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GENERAL SADDLEPOINT APPROXIMATIONS: APPLICATION 
TO THE ANDERSON-DARLING TEST STATISTIC 

 

1. INTRODUCTION 

The problem of approximating the density or distribution function of a statistic is of great 

practical importance. Saddlepoint approximations can be obtained for any statistic that 

admits a cumulant generating function. In principle, knowledge of the cumulant 

generating and characteristic functions allows us to obtain the density and distribution 

functions using the inversion theorem. However, in practice the complexity of the 

associated integration may make it very costly (or impossible) to obtain an exact analytic 

result. Compared with other asymptotic approximations, saddlepoint approximations 

(Daniels, 1954) have the advantages of always generating positive probabilities; being 

very accurate in the tails of the distribution; and being accurate with small samples, 

sometimes even with only one observation.    

 

Saddlepoint approximations have proved useful for a range of problems, and hence have 

attracted considerable interest. With an appropriate renormalization to ensure that the 

saddlepoint density function integrates to unity over its support, the accuracy of the 

approximation can sometimes be improved, and in certain cases it even reproduces the 

exact density. Daniels (1980) showed that the normal, gamma and inverse normal are the 

only cases for which the renormalized saddlepoint approximation reproduces the exact 

density in the scalar case. This also occurs for normal and inverse normal densities  

without renormalization. 
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Lugannani and Rice (1980) proposed a saddlepoint approximation for the cumulative 

distributive function that is very accurate in the tails. Of course, this is of great interest in 

testing problems. Other approaches for approximating the tail areas are discussed by 

Barndorff-Nielsen (1991), and Daniels (1987) provides a full discussion of this issue. 

Routledge and Tsao (1997) prove that the derivation of Lugannani and Rice’s asymptotic 

expansion for the cumulative distribution function is the same as Daniels’s asymptotic 

approximation for the corresponding density function. A comprehensive review of the 

application of saddlepoint approximations can be found in Reid (1988, 1991) and Field 

and Ronchetti (1990), and useful introductory discussions are provided by Goustis and 

Casella (1999) and Huzurbazar (1999). 

 

 All of the approximations noted above use a normal base distribution, and are generally 

accurate when the statistic has a normal limiting distribution. Wood, et al. (1993) 

proposed a generalization involving a non-normal-based saddlepoint approximation and 

showed that it can be more accurate than the normal-based approximation in some 

important cases when the limit distribution is non-normal. In this paper we consider four 

saddlepoint approximations – those of Lugannani and Rice and Wood et al., together 

with their counterparts that include higher order terms in the underlying expansions. The 

higher-order variant of Wood et al.’s non-normal-based approximation appears not to 

have been considered previously. These approximations are compared by applying them 

to the distribution of the widely used Anderson and Darling (1952, 1954) goodness-of-fit 

test statistic.  
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The structure of this paper is as follows. In section 2, we present some saddlepoint 

theory. In section 3 we discuss the Anderson-Darling (A-D) test and some of its 

properties, and derive the various saddlepoint approximations for the distribution of the 

A-D statistic. We compare some numerical evaluations of these saddlepoint 

approximations with Lewis’s (1961) numerical results in section 4. Concluding 

comments follow in section 5.  

 

2. SADDLEPOINT APPROXIMATIONS 

2.1 Background 

The Lugannani-Rice (L-R) (normal-based) approximation for the distribution of the 

random variable X  at point y  is: 

⎭
⎬
⎫

⎩
⎨
⎧ −+Φ−≈≥

wu
wwyX

ˆ
1

ˆ
1)ˆ()ˆ(1)Pr( φ ,                               (1) 

where Φ  and φ  are the c.d.f. and p.d.f of the standard normal distribution, and                 

                   { } )ˆsgn()]ˆ(ˆ[2ˆ 2/1 ttKytw −=              (2) 

                   2/1)2( )]ˆ([̂ˆ tKtu = .              (3) 

Here, )(tK  is the cumulant generating function (c.g.f.) of the variable X , )()( ⋅iK is its ith 

derivative, and t̂  is the solution to the saddlepoint equation:  
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When )0()( )1(KXEy == , û  and ŵ  are zero, and (1) collapses. Applying L’Hôpital’s 

rule in this case, (1) reduces to: 

π
ζ

26
)0(

2
1))(Pr( 3−≈≥ xEX                         (5) 

where 2/)2()( )}ˆ({)ˆ()ˆ( rr
r tKtKt =ζ . 

 

The existence of a unique real root to the saddlepoint equation is established by Daniels 

(1954). 

 

2.2 Non-normal-based saddlepoint approximation  

Wood et al. (1993) generalize the L-R formula to a non-normal-based (WBB) 

saddlepoint approximation, by first making the transformation: 

tytKwwG ˆ)ˆ(ˆ)( ˆˆ −=− εε ε             (6) 

where t̂  is obtained from equation (4), ε̂w  is the solution to the saddlepoint equation: 

εε ˆ)( ˆ
)1( =wG ,                         (7) 

and )()( ⋅rG denotes the rth derivative of )(⋅G . 

The WBB formula is: 
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where Γ  and γ  are the c.d.f. and p.d.f. of the base distribution whose c.g.f. is G. ε̂  and 

ε̂w  are defined by (6) and (7). Clearly, we need to solve the root t̂  before we calculate ε̂  
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and ε̂w . After finding t̂ , we can express ε̂w  as a function of ε̂  based on (7), then we 

substitute this function into (6) to solve for ε̂  numerically. Finally, we can solve for ε̂w . 

The left-hand side of (6) is the Legendre-Frenchel transformation of G., which is concave 

in ε̂ . Therefore there are at most two solutions for ε̂ , and the choice for the solution of 

ε̂  is: 
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and 

 2/1
ˆ

)2(
ˆ )]([ˆˆ −= εε wGuu              (10) 

where û  is defined by (3).  

 

When )0()( )1(KXEy == , ε̂ = )0()1(G  from (9). Then from (7), 0ˆ =εw  and 0ˆ ˆ =εu , for 

the same reason as with the L-R formula. Therefore, at the mean value, we should 

calculate the limit of (8), which is: 

{ })0()0())0(()0(
6
1))0((1))(Pr( 33

)1()2()1( ζζγ −′+Γ−≈≥ GGGxEX            (11) 

where 2/
ˆ

)2(
ˆ

)(
ˆ })({)()( rr

r wGwGw εεεζ =′ . 

 

2.3 Higher-order saddlepoint approximations 

Daniels (1987, p.42) extended the Lugannani-Rice formula to incorporate higher-order 

terms for the mean of n  independent identically distributed random variables: 
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and for brevity, we write )ˆ()( tK r , )( ˆ
)(

εwG r , )ˆ()( trζ  and )( ˆ)( εζ wr′  as )(rK , )(rG , )(rζ  

and )(rζ ′ . For a single random variable, X, Daniels’s result becomes: 

{ }KK +++++Φ−≈> kbbbwwyXP 10)ˆ()ˆ(1)( φ  .        (14) 

To get a higher-order approximation for the c.d.f. we retain both b0 and b1 terms in (14): 
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At the mean, (15) reduces to  
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A higher-order WBB formula can also be obtained in an analogous manner, the details of 

which appear in the Appendix: 
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At the mean, it can be shown that (17) reduces to  
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3. THE ANDERSON-DARLING TEST STATISTIC 

3.1 Background 

The Anderson-Darling (A-D) test is widely used for testing the hypothesis that a sample 

of size n has been drawn from a population with a specified continuous cumulative 

distribution function. Anderson and Darling (1952) based their test on the discrepancies 

between the empirical cumulative distribution function )(xFn  and the null cumulative 

distribution function )(xF .  

 

The A-D test statistic is:                 

  [ ] )( )]([)()(  
 

 

2 2 xdFxFxFxFnA nn ψ∫
∞+

∞−
−= , 

where )(xFn is the empirical distribution function based on n  observations; )(tψ ( 0≥ ) is 

some preassigned weight function. When the weight function is [ ])1(/1)( ttt −=ψ , the 

statistic is: 

                [ ] { }[ ] )( )(1)( )()(  
 

 

2 2 xdFxFxFxFxFnA nn ∫
∞+

∞−
−−= . 
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The test can be applied from the order statistics, nxxx ≤≤≤ L21 :  

   [ ]∑
=

+−−+−−−=
n

j
jnjn uuj

n
nA

1
1

2 )1ln()ln()12(1 , 

where )( ii xFu = .The asymptotic test statistic is  

               )( 22
nn

ALimA
∞→

= . 

 

The distribution function of the A-D statistic is complicated, even asymptotically. 

Consequently, Anderson and Darling (1954) used a numerical method previously applied 

by Birnbaum (1952) to the Kolmogorov-Smirnov test, to obtain the asymptotic critical 

points for significance levels of 1%, 5% and 10% for the A-D test. Lewis (1961) found 

that the support of the A-D test statistic is essentially from 0 to 8. He tabulated the 

distribution function of the A-D test statistic for the asymptotic case (using Hermite-

Gauss numerical quadrature) and for n = 2 to 8 (using Monte Carlo simulation). When n 

= 1 the expression for the c.d.f. requires no integration. For 8>n , the Monte Carlo 

method was impractical given the computational constraints at that time. Recently, 

Marsaglia and Marsaglia (2004) have provided a computational method to evaluate the 

c.d.f. accurately for any sample size.  

 

Despite the complexity of the c.d.f. for the A-D statistic, the characteristic function is 

simple and corresponds to that of an infinite weighted sum of independent chi-squared 

random variables. Exploiting this, Sinclair and Spurr (1988) used the results of Zolotarev 

(1961) to derive a theoretical function of the upper tail area for the A-D test. The 

approximations based on this formula are very good above the median. However, the 
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approximation is poor in the lower tail, and generates areas in excess of unity in some 

cases. Sinclair and Spurr derived the first four cumulants of the A-D statistic. Based on 

its skewness (5.5865) and kurtosis (12.036), they concluded that its distribution should lie 

between the gamma and log-normal distributions.  

 

3.2 Saddlepoint Approximations 

Giles (2001) derived a saddlepoint approximation to the asymptotic c.d.f. of the A-D 

statistic by using the Lugannani and Rice (1980) formula. His numerical results showed 

that the approximations are excellent (compared with Lewis’s “exact” results) in both 

tails. Given the form of the characteristic function, and the fact that the limit distribution 

of the A-D statistic is non-normal, Giles suggested that a chi-square base, not a normal 

base, might be considered.   

 

The characteristic function of 2A  is 

                 [ ]  ))1((21)(
2/1

1

−∞

=
∏ +−=

j

jjittφ      

                  [ ]  21       
2/1

1

−∞

=
∏ −=

j
j itλ  ,    

where ))1((1 += jjjλ and 1  2 −=i . So, the cumulant generating function (c.g.f) 

of 2A  is: 

                 ∑
∞
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−−==
1

]21log[5.0)](log[)(
j

j tttK λθ ,                          (19) 

and its derivatives are 



 10

∑ −=
∞

=1

)( ])21([)(
j

i
jji

i tdtK λλ  ; 11 )1(2;1 −−== ii didd  ; i = 2, 3, 4, ……      (20) 

 

Equations (1) – (4) then provide the basic L-R saddlepoint approximation to the c.d.f. of  

A2. When )0()( )1(22 KAEA == , equation (5) is used. For any y, the saddlepoint equation 

is: 

0])21([
1

=−−∑
∞

=

yt
j

jj λλ           (21)    

The solution, t̂ , is well defined, as 0])21([ =−
∞→

tLim jjj
λλ , and is unique. The 

saddlepoint equation (21) is easily and rapidly solved numerically, for example, by the 

Newton-Raphson algorithm (which we use), or by a line-search.  

 

Turning to a non-normal-based saddlepoint approximation for the c.d.f. of the A-D 

statistic, we can apply equations (6) – (10), and equation (11) at the mean. Specifically, 

we choose a chi-squared base distribution, Γ .  Its c.g.f. (for α degrees of freedom) is: 

)21log(
2

)( ˆˆ εε
α wwG −−= , 

whose derivatives are  

 i
i

i wdwG )21(')( ˆˆ
)(

εε α −= ; 11 ')1(2';1' −−== ii didd ;  i = 2, 3, 4, ……      (22) 

To obtain the approximation we first solve for the root t̂ , using Giles’s approximation. 

Equations (7) and (22) are solved for ε̂w  in terms of ε̂ : 

εα ε ˆ)21( ˆ =− w , 

so that 
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ε
α

ε ˆ22
1
−=)w  .           (23) 

Then we substitute (23) into (6) to solve for the root ε̂ : 
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j
ˆ]ˆ21log[5.0
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ˆ
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and substitute ε̂  back into (23) to get ε̂w . 

 

After solving for t̂ , ε̂  and ε̂w , we can get ε̂û  based on (3) and (10) and evaluate (8). We 

follow Wood et al.’s suggestion as to the choice of α . Matching the derivatives of )ˆ(tK  

and )( ε̂wG implies 

2
ˆ

)3(

3
ˆ

)2(

2)3(

3)2(

)]([
)]([

)]ˆ([
)]ˆ([

ε

ε

wG
wG

tK
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so that 

2)3(

3)2(

)]ˆ([
)]ˆ([8

tK
tK

=α  .           (26) 

Evaluating (25) at 0ˆ =t  and 0ˆ =εw , (26) reduces to 

)]0([
)]0([2 )2(

2)1(

K
K

=α  .           (27) 

 

We also consider 2=α , because the support for the associated chi-squared distribution 

is close to that of the A-D test statistic. Other choices of α  could be considered. The 

higher-order approximations are implemented directly, using the results of section 2. 
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4. NUMERICAL EVALUATIONS 

We provide some numerical results to compare the accuracies of the various saddlepoint 

approximations discussed in section 3. The associated programs were written in double 

precision FORTRAN, use the Lahey (1992) compiler, and incorporate routines from 

Press et al. (1992). Table 1 compares the saddlepoint approximations with Lewis’s full 

set of ‘exact’ results. Chi-Squared (1) (2) (3) denote the chi-squared base with α defined 

by equations (26) and (27), and α = 2 respectively.  

 

Table 1 illustrates that Giles’s approximation is excellent not only in the tails but also 

over the whole support of the distribution. The maximum absolute difference between 

Lewis’s and the normal-based approximation is 0.0169, when the value for the A-D 

statistic is 0.75 or 0.8. The chi-squared-based saddlepoint approximations are strictly 

better than the normal-based saddlepoint approximation in the middle part of the 

distribution. However, the normal-based approximation performs better in the tail areas, 

especially in the important right tail area. 

 

Each higher-order approximation performs better (in terms of absolute error) than its low-

order counterpart in the middle part of the support (except at the mean of the 

distribution), and for the first chi-squared base, the higher-order approximation is 

superior over almost the whole range. However for the other cases, although the higher-

order approximations perform better in the middle part of the distribution (except at the 

mean), they are strictly worse in the right tail. Overall, in the case of the A-D test 

statistic, although higher-order saddlepoint approximations with either a normal or non-
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normal base distribution can out-perform Giles’s standard Luannani-Rice approximation 

over much of the support, in the crucial right tail the latter approximation is preferred. 

 

5. CONCLUDING REMARKS 

Wood et al. (1993) introduced the use of non-normal base distributions for saddlepoint 

approximations of the type proposed by Lugannani and Rice (1980). Regardless of the 

base distribution, higher-order approximations of the type considered in this paper are 

worthy of consideration. Interestingly, this extension appears not to have been discussed 

or applied previously in the case of a non-normal-based saddlepoint approximation. 

Using a higher-order saddlepoint approximation in any context does not necessarily 

guarantee an improvement for any particular fixed finite sample size – it is possible for 

the corrections from the extra terms to worsen the approximation. The improvement from 

the extra terms is guaranteed only beyond a certain sample size, but we do not know the 

exact value of the sample size that is needed for this to occur in practice, as it will vary 

according to the characteristics of the problem at hand.   

 

This issue has been explored in the context of the Anderson-Darling goodness-of-fit test.  

We find that while the use of a chi-square base distribution and/or a higher-order 

expansion can yield improvements over part of the support of the test statistic’s 

distribution, the standard normal-based approximation discussed by Giles (2001) 

performs commendably well. Most importantly, though the latter approximation is 

preferred for the right tail critical regions. While there is good intuition to suggest the use 
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of a chi-square base distribution for saddlepoint approximations for this particular test 

statistic, other choices would be worthy of consideration. 

 

ACKNOWLEDGEMENT 

We are grateful to Nilanjana Roy, Min Tsao, Graham Voss and Aman Ullah for their 

very helpful comments, and to Andrew Wood for confirming that there is a type-setting 

error in equation (9) of Wood et al. (1993), and that our formula (11) is correct. 



 15

Table 1: Values of )( 2AF  

2A        Lewis           Normal         Chi-Square (1)    Chi-Square (2)    Chi-Square (3) 
Low     High     Low    High      Low     High     Low     High 

 
0.100 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 

0.125 0.0003  0.0003 0.0003  0.0003 0.0003  0.0003 0.0003  0.0003 0.0003 

0.150 0.0014  0.0014 0.0014  0.0014 0.0014  0.0014 0.0014  0.0014 0.0014 

0.175 0.0042  0.0043 0.0042  0.0043 0.0042  0.0043 0.0042  0.0042 0.0042 

0.200 0.0096  0.0099 0.0095  0.0098 0.0095  0.0098 0.0095  0.0096 0.0094 

0.225 0.0180  0.0185 0.0178  0.0185 0.0178  0.0184 0.0178  0.0182 0.0177 

0.250 0.0296  0.0306 0.0293  0.0305 0.0293  0.0304 0.0292  0.0301 0.0290 

0.275 0.0443  0.0459 0.0439  0.0457 0.0438  0.0456 0.0437  0.0453 0.0434 

0.300 0.0618  0.0641 0.0611  0.0639 0.0611  0.0638 0.0609  0.0635 0.0605 

0.325 0.0817  0.0849 0.0807  0.0845 0.0806  0.0844 0.0805  0.0841 0.0799 

0.350 0.1036  0.1077 0.1021  0.1072 0.1020  0.1071 0.1019  0.1068 0.1011 

0.375 0.1269  0.1320 0.1250  0.1314 0.1248  0.1314 0.1247  0.1311 0.1239 

0.400 0.1513  0.1576 0.1489  0.1568 0.1487  0.1567 0.1486  0.1565 0.1477 

0.425 0.1764  0.1838 0.1736  0.1829 0.1733  0.1829 0.1733  0.1826 0.1722 

0.450 0.2019  0.2105 0.1987  0.2094 0.1984  0.2094 0.1984  0.2092 0.1972 

0.475 0.2276  0.2374 0.2241  0.2361 0.2236  0.2361 0.2237  0.2359 0.2225 

0.500 0.2532  0.2641 0.2494  0.2626 0.2489  0.2627 0.2491  0.2625 0.2478 

0.525 0.2786  0.2905 0.2747  0.2889 0.2740  0.2889 0.2743  0.2888 0.2730 

0.550 0.3036  0.3165 0.2997  0.3147 0.2989  0.3148 0.2993  0.3146 0.2979 

0.575 0.3281  0.3419 0.3244  0.3399 0.3234  0.3400 0.3239  0.3399 0.3226 

0.600 0.3520  0.3666 0.3486  0.3645 0.3475  0.3646 0.3482  0.3645 0.3468 

0.625 0.3753  0.3906 0.3723  0.3884 0.3711  0.3885 0.3719  0.3884 0.3705 

0.675 0.4199  0.4362 0.4180  0.4338 0.4164  0.4339 0.4176  0.4338 0.4162 

0.700 0.4412  0.4577 0.4400  0.4553 0.4382  0.4554 0.4395  0.4553 0.4162 

0.750 0.4815  0.4984 0.4818  0.4959 0.4796  0.4959 0.4814  0.4958 0.4800 

0.800 0.5190  0.5359 0.5208  0.5333 0.5182  0.5333 0.5204  0.5332 0.5190 

0.850 0.5537  0.5703 0.5569  0.5677 0.5541  0.5676 0.5565  0.5675 0.5552 

0.900 0.5858  0.6018 0.5903  0.5993 0.5871  0.5991 0.5899  0.5990 0.5886 

0.950 0.6154  0.6307 0.6210  0.6283 0.6176  0.6279 0.6206  0.6279 0.6194 

1.000 0.6427  0.6571 0.8952  0.6549 0.6455  0.6544 0.8560  0.6544 0.7651 

1.050 0.6680  0.6814 0.6743  0.6794 0.6712  0.6787 0.6746  0.6787 0.6735 

1.100 0.6912  0.7037 0.6982  0.7018 0.6948  0.7011 0.6982  0.7011 0.6972 

1.150 0.7127  0.7242 0.7202  0.7225 0.7164  0.7216 0.7199  0.7216 0.7189 

1.200 0.7324  0.7430 0.7401  0.7415 0.7362  0.7405 0.7398  0.7405 0.7389 

1.250 0.7580  0.7603 0.7584  0.7590 0.7545  0.7579 0.7581  0.7580 0.7572 

1.300 0.7677  0.7763 0.7751  0.7752 0.7713  0.7740 0.7749  0.7741 0.7740 

1.350 0.7833  0.7911 0.7906  0.7901 0.7868  0.7889 0.7903  0.7889 0.7895 
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Table 1: Continued 
2A          Lewis          Normal       Chi-Squared (1)   Chi-Squared(2)  Chi-Squared(3) 

Low  High    Low   High    Low  High    Low  High 
 

1.400 0.7978  0.8048 0.8048  0.8039 0.8011  0.8026 0.8045  0.8027 0.8038 

1.450 0.8111  0.8174 0.8179  0.8167 0.8143  0.8153 0.8177  0.8155 0.8169 

1.500 0.8235  0.8292 0.8300  0.8286 0.8265  0.8272 0.8298  0.8273 0.8291 

1.550 0.8350  0.8401 0.8412  0.8396 0.8378  0.8381 0.8410  0.8383 0.8403 

1.600 0.8457  0.8502 0.8515  0.8498 0.8482  0.8483 0.8513  0.8485 0.8507 

1.650 0.8556  0.8596 0.8611  0.8593 0.8579  0.8578 0.8609  0.8580 0.8603 

1.700 0.8648  0.8683 0.8700  0.8681 0.8670  0.8666 0.8698  0.8668 0.8693 

1.750 0.8734  0.8765 0.8783  0.8764 0.8753  0.8749 0.8781  0.8750 0.8776 

1.800 0.8814  0.8840 0.8860  0.8840 0.8831  0.8825 0.8858  0.8827 0.8853 

1.850 0.8888  0.8911 0.8931  0.8912 0.8904  0.8897 0.8929  0.8899 0.8925 

1.900 0.8957  0.8977 0.8997  0.8978 0.8972  0.8964 0.8996  0.8965 0.8992 

1.950 0.9021  0.9039 0.9059  0.9041 0.9035  0.9026 0.9058  0.9028 0.9054 

2.000 0.9082  0.9097 0.9117  0.9099 0.9094  0.9084 0.9116  0.9086 0.9112 

2.050 0.9138  0.9151 0.9171  0.9153 0.9149  0.9139 0.9170  0.9141 0.9166 

2.100 0.9190  0.9201 0.9221  0.9204 0.9200  0.9190 0.9220  0.9192 0.9217 

2.150 0.9239  0.9249 0.9268  0.9252 0.9248  0.9238 0.9267  0.9240 0.9264 

2.200 0.9285  0.9293 0.9312  0.9296 0.9293  0.9283 0.9311  0.9285 0.9308 

2.250 0.9328  0.9334 0.9353  0.9338 0.9335  0.9325 0.9352  0.9327 0.9349 

2.300 0.9368  0.9373 0.9392  0.9377 0.9374  0.9364 0.9391  0.9366 0.9388 

2.350 0.9405  0.9410 0.9428  0.9413 0.9411  0.9401 0.9427  0.9403 0.9424 

2.400 0.9441  0.9444 0.9462  0.9448 0.9446  0.9436 0.9461  0.9438 0.9458 

2.450 0.9474  0.9476 0.9493  0.9480 0.9478  0.9468 0.9493  0.9470 0.9490 

2.500 0.9504  0.9506 0.9523  0.9510 0.9509  0.9499 0.9522  0.9501 0.9520 

2.550 0.9534  0.9535 0.9551  0.9539 0.9537  0.9528 0.9550  0.9529 0.9548 

2.600 0.9561  0.9561 0.9577  0.9565 0.9564  0.9555 0.9576  0.9556 0.9574 

2.650 0.9586  0.9586 0.9601  0.9590 0.9589  0.9580 0.9601  0.9582 0.9599 

2.700 0.9610  0.9610 0.9624  0.9614 0.9613  0.9604 0.9624  0.9606 0.9622 

2.750 0.9633  0.9632 0.9646  0.9636 0.9635  0.9627 0.9645  0.9628 0.9644 

2.800 0.9654  0.9653 0.9666  0.9657 0.9656  0.9648 0.9666  0.9649 0.9664 

2.850 0.9674  0.9673 0.9685  0.9676 0.9676  0.9668 0.9685  0.9669 0.9683 

2.900 0.9692  0.9691 0.9703  0.9695 0.9694  0.9686 0.9703  0.9688 0.9701 

2.950 0.9710  0.9708 0.9720  0.9712 0.9711  0.9704 0.9720  0.9705 0.9718 

3.000 0.9726  0.9725 0.9736  0.9728 0.9728  0.9720 0.9736  0.9722 0.9734 

3.050 0.9742  0.9740 0.9751  0.9744 0.9743  0.9736 0.9751  0.9737 0.9749 

3.100 0.9756  0.9755 0.9765  0.9758 0.9758  0.9751 0.9765  0.9752 0.9764 

3.150 0.9770  0.9768 0.9778  0.9772 0.9771  0.9765 0.9778  0.9766 0.9777 

3.200 0.9783  0.9781 0.9791  0.9784 0.9784  0.9778 0.9790  0.9779 0.9789 

3.250 0.9795  0.9793 0.9803  0.9796 0.9796  0.9790 0.9802  0.9791 0.9801 
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Table 1: Continued 
2A     Lewis           Normal           Chi-Squared (1)   Chi-Squared(2)   Chi-Squared(3) 

Low  High   Low  High   Low  High   Low  High 
 

3.300 0.9807  0.9805 0.9814  0.9808 0.9808  0.9802 0.9813  0.9803 0.9812 

3.350 0.9818  0.9816 0.9824  0.9819 0.9818  0.9813 0.9824  0.9814 0.9823 

3.400 0.9828  0.9826 0.9834  0.9829 0.9828  0.9823 0.9834  0.9824 0.9833 

3.450 0.9837  0.9835 0.9843  0.9838 0.9838  0.9833 0.9843  0.9834 0.9842 

3.500 0.9846  0.9844 0.9852  0.9847 0.9847  0.9842 0.9852  0.9843 0.9851 

3.550 0.9855  0.9853 0.9860  0.9856 0.9855  0.9851 0.9860  0.9852 0.9859 

3.600 0.9863  0.9861 0.9868  0.9864 0.9863  0.9859 0.9867  0.9860 0.9867 

3.650 0.9870  0.9869 0.9875  0.9871 0.9871  0.9867 0.9875  0.9867 0.9874 

3.700 0.9878  0.9876 0.9882  0.9878 0.9878  0.9874 0.9882  0.9875 0.9881 

3.750 0.9884  0.9883 0.9888  0.9885 0.9885  0.9881 0.9888  0.9881 0.9888 

3.800 0.9891  0.9889 0.9895  0.9891 0.9891  0.9887 0.9894  0.9888 0.9894 

3.850 0.9897  0.9895 0.9900  0.9897 0.9897  0.9893 0.9900  0.9894 0.9900 

3.900 0.9902  0.9901 0.9906  0.9903 0.9903  0.9899 0.9906  0.9900 0.9905 

3.950 0.9908  0.9906 0.9911  0.9908 0.9908  0.9905 0.9911  0.9905 0.9910 

4.000 0.9913  0.9911 0.9916  0.9913 0.9913  0.9910 0.9916  0.9910 0.9915 

4.050 0.9917  0.9916 0.9920  0.9918 0.9918  0.9915 0.9920  0.9915 0.9920 

4.100 0.9922  0.9921 0.9925  0.9922 0.9922  0.9919 0.9925  0.9920 0.9924 

4.150 0.9926  0.9925 0.9929  0.9926 0.9926  0.9924 0.9929  0.9924 0.9928 

4.200 0.9930  0.9929 0.9933  0.9930 0.9930  0.9928 0.9933  0.9928 0.9932 

4.250 0.9934  0.9933 0.9936  0.9934 0.9934  0.9932 0.9936  0.9932 0.9936 

4.300 0.9938  0.9936 0.9940  0.9938 0.9938  0.9935 0.9940  0.9936 0.9939 

4.350 0.9941  0.9940 0.9943  0.9941 0.9941  0.9939 0.9943  0.9939 0.9943 

4.400 0.9944  0.9943 0.9946  0.9944 0.9944  0.9942 0.9946  0.9943 0.9946 

4.500 0.9950  0.9949 0.9952  0.9950 0.9950  0.9948 0.9952  0.9949 0.9951 

4.600 0.9955  0.9954 0.9957  0.9955 0.9955  0.9954 0.9957  0.9954 0.9957 

4.700 0.9960  0.9959 0.9961  0.9960 0.9960  0.9958 0.9961  0.9959 0.9961 

4.800 0.9964  0.9963 0.9965  0.9964 0.9964  0.9963 0.9965  0.9963 0.9965 

4.900 0.9968  0.9967 0.9969  0.9968 0.9968  0.9967 0.9969  0.9967 0.9969 

5.000 0.9971  0.9970 0.9972  0.9971 0.9971  0.9970 0.9972  0.9970 0.9972 

5.500 0.9983  0.9983 0.9984  0.9983 0.9983  0.9983 0.9984  0.9983 0.9984 

6.000 0.9990  0.9990 0.9991  0.9990 0.9990  0.9990 0.9991  0.9990 0.9991 

7.000 0.9997  0.9997 0.9997  0.9997 0.9997  0.9997 0.9997  0.9997 0.9997 

8.000 0.9999  0.9999 0.9999  0.9999 0.9999  0.9999 0.9999  0.9999 0.9999 

  

 

Note: “Low” represent the lower-order saddlepoint approximation; “High” represent the higher-order 
saddlepoint approximation. 
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APPENDIX: PROOF OF HIGHER-ORDER WBB SADDLEPOINT 

APPROXIMATION 

 

From the inversion formula for the tail probability: 
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Again, applying the inversion formula, the first part of (A3) is: 
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then the second part of (A3) can be written as: 
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Using Daniels’s (1987) result (3.3) we get: 
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Daniels’s saddlepoint approximation to the density function at any specified point y up to 
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Now we can rewrite 1I  and 2I  as: 
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Let  
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When )(XEX = , 0ˆ =εw  and 0ˆ =εu . Therefore, we need to take the limit of (A6). 

First, (A6) can be written as: 
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We can see 1S  is the same as the formula of Wood et al. (1993). Therefore the limit of 1S  

is (8). Comparing the expressions for 2S  and 3S  with that for 1b  in (13),  using Daniels’s 

results we can get the limit of 2S  and 3S  as: 
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Then we apply L’Hôpital’s rule to get the limit of 4S : 
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Differentiating both denominator and numerator of (A8): 
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Differentiating again and applying L’Hôpital’s rule a second time : 
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Thus, when )(XEX = , we obtain the formula in (18). 
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