scale parameter,  and the choice of dummy variables reflects the normalizations on  

the dummy variables CAT 6  and ASS 1 .  

 

5. Results 

5.1 Nonparametric Estimation 

Figures 1-3 plot the Kaplan-Meier survival functions, hazard functions and integrated hazard 

functions with sample sizes of N = 1,983,420 and N = 2,693,365. The estimated hazard function  

shows a non-monotonic pattern of duration dependence. It starts by increasing, then it is 

decreasing, and finally it follows an increasing pattern. Therefore, duration dependence cannot be 

qualified as being either positive, or negative: it depends upon the survival time. More precisely, 

the probability of a patent getting granted rises for the first four years or so, then falls, and rises 

again around thirty years or later. Of course, patents that are under assessment for twenty years or 

more represent a very extreme part of the sample, and the earlier parts of the hazard and 

cumulative hazard functions are really of much greater interest. This point is relevant to the 

preferred parametric model discussed below. 

 

5.2  Parametric Modelling 

To determine the role of key covariates on the application-grant duration, we estimate accelerated 

failure time (AFT) models, with the covariates noted earlier. First, to choose between the (nested) 

Weibull and Exponential distributions, we test H 0 : σ = 1, which is equivalent to testing p = 1. 

From Table 4, an asymptotically valid (Wald) test of this restriction is based on 

)]ˆ.(../)1ˆ[( σσ esaz −= = -4956.667. So, the null hypothesis is very strongly rejected, and the 

Weibull distribution is preferred to the Exponential model. Recalling that the the log-linear 

specifications adopted by Popp et al. (2004) amount to the use of the Exponential model, this 

result has adverse consequences for their results, as the latter are based on a mis-specified model 

and so the parameter estimates are inconstant.  
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Figure 1 : Kaplan-Meier Survival Functions
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Figure 2: Kaplan- Meier Hazard Functions
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Figure 3: Kaplan-Meier Cumulative Hazards
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Figure 4: Weibull, Log-Normal, Log-Logistic Cumulative Hazards
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Table 4 

 

Maximum Likelihood Estimation Results 

 

 

 Weibull   Log-Normal   Log-Logistic 

 

1β  0.6205 (672.22)  0.3986 (294.38)  0.3986 (306.68)  

2β  0.0016 (30.08)   0.0022 (27.62)   0.0026 (33.26) 

3β  0.0021 (49.37)   0.0021 (25.31)   0.0023 (27.57) 

4β   0.0289 (54.41)   0.0122 (12.74)   0.0107 (11.60) 

5β        -0.0147 (-16.29)   0.0250 (17.96)   0.0336 (24.68) 

6β  0.0411 (15.84)   0.0272 (6.84)   0.0267 (6.89) 

7β      0.0539 (5.36)   0.0637 (6.59) 

8β  0.4973 (617.94)  0.0600 (25.77)   0.0106 (3.97) 

9β  0.1156 (23.50)   0.0833 (9.57)   0.0879 (10.02) 

10β  0.1157 (114.37)   0.0695 (41.26)   0.0691 (41.78) 

11β  0.2344 (224.85)  0.2025 (99.64)   0.2175 (104.82) 

12β  0.1688 (105.90)  0.1561 (73.63)   0.1685 (78.93) 

13β  0.0517 (46.26)   0.0547 (29.01)   0.0638 (34.78) 

14β  0.0397 (41.25)   0.0350 (19.96)   0.0400 (23.64) 

16β  0.0008 (16.24)   0.0005 (6.73)   0.0004 (5.32) 

 

 

 

 

 

 

 

 



 15

Table 4 (continued) 

 

Maximum Likelihood Estimation Results 

 

Weibull   Log-Normal   Log-Logistic 

 

22β  0.0053 (51.95)   0.0036 (31.89)   0.0038 (32.25) 

24β  0.0046 (6.66)   0.0023 (1.71)   0.0023 (1.76) 

26β   0.0027 (3.07)   0.0033 (2.47)   0.0033 (2.48) 

27β  -0.0019 (-25.42)  -0.0007 (-6.53)   -0.0005 (-4.80) 

28β      0.0009 (6.94)   0.0010 (7.33) 

29β  -0.0031 (-34.17)  -0.0022 (-16.42)  -0.0022 (-16.34) 

30β  0.0008 (8.84)   0.0011 (7.82)   0.0011 (8.04) 

31β      0.0004 (3.22)   0.0005 (4.07) 

32β  -0.0012 (-18.52)  -0.0010 (-9.83)   -0.0011 (-11.13) 

33β  -0.0010 (-14.46)  -0.0005 (-4.05)   -0.0007 (-5.92) 

34β  0.0009 (9.97)   0.0008 (7.17)   0.0006 (5.01) 

35β  -0.0003 (-4.71)   -0.0003 (-3.19)   -0.0005 (-4.27) 

36β  -0.0006 (-9.58)   -0.0008 (-7.33)   -0.0009 (-8.87) 

σ  0.4796 (4584.31)  0.4587 (1965.07)  0.2678 (1323.18) 

 

 

LogL -1467971   -1268554   -1306554 

AIC 1.4803    1.2792    1.3175 
 
SIC 1.4804    1.2794    1.3177 
 
 
Note: Asymptotic “z-statistics” appear in parentheses.  
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Second, we choose the Log-Normal Distribution as the preferred model over the (non-nested) 

Weibull and Log-Logistic specifications on the basis of the Schwarz and Akaike Information 

Criteria (SIC, AIC) values and the shapes of the estimated cumulative hazard functions. The AIC 

and SIC values are included in Table 4, and the cumulative hazards, including the (relatively) 

linear one for the Log-Normal specification, appear in Figure 4. Table 4 presents the main 

estimation results, with only significant regressors retained. In these AFT models a positively 

(negatively) signed coefficient implies that the expected duration increases (decreases) for 

changes in the values of the covariate. 

  

Figures 5 and 6 plot the survival and hazard and functions for a sample size of N = 1,983,420 for 

the preferred Log-Normal model.8 The scale parameter σ (= 0.4587) is less than unity, implying 

that the hazard rate rises and then begins to decline at some point, as we see in Figure 6. The 

percentiles of the survival times for the Log-Normal model may be calculated by t (percentile) = 

pm /)]exp([ 11 −Φ− −−θ , where m corresponds to the fractional representation of the percentile 

of interest and 1−Φ  is the standard normal percentile distribution.  For the median duration, m = 

0.5 and so t (50) = 1−θ . (See Box-Steffensmeier and Jones, 2004, p.34.) 

 

From this preferred parametric estimation result, first, we observe that after 1.7 years (the median 

estimated survival time) there is a 50% probability that the patents will still be in the application-

grant process.9 After two years, there is a 36% probability that a patent will still be in the process. 

Then the survival function falls to close to the horizontal axis after five years, which indicates 

that for (ultimately successful) patents that have been in the application-grant process for nearly 

five years, it is highly likely that they will be granted very soon.  The hazard function reaches its 

mode after 3.4 years, with a modal value of 2.13. It then starts decreasing, which is quite similar 

to the Kaplan-Meier result and confirms our preliminary non-parametric analysis.  In terms of the 

hazard rate, we can see the probability of a patent getting granted in the next month (dt = 1/12), 

conditional on it having been in the examining process for 3.4 years is 17.7% (= 2.13×1/12), and 

the probability of getting granted in the next month, conditional on it having been in the 

examining process for 5 years is 16.6% (= 1.994236×1/12), etc.  
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Figure 5: Log-Normal Survival Function
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Figure 6: Log-Normal Hazard Function
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Overall, we observe that the coefficients on these variables carry the expected signs, where these 

are known. For example, the greater the number of claims or citations a patent makes, the longer 

it will take to get approval, ceteris paribus. In the former case this is essentially independent of 

assignee type. Also, non-government organizations (mostly corporations) take a shorter period of 

time to get patents granted compared to individuals and governments in both the U.S. and non-

U.S. cases. This seems reasonable because corporations usually have stronger legal capabilities 

and better resources dedicated to patent applications than do individuals, and corporations also 

have stronger business motivations and operational efficiency than do government organizations. 

Furthermore, patents of U.S. applicants get granted faster than non-U.S. applicants in general, 

which reflects the reality that U.S applicants may have certain advantages over their non-U.S. 

counterparts. For example, a foreign applicant may make more citations to foreign inventions 

than does a U.S. applicant, and such applications may involve patent lawyers in more than one 

country, and these factors may slow down the examining and patent approval process. 

Interestingly, Popp et al. (2004, p.26) find that U.S. applications suffer a longer duration in the 

examining process than most non-U.S. applications. In part, this may be a consequence of a bias 

associated with implicitly using an Exponential specification for the hazard model. 

  

 We also observe that once we control for other significant factors, patents in the Mechanical 

category take the shortest time in getting granted among all the technical fields, followed by 

patents in the Electrical & Electronics and Chemical (excluding drugs) categories. Patents in the 

Computers & Communications category take the longest time for the granting of patents. 

Interacting these category effects with the number of claims or citations can reduce or increase 

the predicted duration relative to the control group, depending on the category in question.  

 

6. Conclusions and Implications 

In order to explore some of the mechanisms that actually facilitate technology innovation, this 

paper conducts a survival analysis of patent applications in the U.S. Patent and Trademark Office. 

We use both nonparametric and parametric techniques to obtain estimators of the hazard 

functions associated with the length of time that it takes for a (successful) patent to be approved. 

The application of the nonparametric Kaplan-Meier estimator indicates significant non-

monotonic patterns of duration dependence and gives us some preliminary insights, without 

controlling for covariate effects. We also use Accelerated Failure Time framework to estimate 

parametric hazard functions based on the Exponential, Weibull, Log-Logistic and Log-Normal 

distributions. The Log-Normal model is preferred among all these distributions when we conduct 
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a formal model-selection. Having controlled for the effects of various covariates, the hazard 

function of a patent application remains non-monotonic, with a pattern that increases initially and 

then decreases.  

 

We also conclude that the number of claims a patent makes, the number of citations a patent 

makes, the industry category, and the type of the assignee will all significantly affect the length of 

time that it takes for a patent to get granted. We also note that patents in the “Mechanical” 

category have the shortest duration, while those in the “Computers & Communications” category 

take the longest time to get granted among all of the technological fields, other things being 

equal. These results may have significant implications for policy makers who wish to better 

allocate federal funding in terms of the technology-transfer process if they are interested in 

stimulating the development of computers and communications, increasing the rate of patenting 

and promoting the associated spillovers. Therefore it may have a significant impact on innovation 

and estimates of rates of return in this field. It could also be helpful in terms of determining 

resource allocation within the USPTO.  

 

We also find that U.S. patent applications are awarded more quickly than non-U.S. applications, 

once we control for other attributes. This provides some reassurance in response to the 

observation that:  “Obviously, the economic benefits to the U.S. economy of domestic research 

depend on the fruits of that research being more easily or more quickly harvested by domestic 

firms than by foreign firms.”  (Jaffe and Trajtenberg, 2002, p.179).  

 

The survival times of patent applications deserve further investigation.  It would be interesting to 

examine the impact of measures of patent generality and of patent originality (e.g., Jaffe et al., 

2002). Differences in USPTO practices across time or across technological areas may produce 

differences in citation intensities that are unrelated to the “true” impacts of the patents. For 

example, we cannot tell if the rise in the number of citations made by the late 1990’s is simply a 

response to the introduction of computerized patent files at the USPTO during the 1980’s. Thus, 

we do not know whether the associated durations reflect a “real” phenomenon (e.g., fields with 

patents citing fewer earlier patents are truly more original), or if different citation practices that 

are somewhat artificial. (e.g., Jaffe et al., 2002). Finally, the increasing role of government-

owned laboratories in the technology commercialization process in the U.S. has had a significant 

impact on technology transfer (e.g., Jaffe and Lerner, 2002), but has yet to be examined in the 

context of patent application survival models.  
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Footnotes 

* We are grateful to Nilanjana Roy and David Scoones for their helpful comments on an 

earlier version of this work. 

 

1. We were unaware of this research until our own work was completed, and are grateful to 

Nilanjana Roy for bringing it to our attention. Popp et al. (2004, p.14) report that their data-set 

had to be cleaned to remove obviously erroneous data, resulting in a sample of 1,653,854 

observations.  

 

2. According to the U.S. Patent and Trademark Office (2006), there are three types of 

patents that are distinguished in the U.S.: “Utility patents may be granted to anyone who invents 

or discovers any new and useful process, machine, article of manufacture, or composition of 

matter, or any new and useful improvement thereof; Design patents may be granted to anyone 

who invents a new, original, and ornamental design for an article manufacture; and Plant patents 

may be granted to anyone who invents or discovers and asexually reproduces any distinct and 

new variety of plant.” 

 

3. Using the individual patent numbers, we looked into these long duration patents on the 

U.S. Patent and trademark Office (2006) website and examined the individual file information. 

There were 243 items with application process time greater than 20 years, but all of these 

applications started before 1963, and we randomly selected 85% of these items and noticed that 

all of these patents were related to the US military, either directly or indirectly. Since the US-

Cuba crisis occurred in 1962, we thus presume these outlier observations were due to the concern 

of the sensitive US-Soviet military confrontation in the 1960s-1970s, and hence all of these 

patents were kept “under wraps” for an extended period of time for security reasons. Current 

evidence indicates that there are special examination procedures for particular inventions. For 

example, according to the examination of applications for countering terrorism, in view of the 

importance of developing technologies for countering terrorism and the desirability of prompt 

disclosure of advances made in these fields, the USPTO will accord “special” status to patent 

applications for inventions which potentially materially contribute to countering terrorism. Thus, 

a similar situation was presumed to be applied in these earlier military-related inventions. 
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4. Citations made may constitute a paper-trail for spillovers; and citations received may 

indicate the importance of the cited patents. The number of times a patent document has been 

cited may be a measure of its technological significance. (Jaffe et al., 2002, p.418.) 

 

5. “Unassigned” patents are those for which the inventors have not yet granted the rights to 

the invention to a legal entity such as a corporation, university, or government agency, or to other 

individuals. 

 

6. In contrast, Popp et al. (2004) found dummy variables for the grant year to be statistically 

significant, but this may be the result of their use of a log-linear model and least squares 

estimation. 

 

7. With sample sizes in the millions of observations (as we also have in our own analysis), 

true significance is associated with much smaller p-values than we traditionally adopt – almost all 

covariates will be “significant” by the latter standards. (Granger, 2003). 

 

8. These graphs and the median and model survival times noted below use   

)'ˆexp(ˆ xβθ −= , evaluated at the sample means of the covariates. 

 

9. This estimated median duration compares well with the sample median of 2.0 years. (The 

sample standard deviation is 0.981 years.) 

 

 

 

 


