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1. Introduction 

 Consider estimating the coefficients of the model  

   y = Xβ + Zγ + u, u ~ N(0, σ2In×n)    (1) 

where y(n×1) is a vector of observations, X(n×k) and Z(n×m) are nonrandom 

regressor matrices, β(k×1) and γ(m×1) are parameter vectors. With W ≡ [X : Z] (of 

full column-rank K = (k+m)) and φ ≡ [β′ γ′]′, model (1) is 

   y = Wφ + u .        (2) 

 Suppose, in addition, J linear uncertain beliefs exist about φ expressed as Rφ=r; 

r(J×1) and R(J×K) are nonstochastic with R of full row-rank, J<K.  This framework 

extends that of Magnus and Durbin (1999) and Danilov and Magnus (2004) who 

suppose that X contains required variables, whereas Z consists of doubtful regressors, 

included to perhaps provide a “better” estimator of β; i.e., their prior beliefs regard 

exclusion restrictions.  See also Magnus (1999, 2002), Danilov (2005) and Zou et al. 

(2007). Given the uncertainty about γ, these authors consider the following estimator 

of β 

   bw,1 = λbu + (1-λ)br       (3) 

where bu is the unrestricted least squares (OLS) estimator, br is the restricted least 

squares (RLS) estimator obtained under γ = 0, λ≡λ(gu, û ) is a random weight function, 

û  is the OLS residual vector and gu is the OLS estimator of γ ; the dependence of λ 

on û  is usually via an error variance estimator.   Using an F-test to choose between bu 

and br results when λ = I[0,c](F), where F is the F-test statistic, c is the critical value 

from an F distribution with m and n-K degrees of freedom, and I[0,c](F) =1 when 

F∈[0,c], 0 otherwise. Then, bw,1 is the traditional pretest estimator (e.g., Judge and 

Bock, 1978; Giles and Giles 1993), inadmissible and never preferred, using risk under 

quadratic loss or mean squared error, to either of its component estimators.  Indeed, 

the risk of the pretest estimator can be greater than either of its component estimators, 

an unattractive feature for a strategy adopted to improve knowledge on β. 

 As the aim is to obtain a preferred estimator of β, as opposed to undertaking a test 

about whether γ=0, it makes sense to allow λ to be a continuous function (with 0 ≤ λ 
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≤ 1).  This gives rise to many possible combination estimators, including Magnus and 

Durbin’s (1999) weighted-average least squares (WALS) estimator, the shrinkage 

estimators of Judge and Bock (1978, pp.240-42), which extend the James and Stein 

(1961) estimators, and the James-Stein type estimator of Kim and White (2001).   

 The goal is to optimally mix the component estimators based on a chosen 

criterion; e.g., mean squared error (MSE) or risk under quadratic loss.  First glance 

suggests that this task will depend on the model’s features: β, γ, X, Z and σ2.  Indeed, 

this has led researchers to assume orthonormal regressors or to explore risk of the 

prediction vector (E(y|X,Z)) rather than the coefficient vector.  No longer is this 

needed with Magnus and Durbin’s elegant “Equivalence Theorem”.  This theorem 

shows that determining λ to minimize the MSE of bw,1 reduces to ascertaining λ such 

that the MSE of θλ ˆ  is minimized where )I,(N~g)MZZ(ˆ mm
2

u
2/1

×σθ′=θ  with M 

= In×n – X(X′X)-1X′.  We need only determine λ such that θλ ˆ  is a preferred estimator 

of θ - the mean vector of an m-variate normal distribution; a task that is independent 

of specific regression details.   

 Mixing just br and bu is likely restrictive – all of the regressors in Z are either in or 

out.  Researchers may examine partially restricted models that contain some of Z’s 

columns.  There are 2m models to choose between with m auxiliary regressors; let Mi 

be the model that imposes that none, one, some or all of the elements of γ are zero, bi 

the subsequent LS estimator of β, gi the restricted estimator of γ and iû the associated 

residual vector, i=1,…,2m; i.e., iiii WpyZgXbyû −=−−= .  The combination 

estimator that weights all possible 2m estimators of β is examined by Danilov and 

Magnus (2004): 

   i
2

1i i2,w bb
m

∑ = λ= .       (4) 

with weights that satisfy 0i ≥λ , 1
m2
1i i =λ∑ =  and )û,ˆ( iii θλ≡λ .   Note: bi = bu ( = 

br) when all (none) of Z’s columns are regressors and bw,2 collapses to bw,1 when only 

bu and br are combined.   Danilov and Magnus extend the equivalence theorem to 

cover the weighted estimator defined by expression (4).   
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 These significantly useful findings are shown for estimating β when there exists 

uncertainty about which auxiliary regressors to include in the specification.  In this 

note, we generalize these equivalence theorems to the estimation of φ, so covering 

estimation of γ in addition to β, when the prior beliefs relate to any linear 

combination of the components of φ rather than simply exclusion restrictions.  The 

optimal (in terms of MSE) combination estimator is determined solely by ascertaining 

the optimal estimator of the mean of a normal random variate with unknown variance, 

which has nothing to do with the regression model’s structure nor the specific form of 

the prior linear beliefs.   

 

2. Setup 

Our focus is on estimating the full coefficient vector φ with uncertain beliefs 

Rφ=r.  Allowing for the unrestricted model, the fully restricted model and all possible 

partially restricted models that incorporate some of the J restrictions, there are 2J 

models to consider; let Mi be the i’th model (i=1,…,2J). Let Ai be a J×ai selection 

matrix of rank ai≥0 (i.e., ]0I[A
ii aai ×=′  or a column-permutation thereof) such that 

model Mi corresponds to model (2) subject to rARA ii ′=ϕ′ .  The matrix R is of full 

row rank, which implies that RAi′  also has full row rank.  As before, we denote pi as 

the LS estimator of φ associated with model Mi with residual vector ii Wpyû −= .     

Define  

 S = W′W,  pu = S-1W′y, 

 pr = pu – S-1R′[RS-1R′]-1(Rpu-r), pi = pu – S-1R′Ai[A′iRS-1R′Ai]-1A′i(Rpu-r), 

 θ = [RS-1R′]-1/2(Rφ-r), uWRS]RRS[ˆ 12/11 ′′+θ=θ −−− , 

 Pi = [RS-1R′]1/2Ai[A′iRS-1R′Ai]-1A′i[RS-1R′]1/2, 

 MW = In×n – WS-1W′, Q = S-1R′[RS-1R′]-1/2, 

 uMû W= ,  θ+= ˆWQPûû ii , 

 Ω = S-1 - QQ′,  Ωi = S-1 – QPiQ′ , 

 Bi = IJ×J – Pi,  Hi = WQPi. 
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The OLS estimator of φ is pu=pi with Ai=Pi=0J×J and the RLS estimator, obtained 

from imposing all J restrictions, is pr=pi with Ai=Pi=IJ×J.  Consider the combination 

estimator: 

  pw,1 = λpu + (1-λ)pr,       (5) 

where the weight λ satisfies 0≤λ≤1 with )û,ˆ(θλ≡λ .  We also consider a more 

general weighted estimator: 

   i
2

1i i2,w pp
J

∑ = λ= .       (6) 

where the weights satisfy 0i ≥λ , 1
J2
1i i =λ∑ =  and )û,ˆ( iii θλ≡λ .   The estimators 

pw,1 and pw,2 generalize, respectively, the weighted estimators of Magnus and Durbin 

(1999) and Danilov and Magnus (2004) to all coefficients when there is uncertainty 

about linear combinations of these parameters. 

 

3. Generalized equivalence theorems 

As pr=pu-Q θ̂  and pi=pr+QBi θ̂  we have 
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Using (7) enables us to establish the following theorems. 

 

Theorem 1.  Denote pw,1 = λpu + (1-λ)pr, where λ ≡ λ( û,θ̂ ), u ~ N(0, σ2In×n) and 

)I,(N~ˆ JJ
2

×σθθ .  Then, the MSE of pw,1 is 

  MSE(pw,1) = σ2Ω + Q[MSE( 1
~
θ )]Q′      (8) 

where θλ=θ ˆ~
1 . 

Proof.  As pu = pr + Q θ̂ , pw,1 = pr + Q 1
~
θ  and using that pr is independent of θ̂  and û , 

we have 1r1,w
~Q)p(E)û,ˆ|p(E θ+=θ .  So 
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 )]~(E[Q)p(E 11,w θ−θ+ϕ= .       (9) 

In addition, Ωσ==θ 2
r1,w )pvar()û,ˆ|pvar( , which implies 

  Q)]~[var(Q)pvar( 1
2

1,w ′θ+Ωσ= .     

 (10) 

Combining expressions (9) and (10) completes the proof. 

 

Theorem 2.  Denote ∑
=
λ=

J2

1i
ii2,w pp where λ ≡ λ( iû,θ̂ ), u ~ N(0, σ2In×n) and 

)I,(N~ˆ JJ
2

×σθθ .  Then, the MSE of pw,2 is 

  MSE(pw,2) = σ2Ω + Q[MSE( 2
~
θ )]Q′     

 (11) 

where ∑
=
λ=θ=θ

J2

1i
ii2 BBwithˆB~ . 

Proof.  Let ∑
=
λ=

J2

1i
iiBB .  As pi = pr + QBi θ̂ , pw = pr + QB θ̂  then, since pr is 

independent of θ̂  and iû , the conditional mean is 2ri2,w
~Q)p(E)û,ˆ|p(E θ+=θ  

with θ=θ ˆB~
2 .  The unconditional mean is then  

  )]~(E[Q)p(E 22,w θ−θ+ϕ= .      

 (12) 

In addition, Ωσ==θ 2
ri2,w )pvar()û,ˆ|pvar( , which implies 

  Q)]~[var(Q)pvar( 2
2

2,w ′θ+Ωσ= .     

 (13) 

The result then follows by combining (12) and (13). 

 

 Theorems 1 and 2 show that the MSE properties of the weighted estimators of φ 

crucially depend on the MSE properties of the weighted estimator of θ, the mean 
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vector of a normal random variate.  Underlying θ is the compatibility of the prior 

information with the coefficient vector: Rφ-r.  This implies the irrelevance of the 

specific regression data in determining how best to weigh the various estimators of φ.   

 Special cases of Theorem 1 and 2 are, respectively, Theorem 2 of Magnus and 

Durbin (1999) and Theorem 1 of Danilov and Magnus (2004).   For both, let J=m, 

R(m×K) = [ ]mmkm I0 ××  , r = 0, ]g)gˆb([p uuru ′′′θ−= , ]gb[p rrr ′′= ′, 

]gb[p iii ′′′= , 

br = (X′X)-1X′y, gu = (Z′MZ)-1Z′My, gr = 0,  M = In×n – X(X′X)-1X′, 

u
2/1 g)MZZ(ˆ ′=θ , γ′=θ 2/1)MZZ( , Q′ = [-(Z′MZ)-1/2Z′X(X′X)-1  (Z′MZ)-1/2] = 

]QQ[ 21′ , 










 ′
=Ω

−

00
0)XX( 1

 

and 2/1
i

1
i

1
ii

2/1
i )MZZ(A]A)MZZ(A[A)MZZ(P −−−− ′′′′′= .  Define bw,1 = λbu + (1-

λ)br, gw,1 = λgu + (1-λ)gr, ∑
=
λ=

m2

1i
ii2,w bb and ∑

=
λ=

m2

1i
ii2,w gg . Using our results with 

j=1,2: 

  MSE(bw,j) = σ2(X′X)-1 + 1j1 Q)~(MSEQ ′θ     

 (14) 

&  MSE(gw,j) = 2j2 Q)~(MSEQ θ .      

 (15) 

Expression (14) corresponds to that presented by Magnus and Durbin (1999) for j=1 

(i.e., bw,1) and to that reported by Danilov and Magnus (2004) for j=2 (i.e., bw,2).  

Collapsing the results in this fashion highlights that the same weight function that 

provides an optimal estimator of θ gives an optimal estimator of both γ and β, not just 

β as stressed by Magnus, Durbin and Danilov. 

 

3. Concluding Remarks 

We have considered combining estimators of the coefficient vector of a linear 

regression model in the presence of uncertainty about linear restrictions.  This setup 
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generalizes that of Magnus and Durbin (1999) and Danilov and Magnus (2004), and 

also related work by Magnus (1999, 2002), Danilov (2005) and Zou et al. (2007), all 

of whom limit attention to estimating some of the coefficients when others are not of 

interest.  We generalize their results to our framework: the optimal MSE weighted 

estimator is determined by optimally estimating the mean vector of an uncorrelated, 

homoskedastic distribution.  This finding implies, for instance, that the extensive 

literature on how best to estimate the mean of a normal distribution carries over to the 

linear regression model with uncertain parameter beliefs. 
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