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A SADDLEPOINT APPROXIMATION TO THE DISTRIBUTION OF THE HALF-LIFE 

ESTIMATOR IN AN AUTOREGRESSIVE MODEL:  

NEW INSIGHTS INTO THE PPP PUZZLE 

 

1. Introduction 

Purchasing power parity (PPP) is a theory about the exchange rate between two currencies. 

Basically, it means that the price for a given basket of services and goods should be the same in 

two countries, if measured in the same currency. PPP is a building block in international 

economics. As PPP is a corner stone of international economics, its validity has attracted 

considerable interest, especially since the advent of flexible exchange rates in the early 1970’s. As 

the real exchange rate is the nominal exchange rate adjusted for the relative price level, the 

tradition in the literature is to use the real exchange rate to explore PPP theory.  

 

Essentially, there are two empirical puzzles associated with PPP. The first puzzle is the non-

stationary behavior of the real exchange rate. PPP theory can be simply re-stated as saying that 

the real exchange rate is mean reverting. Although few economists view PPP as a short-term 

phenomenon, non-stationarity implies that PPP theory does not hold even in the very long run. 

The second empirical puzzle is that the observed degree of persistence in real exchange rates is 

too high to be reconciled in terms of their short-term volatility. Financial factors, such as 

monetary or financial shocks, cause the volatility of the exchange rate, and in the presence of 

price stickiness the effect of such shocks can be exaggerated. However, the high persistence of 

the deviations from PPP that have been observed in a vast range of empirical studies cannot be 

explained simply by price stickiness.  

 

In the empirical literature the half-life is a commonly-used measure of the persistence of the 

deviation from PPP. This is defined as the amount of time it takes for a unit shock to dissipate by 

50%. Empirical studies appear to yield a consensus of a half-life of three to five years (e.g., Abuaf 

and Jorion, 1990; Glen 1992; Cheung and Lai, 1994) and Rogoff  (1996) coined the phrase 

“purchasing power parity puzzle” in reference to the high persistence of the real exchange rate 

relative to PPP theory, even allowing for stickiness. This puzzle continues to attract considerable 

attention in the literature, and this provides part of the motivation for this paper. In addition, 

several authors have reported confidence intervals for their half-life estimates. It is also puzzling 

that these intervals are generally so wide as to be of no practical use. 
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In this paper we obtain an analytic approximation to the distribution of the half-life estimator 

used in the PPP literature. We show, inter alia, that this distribution has no finite integer-order 

moments. This provides an explanation for relatively large half-life estimates that have been 

reported, as reveals that the associated confidence intervals are spurious. The paper is constructed 

as follows. Section 2 reviews various PPP convergence studies that focus on half-life measures.  

In section 3 we derive the density and distribution functions for the half-life estimator in the AR(1) 

model, and explore some of its properties. These results are extended to the case of the AR(p) 

model in section 4; and some robustness issues are discussed in section 5. The final section 

discusses the implications of our results and provides suggestions for future research. 

 

2.       The PPP puzzle(s) 

The empirical results relating to the first of the PPP puzzles noted above are mixed. Using 

standard unit-root tests, most early studies could not reject the hypothesis of a unit root in real 

exchange rates under floating exchange rate regimes (e.g., Meese and Rogoff, 1988; Edison and 

Fisher, 1991; Grilli and Kaminsky, 1991). Subsequent research focused on the use of long-term 

historical data (e.g., Diebold et al., 1991; Lothian and Taylor, 1996) and the application of more 

powerful tests. Panel unit root tests were found of reject the unit root hypothesis, and favour PPP 

(e.g., Lothian, 1997; Wu, 1996; Papell and Theodoridis, 1998; Pedroni, 2004). The same 

conclusion was reached by Taylor and Sarno (1998) and Taylor et al. (2001), who used more 

powerful multivariate tests, and Chuang and Lai (1998) who used the tests suggested by Elliot et 

al. (1996) and Park and Fuller (1995). Therefore, by covering longer- term data or exploring more 

powerful tests, the first PPP puzzle seems to be solved: PPP theory holds, at least in the long run. 

Accordingly, more recent papers in this field focus on the second PPP puzzle noted above, and 

they explore possible reasons for over-estimating the persistence of the real exchange rate.   

 

A simple estimator of the half-life of adjustment can be based on the linear AR(1) model  

  

                                                    ttt uyy += −1α  ;    t = 0, 1, 2,K , T                                (1) 

 

where ty  is the variable of interest (here, the real exchange rate), with initial value y0, and 

tu ~ ),0(... 2σNdii . The normality assumption is not needed for the construction of a half-life 

measure. It is used to establish our main results, but their robustness to this assumption is also 

discussed. The half-life for the speed of adjustment can be estimated as: 
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                                               )ˆlog(/)5.0log(ˆ α=h       ,                               (2) 

where α̂  is the OLS estimator of α  in (1), namely  yyyy 1
1

11 )(ˆ −
−

−− ′′=α , and we require 

)1,0(ˆ ∈α  for the model to be dynamically stable, and for the estimated half-life to be positive. 

 

The second puzzle relates to half-life estimates that are “too large” (greater than about three years, 

say) to be reconciled with PPP theory, with associated confidence intervals that are far too wide to 

provide any useful information. One possible reason for this is the bias of the OLS estimator in 

(1). This bias is negative in small samples, and increases with the persistence of the series.  

Andrews’ (1993) median-unbiased estimator for AR(p) models provides a good tool to correct the 

bias. Unfortunately, the studies applying the median-unbiased estimator do not find support for 

PPP theory (e.g., Murray and Papell, 2002; Cashin and McDermott, 2003; Caporale et al., 2005; 

Lopez et al., 2004). The results based on the median-unbiased estimator yield an estimated half-

life that is higher than its OLS counterpart, and the confidence intervals are still so wide that no 

strong conclusions can be made about the PPP puzzle. Murray and Papell (2005) extended the 

median-unbiased estimation method to the panel data context, and argued that the shorter half-life 

of 2-2.5 year based on estimators unadjusted by the median-unbiased estimator from the previous 

panel data are the results of the implication of inappropriate estimation method. Murray and 

Papell’s results are consistent with Rogoff’s PPP puzzle claim. Choi et al. (2004) address the bias 

sources in estimating the half-life of PPP from panel data and found a 5.5 year of half life for 21 

OECD countries from 1948-2002. In all, the bias correction seems to drive us away from PPP 

theory. 

 

Other researchers have tried to resolve the puzzle by questioning the use of model (1). In the 

presence of transaction costs, a nonlinear representation of the real exchange rate process is more 

reasonable (e.g., Taylor, Peel and Sarno, 2001; Baum et al., 2001). In nonlinear models, the mean 

reversion speed depends on the size of the deviation from the long-run equilibrium level: the 

larger are the deviations, the lower are the half-life point estimates and the narrower are the 

confidence intervals, and vice versa. So, nonlinear models might seem to provide a solution to the 

PPP puzzle. However, El-Gamal and Ryu (2006) find that the nonlinear Threshold Autoregression 

(TAR) and Exponential Smooth Threshold Autoregression (ESTAR) models exhibit the same type 

of decay as the AR model and in this respect add little. Chortareas and Kapetanios (2004) suggest 

that the second puzzle may be caused artificially by the measure of half-life that is adopted. They 

suggest an alternative measure, which can reduce the half-life estimate for the AR(p) model, but 
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coincides with the measure in (2) in the case of the AR(1) model.  

 

We take a different position from previous studies that have tried to resolve the PPP puzzle, and 

make two contributions. With the exception of the Bayesian analysis of Kilian and Zha (1999), 

previous studies have used only Monte Carlo or bootstrap simulation to investigate the 

distribution of the half-life estimator. Indeed, Kim et al. (2006, pp. 3418-3419) observe: “First, it 

has an unknown and possibly intractable distribution. Second, it may not possess finite sample 

moments since it takes extreme values as α̂  approaches one.” We provide the first analytic 

approximations to the density and distribution functions for the usual half-life estimator.1 Based 

on the density function, we then prove that the moments of the half-life estimator do not exist, 

and we also extend the results to the general AR(p) model. This provides an explanation for the 

wide confidence intervals in all of the empirical studies, and it also implies that the second PPP 

puzzle may arise from the use of an invalid measure of the half-life, as is suggested by Chortareas 

and Kapetanios (2004).   

 

3. Saddlepoint approximations for the distribution and density functions 

3.1 Background 

We see from (2) that the half-life estimator is a nonlinear transformation of the OLS estimator of 

the coefficient in an AR(1) model. If we know the density function of α̂ , then we can  determine 

the density function of the half-life. Fortunately, various studies have considered the properties of 

α̂  in (1) (e.g., Phillips, 1978; Lieberman, 1994a, 1994b). We use Lieberman’s results to establish 

the properties of the half-life estimator. Lieberman (1994b) implemented a saddlepoint 

approximation for the density and distribution functions for the OLS estimator in the AR(1) 

model. Since Daniels’ (1954) seminal paper, many applications have illustrated the accuracy of 

saddlepoint approximations for density and distribution functions in general.2  

 

For equation (1), Lieberman expresses the OLS estimator α̂  as: 

                                          
vRCRv
vRCRv

αα

ααα
2

1ˆ
′′
′′

= ,        v ~ ),0( 2IN σ ,                                     (3) 
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where    

)1()1(2
1

2
1

2
1

2
1

1

0             0       0
    0         0       0

                         
0    0         0       
0    0                0

++
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

TxT

C

K

K

MMKMM

K

K

,     

)1()1(

2

0     0         0      0
0      1         0      0

                        
0     0          1      0
0     0          0      1

++
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

TxT

C

K

K

MMLMM

K

K

,              

and 

)1()1(
1

2

1                         
                                            
0         0        1             

 0                  0        1         b
0                           0           b

++
− ⎥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

TxT
TT b

bR

ααα

αα

α

α

L

MMM

K

K

K

,       
otherwise,  ;                 0

1) (-1, if  ;  )1( 2
12

⎩
⎨
⎧ ∈−

=
− ααb   

 

Then Lieberman derived the saddlepoint approximation for the density of  α̂  as 

                                
{ }
[ ] 2

1

2
1

})ˆ{( 4

ˆ)ˆ( 
)ˆ(ˆ

21

2
1

DAtr

ARCRAtr
f

−

−
− ′

=
π

α
αα

 ,                                         (4) 

where αα αα RCCRDD )ˆ()ˆ( 21 −′== , DwIwAA ˆ2)ˆ(ˆ −==  and ŵ  satisfies 

 

                                         )ˆ( 1DAtr − =0.                                                             (5) 

 

Then he approximated the distribution function of α̂  by integrating the density function and 

applying the Lugannani-Rice (1980) formula:  

                              )
ˆ
1

ˆ
1)(ˆ()ˆ()ˆ()ˆ(ˆ

ε
εφεαα −+Φ=<=

z
xPF ,                        (6) 

where ( ) )ˆsgn(ˆlogˆ 2
1

wA=ε ,  [ ] 2
1 21 })ˆ{(2ˆˆ DAtrwz −= , )(xDD = ; Φ  and φ  are the standard 

normal distribution and density functions respectively, and ŵ  is defined by (5). 

 

Lieberman compared the approximation of the distribution with the exact values obtained using 

Davies’ (1973) algorithm for the c.d.f. of a weighted sum of independent chi-square variates for 

different sample sizes and values of α . His comparison showed that the saddlepoint 

approximation is excellent over the whole interval of α̂ , even for very small sample sizes 

(Lieberman, 1994a, Table 1).  
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3.2  Density and distribution functions of the half-life estimator 

If the real exchange rate follows an AR(1) process, then the half-life estimator is defined by (2). 

Taking the first PPP puzzle to be resolved, we can ignore the unit root case and apply 

Lieberman’s result. The saddlepoint approximation for the density of the half-life estimator can 

be derived from that for the density of α̂  using the transformation:                                                 

  Jhfhf ]1ˆ0)ˆ(ˆ[)ˆ( <<= αα  

                                                 
)1ˆ0.(Pr

))ˆ(ˆ(
<<

=
α

α Jhf
,                            (7) 

where ))ˆ(ˆ( hf α  is the density function obtained by replacing α̂  with ĥ1)5.0(  in (4); and  

   
2

ˆ1

ˆ
2ln)5.0(

h
J

h

= ,  

is the Jacobian of the transformation. 

 

)0ˆ.(Pr)1ˆ.(Pr)1ˆ0.(Pr <−<=<< ααα  can be calculated from (6) by letting 0=x  and 1=x . 

We let )1ˆ0.(Pr <<= αC , which is a constant number. 

 

So, the saddlepoint approximation to the density function for the half-life estimator is: 

                                   
{ }
[ ] 2 21

 

2
1

ˆ
2ln)5.0(

})~~{( 4

~ )~( 
)ˆ(ˆ 2

1

2
1

2
1

hCDAtr

ARCRAtr
hf

−

−− ′
=

π

αα
                                (8) 

where αα RCCRhDD h ))5.0(()ˆ(~
21

ˆ
1

−′== , DwIwAA ~ˆ2)ˆ(~
−==  and ŵ  satisfies 

                                                    )~~( 1DAtr −  = 0. 

Similarly, the approximation to the distribution function of the half-life estimator is: 

                                    )1ˆ0ˆ()ˆ(ˆ <<<= αxhPhF  

                                             )1ˆ0()
)ˆlog(
)5.0log(( <<<= α

α
PxP  

                                             CP x ))5.0(ˆ( 1
<= α .                                          (9) 

 

Again, (9) can be calculated easily, using equation (6). 

 

Based on (8), we generate the numerical values for the density for different choices of α  and 
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different sample sizes. We provide some figures to compare the density of ĥ  for different values 

of α  with the same sample size, and for different sample size with the same value of α . More 

specifically, Figure 1 shows the density function for α  equal to 0.8, 0.9 and 0.97 and sample 

sizes of 30. Figure 2 shows the density of ĥ  for sample sizes of 10, 30, and 50 and α  equal to 

0.95. From the first figure, we can see that the density function is highly skewed to the right, and 

the density moves to the right and the tails become fatter as α  increases. From figure 2, we can 

see that the location of the density also moves to the right and the tails become fatter as the 

sample size increases. It is clear why relatively large half-life estimates have been reported 

frequently in the empirical PPP literature. 

 

Table 1: Point Estimator and Confidence Intervals of the Half-Life 

for Different α  Values and Sample Sizes 

α            T = 10              T = 30 

          Point estimator          95% Confidence   Point estimator      95% Confidence 

      (Median)  Interval              (Median)              Interval 

          

0.6      1.20            [0.27,      7.12]         1.28          [0.47,       3.23] 

0.7      1.58            [0.32,    12.15]         1.78             [0.63,       5.02] 

0.8      2.19            [0.39,    24.49]         2.72          [0.87,       9.56] 

0.9      3.39            [0.49,    60.04]         5.06          [1.27,     33.64] 

0.95      4.79            [0.61,  109.52]         8.26          [1.65,   108.48] 

0.97      6.07            [0.69,  155.41]         10.95          [1.88,   197.73]  

 

Note: both the median point estimates and the confidence intervals are calculated from (9) using 

code written for the SHAZAM econometrics package (Whistler et al., 2004).  

 

Table 1 shows the (median) point estimate and 95% confidence interval of the half-life estimator 

when the true data process is an AR(1) model. We see that the point estimate increases with the 

sample size, and when α  is greater than 0.9, which is almost always the case in the empirical 

studies in this field, the confidence interval is very wide. As the sample size increases, the 

confidence interval width decreases, but it is still quite wide. The actual meaning of the half-life 

estimate depends on the frequency of the real data. For yearly data, the results are obviously 

inconsistent with the PPP theory. However, for quarterly data, the sample size is usually over 30 
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and the autocorrelation coefficient is quite high, so we can expect that the PPP puzzle is still there. 

Therefore our results are consistent with most of the other related empirical work. 

 

3.3 Non-existence of moments 

Further insights into these characteristics of the half-life estimator can be obtained by considering 

the moments of its distribution. Interestingly, though, we have the following result.  

 

Theorem 1  

Let the data follow a stationary AR(1) process: ttt uyy += −1α , with ) ,0(~ 2σNut . The half-

life estimator is defined as )ˆlog(/)5.0log(ˆ α=h , where α̂  is the least squares estimator of α , 

and )1 ,0(ˆ ∈α . Then the mean of the half-life estimator does not exist.  

Proof 

                                              hdhfhhM ˆ )ˆ( ˆ)ˆ(  
0 ∫= ∞ , 

                                   αα
α

ˆ )ˆ(
)ˆlog(
)5.0log(1 

0 
df∫=  

Let { } 2
1 

2
1 ˆ )ˆ( )ˆ(

−
− ′= ARCRAtru ααα  and [ ] 2

1 21 })ˆ{( 4)ˆ( DAtrv −= πα  

                                                M̂ ( ĥ ) = α
α
α

α
ˆ 

)ˆ(
)ˆ(

)ˆlog(
)5.0log(1 

0 
d

v
u

∫  

                                                              = α
α
α

α
ε

εε
ˆ 

)ˆ(
)ˆ(

)ˆlog(
)5.0log(1

 0
d

v
uLim ∫

−

→
. 

Since the whole interval of α̂  is )  ,( ∞−∞ , )ˆ(αu and )ˆ(αv  are continuous functions of α̂  on the 

closed interval [ ]1  ,0 . According to the extreme value theorem, we can assume: 

(i) when α̂ =α , )ˆ(αu  gets to its minimum value N and 0≠N . 

(ii) when α̂ =α( , )ˆ(αv  gets to its maximum value M and ∞≠M . 

(The justification for assumptions (i) and (ii) is given in the Appendix.) 

 

Given that δα ≥)ˆ(f  for some 0>δ  in (0, 1), then:     

                                     )ˆ(ˆ hM > α
α

ε

εε
ˆ 

)ˆlog(
)5.0log(1 

 0
d

M
NLim ∫

−

→
 



 9

         = α
α

ε

εε
ˆ 

)ˆlog(
1)5.0log(

1 

  0
dLim

M
N

∫
−

→
 

                                                ⎥
⎦

⎤
⎢
⎣

⎡
+= ∫

−

→

−

→
α

αα
α ε

εε

ε
εε

ˆ
)]ˆ[log(

1)
)ˆlog(

ˆ
()5.0log(

1 

 20

1

0
dLimLim

M
N

 

                                                ⎥
⎦

⎤
⎢
⎣

⎡
−∞= ∫

−

→

ε

εε
α

α
1 

 20
ˆ

)]ˆ[log(
1)5.0log( dLim

M
N

 . 

So, the estimated mean of the half-life estimator does not exist.  Based on the inversion formula, 

we know that  

      )1)(ˆ(ˆ)ˆ( K+= αα ff    . 

Therefore if the estimated mean M̂ ( ĥ ) based on the saddlepoint approximation does not exist, 

then the true mean )ˆ(hM does not exist, either.3  

 

Corollary 1  

Let the data follow a stationary AR(1) process: ttt uyy += −1α , with tu ~ ),0( 2σN . The half-

life estimator is defined as )ˆlog(/)5.0log(ˆ α=h , where α̂  is the least squares estimator and 

)1,0(ˆ ∈α . Then the integer-order moments of the half-life estimator do not exist.  

 

The proof follows that of Theorem 1. 

 

4. Properties of the half-life estimator in the AR(p) model 

Some PPP studies have been based on the AR(p) model, to take account of more general features 

of the data. So, it is of interest to see if our results also hold in this case. In order to make the 

problem workable, we make some reasonable simplifying assumptions. First, we need to know 

the formula used to estimate the half-life in the case of the AR(p) model. Essentially there are two 

ways that are used to estimate the half-life for the AR(p) model in this literature. First, some 

studies use the impulse response function to estimate the half-life by using some nonparametric 

method, such as the bootstrap or Monte Carlo method. Second, other studies estimate the half-life 

based on the formula constructed from the coefficient estimator from an augmented Dickey-

Fuller (ADF) regression equation. The empirical work based on both of these methods has found 

similar results for the PPP puzzle, namely an implausibly large half-life estimate and a very wide 

confidence interval. In order to derive a specific density and distribution functions for half-life, 
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we use the second approach here. The basic idea is as follows. 

 

If the real exchange rate ty  follows an AR(p) process, then: 

                                       tit

p

i
it uyy += −

=
∑

1

α .                                             (10) 

There is no explicit half-life function for the AR(p) model based on the estimator of the 

coefficients in (10). The formula often used in practice involves approximating the half-life by 

estimating an ADF equation: 

                           tit

p

i
itt uyyy +Δ+=Δ −

−

=
− ∑

1

1
1 φβ ,       tu ~ ),0(... 2σNdii .                    (11)    

We suppose that the data are stationary, so that )1,1(−∈β . Then, based on (11), we estimate the 

half-life using: 

                                  )ˆ1log(/)5.0log(ˆ β+=h ,                 )1,0(ˆ1 ∈+ β .                 (12) 

In order to express the OLS estimator β̂  simply, we first apply some transformations to the data. 

Let,  

                                  tyMR Δ′=1            and       12 −′= tyMR  

where YYYYIM ′′−= −1)( , and  )       ( 1321 +−−−− ΔΔΔΔ= ptttt yyyyY L , and we are implicitly 

conditioning on the p  initial observations. Then, using standard partitioning results, 

                                       12
1

22 )(ˆ RRRR ′′= −β  ,                      
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TT

G

220                                            0     0
                                                       

0                                           0     0
0                                           0     0
0               0    1                  0     0

                                                      
0                    0          0      1     0
0                    0                 0      1

×⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

K

MMM

K

K

KL

MMMM

KK

KK

 and   ⎥
⎦

⎤
⎢
⎣

⎡
=

1

2

R
R

R . 

 

Now, we define the covariance matrix of  R  to be TT 22 ×Ω  and PP′=Ω−1 . Equation (13) can be 

written as: 

                                       
GPvPv
QPvPv
′′
′′

=β̂ ,                ),0(~ 2 INv σ .                            (14) 

We can see that equations (14) and (3) are quite similar, so based on Lieberman’s method, we can 

derive the approximation to the density function of β̂  as, 
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Then, applying the Lugannani-Rice formula, the approximate distribution function of β̂  is 

                                         )
ˆ
1

ˆ
1)(ˆ()ˆ()ˆ()ˆ(ˆ

ε
εφεββ −+Φ=<=

z
xPF    ,                           (17) 

where ( ) )ˆsgn(ˆlogˆ 2
1

wN=ε , [ ]2
1

})ˆ{(2ˆˆ 21LNtrwz −= , 

)(xLL = ;as before, Φ  and φ  are the standard normal distribution and density functions 

respectively, and ŵ  is defined by (16). 

 

Let βα ˆ1~ += , and using the fact that the Jacobian is unity, the approximate density function of 

α~  is : 
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{ }
[ ]2

1

2
1

})~~{( 4

~ )~(
)~(ˆ

21

1

LNtr

NGPPNtr
f

−

−− ′
=

π
α ,                                                     (18) 

where PGQPLL ))1~(()~(~ −−′== αα , LwIwNN ~ˆ2)ˆ(~ −==  and ŵ  satisfies 

                                                    )~~( 1LNtr − =0.                                                

Using (12), and allowing for the Jacobian, the density function of the half-life estimator in the 

AR(p) model is: 

                                       Jhfhf )1~0)ˆ(~()ˆ( <<= αα  

                                                
)0ˆ1(

))ˆ(~(
<<−

=
β

α
P

Jhf
 ,                                                           (19) 

where ))ˆ(~( hf α  is the density function by replacing α~  with ĥ
1

)5.0(  in (18); and the Jacobian is 

2ˆ
2ln)5.0( ˆ

1

h
J

h

= . 

)1ˆ()0ˆ.(Pr)0ˆ1.(Pr −<−<=<<− βββ P  can be calculated from (17) by letting 0=x  and 

1=x . We let )0ˆ1.(Pr <<−= βK , which is a constant number. 

 

So, the saddlepoint approximation for the density function for the half-life estimator is: 

                                  
{ }
[ ] 221

1

ˆ
2ln)5.0(

}){( 4

 )(
)ˆ(ˆ

ˆ
1

2
1

2
1

hKLNtr

NGPPNtr
hf

h

−

−− ′
=

π
,                                              (20) 

where PGQPhLL h ))1)5.0((()ˆ( ˆ
1

−−′== , LwIwNN ˆ2)ˆ( −==  and ŵ  satisfies 

                                                    )( 1LNtr − = 0.                                                      

Based on the density function (20), we have the following result. 

 

Theorem 2  

Suppose that the data follow a stationary AR(p) process and satisfy the ADF equation: 

tit

p

i
itt uyyy +Δ+=Δ −

−

=
− ∑

1

1
1 φβ , with tu ~ ),0( 2σN and )1 ,1(−∈β , and the half-life is defined 

as )ˆ1log(/)5.0log(ˆ β+=h , where β̂  is the least squares estimator and )0 ,1(ˆ −∈β . Then the 

mean of the half-life estimator does not exist.  



 13

 

The proof follows that of Theorem 1. 

 

Corollary 2 

Suppose that the data follow a stationary AR(p) process and satisfy the ADF equation: 

tit

p

i
itt uyyy +Δ+=Δ −

−

=
− ∑

1

1
1 φβ , with tu ~ ) ,0( 2σN and )1 ,1(−∈β , and the half-life is defined 

as )ˆ1log(/)5.0log(ˆ β+=h , where β̂  is the least squares estimator and )0 ,1(ˆ −∈β . Then none 

of the integer-order moments of the half-life estimator exist.  

 

The proof follows that of Theorem 1 

 

5. Robustness results 

In the previous section we assume that the data are normally distributed. Here, we consider the 

robustness of our results to a relaxation of this assumption. Let kH  represent the regular 

regression model; let 1−
kH  represent the first-order autoregressive model; and let ),(1 ΣnE  

represent the elliptically symmetric family of distributions.4 Then King (1979; p. 121) proves that 

“when the disturbance vector of kH  and 1−
kH   takes an ),(1 ΣnE  distribution, any linear 

unbiased or any well-behaved non-linear estimator will have very similar properties to those of 

the same estimator when the disturbance term is normally distributed.” From King’s result, we 

would anticipate that our own results will be robust to departures from normality, within the 

elliptically symmetric family of distributions.  

Of primary concern here is whether the non-existence of the moments of the half-life estimator 

still holds under other distributional assumptions. We can apply further results of Lieberman 

(1997) to establish the robustness of the theorems presented above to the distributional 

assumption. Lieberman derives the saddlepoint approximation for the density and cumulative 

distribution function for the estimator α̂  in an AR(1) model with exogeneous variables. Applying 

his result to (3), we can get the saddlepoint approximation to the density of α̂  in (3). First, we let  

 

vRCRvvRCRvS αααα α 21 ′′−′′=  

vRCRvZ αα 2′′=  
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αα RCRB 2′= . 

Then the saddlepoint approximation to the density of α̂  is: 

      
S

K

k

ek
f

S

2

~

10
~ 2

~
)ˆ(ˆ

π
α = ,             (21) 

with the saddlepoint ŵ  satisfying  

         0)ˆ( =′ wK S  ,               (22) 

where )(wK S  is the cumulant generating function of S  and  

)ˆ(~ wKK SS =              (23) 

)ˆ(~
2 wKk D
S ′′=                          (24) 

)(10 ZEk =                                (25) 

=10
~k )ˆ(10 wk .             (26) 

Suppose v  has arbitrary cumulants 0=ik , jik , , L,,, kjik , where the cumulants are defined as 

follows:   

),(, jiji vvcumk =  

),,(,, kjikji vvvcumk = . 

Then (24) and (26) can be expressed in terms of sv , cumulants  jik , , L,,, kjik . 

      klij
klijkl ij

S kssk ,
2

~ ∑=             (27) 

     ij
ij ij kbk ∑=10

~
  .           (28) 

This specification allows the sv , to be correlated. When v  is ... dii , (27) and (28) reduce to 

     ∑∑ +=
ij ijij ij

S skskk 22
2

2
42 2~

           (29) 

        ∑=
i iibkk 210

~
             (30) 

where iikk ,
2 = , iiiikk ,,,

4 = . 

 

The approximating function in (21) is continuous on a closed interval ]1 ,0[ˆ ∈α . We can use the 

same procedure as for Theorem 1 to prove that the moments of the half-life estimator do not exist.  

Let 
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                                              )ˆ(hM = hdhfh ˆ )ˆ( ˆ
 

0 ∫
∞

 

so                                        )ˆ(ˆ hM = α
πα

ˆ ~ 2

~

)ˆlog(
)5.0log(1 

0 
2

~

10 d
k

ek
S

KS

∫ . 

If v  is ... dii  and the second cumulant of v  is finite, then Sk2
~

 and 10
~k  are defined by (29) and 

(30). And we can also see that both Sk2
~

 and 10
~k  are continuous functions of α̂  on the closed 

interval [ ]1  ,0 , and they are the sum of a finite number of terms. Therefore, there is a non-zero 

minimum and maximum for the numerator and denominator of the expression for the density 

function of α̂  in (21). We assume that N̂  is the minimum value of the numerator and M̂  is the 

maximum value of the denominator, and 0ˆ ≠N , 0ˆ ≠M . Then, as was the case in Theorem 1, it 

is readily seen that none of the integer-order moments of ĥ  exist. 

  

Therefore, all of our main results hold as long as v  is ... dii  and the second cumulant of v  is 

finite. In addition to the normal distribution, there are many distributions with a finite second 

cumulant. When we allow the disturbances to be correlated, the situation is more complicated. 

However, we can still find quite a large class of distributions which will satisfy the conditions of 

the above proof. For the AR(p) model, we can apply (21) to (18). The situation is almost the same 

as for the AR(1) model. Therefore, the property that the moments of the half-life estimator do not 

exist is quite robust to the distributional assumption. 

  

6.  Conclusions 

Given the important role of PPP theory in economics, it is natural that the “PPP puzzle” has 

attracted a lot of attention. This paper provides saddlepoint approximations for the density and 

distribution functions for the half-life estimators based on the OLS estimation of AR(1) or AR(p) 

models, and proves analytically that the moments of such half-life estimator do not exist. These 

result are also shown to be quite robust to the underlying distributional assumptions. These 

properties of the conventional half-life estimators explain both the unreasonably large point 

estimates, and very wide confidence intervals that have been reported in the associated empirical 

studies.  

 

Our results have some implications for future research.  First, the poor properties of the half-life 

estimator may suggest that the measure that has been traditionally used is not a good one. This is 
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consistent with Chortareas and Kapetanios’ (2004) arguments that the puzzle may be caused 

artificially by the measure we use. Future work may be better to focus on constructing more 

appropriate measures of persistence, rather than just explore all possible reasons to improve the 

accuracy based on the current measure of the half-life. Second, we have not considered the case 

of nonlinear models. However, the assumption in the nonlinear models employed in the PPP 

literature is that the arbitrage happens only when the deviation is quite large. So we can imagine 

that when the deviation is small, the situation for the nonlinear models would be similar with the 

case we have analyzed here. Therefore, nonlinear models can never solve the problem for small 

deviations. 5 
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Figure 1: The density of half-life estimator when T=30
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Note: Figure 1 depicts the saddlepoint density function (8), which is the approximate density of  

ĥ  when the sample size is 30 and the true α  is 0.8, 0.9, 0.97 respectively.  

Figure 2: The density of half-life estimator when  a=0.95
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Note: Figure 2 depicts the saddlepoint density function (8), which is the approximate density of  

ĥ  when the sample size is 10, 30, 50 respectively and the true α  is 0.95.  
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Appendix: Justification of assumptions that 0≠N  and ∞≠M  

 

Here we justify assumptions (i) and (ii) used in the proof of Theorem 1. 

First, we prove that 0≠N : 

                                   N = { } 2
1

ˆ)ˆ()( 2
1 −
− ′= ARCRAtru ααα  . 

So, if N =0, then 0ˆ 2
1

=
−

A  or { } 0)ˆ( 2
1 =′−

αα RCRAtr . 

As the density exists, we can rule out the possibility that 0ˆ 2
1

=
−

A . 

 For                               { } ∑
=

−

−
=′

T

t t

t

dw
f

RCRAtr
0

2
1

ˆ21
)ˆ( αα , 

where  the td  are the eigenvalues of matrix D and the tf  are the eigenvalues of αα RCR 2′  

Since 
⎭
⎬
⎫

⎩
⎨
⎧ −−= ∑

− T
idwA

0
)ˆ21log(

2
1expˆ 2

1

exists, 
tdŵ21

1
−

must be positive. Also, αα RCR 2′ is a 

positive definite matrix, so the eigenvalues tf  are all positive. Therefore: 

                                          { } 0)ˆ( 2
1 >′−

αα RCRAtr  , 

and so  0≠N . 

 

Second, we prove that ∞≠M . 

[ ] [ ]{ } 2
1

2
1

0
2221 )ˆ21(4})ˆ{(4)~( ∑ −=== − T

tt dwdDAtrvM ππα  

so, if ∞=M , it must be the case that 2)ˆ21(
1

tdw−
 is zero. But from 0ˆ 2

1

≠
−

A , we know this 

cannot hold. So, ∞≠M . 
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Footnotes 

 

1. Our method is computationally simpler than that of Kilian and Zha (1999) and does not 

 require the specification of a prior.  

 

2. For general discussions of saddlepoint approximations, see Goustis and Casella (1999) 

 and Huzurbazar (1999). Giles (2001) provides another good illustration of the accuracy 

 of a particular saddlepoint application.  

 

3. One or both of α  and α(  may possibly take values on the boundary of the [0 , 1] 

 interval. In this case, we can set their value(s) to 1-ε or ε (ε → 0) appropriately. Then we 

 take the limit, and the proof still holds. 

 

4. A random vector, x, is spherically symmetric if its distribution is the same as that of Px, 

 for all orthogonal matrices, P. The vector x is elliptically symmetric, with characteristic 

 matix Γ, if x2/1−Γ  is spherically symmetric. It is not widely recognized in the 

 econometrics literature that many standard results require only spherical symmetry, not 

 normality. For example, Thomas (1970) proves that the usual t and F statistics associated 

 with the linear regression models have their usual null distributions when normality is 

 relaxed to spherical symmetry. Similar results relating to the Durbin-Watson test  statistic 

 (and other regression statistics that are scale-invariant) are established by Kariya and 

 Eaton (1977), and King (1979, 1980), and others. See Chmielewski (1981) for an 

 excellent review of the associated statistical literature. 

 

5. Some studies have found that the key determinant of the speed of PPP convergence is the 

 nominal exchange rate (not the price), and the slow reversion of PPP is due to the slow 

 reversion of nominal exchange rate (e.g., Engel and Morley, 2001; Cheung, et al., 2004). 

 This can also explain why the empirical consensus is inconsistent with the sticky-price 

 model.  

 


