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I. Introduction 

Various measures have been suggested as proxy variables for volatility in financial markets. The 

most popular are the squared returns and the absolute returns. For example, see Pagan and 

Schwert (1990), Rogers et al. (1994) and Ghysels et al. (2006) among others.1 Recently, Triacca 

(2007) has examined some of the properties of squared returns as an implicit estimator of the true 

unobserved volatility in a market. He uses the basic stochastic volatility (SV) model (e.g., Taylor, 

1986), and a simple extension of this model to allow for a fat-tailed returns distribution, as the 

vehicle for his analysis.2 In this paper we undertake a similar analysis using absolute returns, 

rather than squared returns, as the volatility proxy. We also correct some errors in Triacca’s 

results, and draw comparisons between the properties of these two estimators of volatility. 

Among our principal findings are that absolute returns are biased estimators of volatility, and 

where comparisons are possible, they result in higher mean squared error than when squared 

returns are used. 

 

II. Standard Stochastic Volatility Model 

The one-period return on an asset with price pt at time t is defined as )(log)(log 1−−= tetet ppr , and 

the (unobserved) volatility in the returns is the latent variable )|var( 1
2

−≡ ttt Irσ , where It-1 denotes 

the information set at time t-1. To make the volatility process specific, and using Triacca’s (2007) 

notation for comparability, the basic stochastic volatility model (Taylor, 2005, pp. 278-83) can be 

used: 
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where ut and zt are independently distributed.3 So, )]1/(,)1/([~)(log 2
1

2
10

2 γσγγσ −− ute N , given the 

stationarity condition in (2). The integer and fractional moments of 2
tσ  can be obtained using the 

result that if the random variable ),(~ vmNY , then )exp(YX =  is log-normally distributed with 

central moments given by  

)2/exp()( 2vkkmXE k += .                (3) 

 Following Taylor (2005, pp. 291-3) we can generalize the SV model so that (1) and (2) are 

augmented by the specification 
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and tζ is independent of wt. Now zt is a Student-t variate, divided by its standard deviation, 

)2/( −pp . For small values of p this allows for a relatively fat-tailed unconditional distribution 

for the returns. 

 

III. Squared Returns as a Volatility Proxy 

Following Triacca (2007), we set 0=μ  in what follows. This is reasonable when prices are 

recorded daily, for example. If we use 2
tr  as an estimator of 2

tσ it is readily shown that this 

estimator is unbiased (Triacca, 2007, p.256). Using (3) with k = 2, its variance (and mean squared 

error), is 
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Under the Student-t specification, (4), 1)( 2 =tzE , rather than [p / (p-2)] as stated by Triacca (2007, 

p.256). So, 2
tr  is still an unbiased estimator of 2

tσ in this more general Student-t case, contrary to 

Triacca’s finding: 0)()1()( 2222 =−=− tttt EzErE σσ . 

 

The even-order moments of a (non-standardized) Student-t variate, T, are: 
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Using (3) with k = 2, and (6) with k = 4, the correct expression for the variance (and MSE) of 2
tr  

is also readily obtained: 
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From (5) and (7), for p > 4 and any fixed values for the parameters, the MSE of 2
tr  as an 

estimator of 2
tσ is greater under the Student-t specification than under the normality specification. 

As p increases, the MSE decreases monotonically to that for the normal case. 

 

IV. Absolute Returns as a Volatility Proxy 

We now extend the above discussion by using absolute returns rather than squared returns as the 

proxy for latent volatility. The latter is defined here in two ways – first as tσ (which is natural, 

given the implicit units of measurement); and second as 2
tσ , for reasons explained below. 
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Linear volatility 

Let us consider using || tr  as an estimator of tσ . Using the properties of the integral 

representation of the gamma function, it is easily shown that the absolute moments of a standard 

normal variate, Z, are 
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π
,                (8) 

and the corresponding expression in the (non-standardized) Student-t case is 
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Using these results we can obtain the bias and MSE of || tr , again with  0=μ . First, when zt is 

normally distributed, using (3) with k = ½ and (8) with k = 1, 
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So, the estimator is downward-biased. Typical values for our parameters can be deduced from 

the evidence compiled by Taylor (2005, pp.287-8): )99.0,95.0(0 ∈γ ; )1.0,54.0(1 −−∈γ  and 

)0478.0,0018.0(2 ∈uσ . Within these ranges the bias in (10) is negligible. Using (3) and (8) with k 

= 1, 
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When zt is a standardized Student-t variate, using (3) with k = ½ and (9) with k = 1, 
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So, for p > 1,  || tr  as an estimator of tσ is more negatively biased in the Student-t case than under 

normality. Similarly, from (3) and (9) with k = 1, 
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Comparing (11) and (13), for p > 2, the MSE of || tr  as an estimator of tσ is greater when zt is 

Student-t distributed than when it is normally distributed. As p increases, the MSE decreases 
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monotonically to that for the normal case. This corresponds to the situation when 2
tr  is used as an 

estimator of 2
tσ . 

 

Quadratic volatility 

A less obvious possibility is to use || tr  as an estimator of 2
tσ , rather than tσ . This is motivated 

by the empirical findings of Ghysels et al. (2006) and the theoretical results of Forsberg and 

Ghysels (2007), that absolute returns out-perform squared returns as a predictor of quadratic 

volatility.4 First, when zt is normally distributed. Using (3) with k = ½ and 1, and (8) with k = 1, 
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Similarly, using (3) with k = 1, 3/2 and 2 and (8) with k = 1, 
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So, the sign and magnitude of this estimator’s bias depend on the parameter values, as does the 

MSE for  || tr  relative to that of 2
tr as an estimator of 2

tσ . However, for the typical parameter 

value ranges noted above, (14) is always positive, and )(|)(| 2
tt rMSErMSE > . 

 

When zt is a standardized Student-t variate: 
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and 
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Comparing (14) and (16), and (15) and (17), the effect of fatter tails in the distribution for zt is to 

reduce the bias but increase the MSE of the volatility proxy for any given set of parameter 
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values. The second of these results accords with Triacca’s (2007) (corrected) result when 2
tr  is 

used as a proxy for 2
tσ . Comparing (7) and (17) and simplifying, )(|)(| 2
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This condition is satisfied for the typical parameter ranges noted above and for all  p > 4. 

  

V. Conclusions 

Two popular proxies for the unobservable volatility of asset prices are the absolute and squared 

daily returns. Viewing these as alternative estimators of latent volatility, and using the stochastic 

volatility model as a vehicle, we have shown the following. For linear (quadratic) volatility, the 

absolute return is a downward (upward) biased estimator and the absolute value of this bias 

increases (decreases) as the tails of the returns distribution become thicker.  In all of the situations 

considered, allowing for fatter (than normal) tails in the returns distribution increases the MSE of 

both estimators. Finally, when estimating quadratic volatility, the absolute return has larger MSE 

than the squared return, at least for typical value of the parameters in the stochastic volatility 

model. This last result is somewhat surprising in light of the findings of Ghysels et al. (2006) and 

Forsberg and Ghysels (2007), and warrants further study. 
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Footnotes 

1. Other measures include the daily price range – e.g., Ghysels et al. (2006).  

2. The appeal of the SV model over the GARCH model in this context is that it allows 

 the time-dependence of volatility to be stochastic rather than deterministic. 

3. The independence assumption can be relaxed without affecting the main results below if 

 appropriate conditioning arguments are used. 

4. In addition, Guégan and Diebolt (1994) consider the so-called β-ARCH models that 

 include the special case of predicting future conditional variance through past absolute 

 returns. 

 

 


