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Abstract 
 
We show that the full asymptotic distribution for Watson’s 2

NU  statistic, modified for discrete data, 
can be computed by standard methods. Previous approximate percentiles for the uniform 
multinomial case are found to be accurate. More extensive percentiles are presented for this 
distribution, and for the distribution associated with “Benford’s Law”. 
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1. INTRODUCTION 

 

Testing for goodness-of-fit when the data are distributed on the circle (or more generally the 

sphere) is an important statistical problem. An excellent discussion is provided, for example, by 

Watson (1973). Among the tests that have been proposed for continuous data are Kuiper’s (1959) 

VN test and Watson’s (1961) 2
NU  test. Detailed significance points are provided by Stephens 

(1964, 1965). Testing for goodness-of-fit on the circle in the case of discrete data has received far 

less attention in the literature. 

 

Suppose that we have a discrete distribution defined by the probabilities n
iiip =}{ , and let 

n
iiir =}{ denote the corresponding sample frequencies, such that Nr

n

i
i =∑

=1
. Freedman (1981) 

proposes the following modified version of Watson’s 2
NU  statistic for discrete distributions: 
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He also shows that the asymptotic distribution of  the statistic in (1) is  a weighted sum of (n - 1) 

independent chi-squared variates, each with one degree of freedom, and with weights which are 

the eigenvalues of the matrix whose (i, j)th element is 
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Freedman expresses the first four moments of the asymptotic distribution as functions of these 

eigenvalues, and uses these moments to approximate percentiles of the asymptotic distribution by 

fitting Pearson curves. The quality of this approximation is confirmed by Monte Carlo methods 

for the case where the population distribution is uniform multinomial. In fact, the complete 

asymptotic distribution can be obtained directly by using standard computational methods, such 

as those suggested by Imhof (1961), Davies (1973, 1980) and others.  
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2. ASYMPTOTIC DISTRIBUTION 

 

An advantage of Davies’ algorithm is its accuracy and the fact that the latter can be controlled by 

the user. In what follows we use Davies’ own double-precision FORTRAN code that has been 

incorporated into the SHAZAM econometrics package (Whistler et al., 2004). The integration 

error bound and maximum number of integration terms for the inversion of the characteristic 

function were set to 10-6 and 1000 respectively. The calculations were undertaken on a PC with 

an Intel Pentium 3.00 GHz processor, running Windows XP Pro. 

 

Figure 1 shows the full asymptotic distribution function of 2
NU  for the uniform multinomial case, 

for selected values of n. Table 1 provides percentiles for a wider range of n, and compares these 

with Freeman’s approximate percentiles as appropriate. The case of n = 12 is of interest when 

testing for seasonal incidence with monthly data. Freedman’s Pearson curves provide more (less) 

accurate upper (lower) percentiles than those obtained from Monte Carlo simulation.  

 

As a second example, consider the discrete distribution usually referred to as “Benford’s Law”. 

Benford (1938) re-discovered Newcomb’s (1881) observation that the first significant digit (d) of 

certain naturally occurring numbers follows the distribution given by 

 

)]/1(1[log].[Pr 10 iidpi +===  ; i = 1, 2, …., 9. 

 

Applications of this distribution occur in the auditing of financial data (e.g., Geyer and 

Williamson, 2004), and in testing for collusion or “shilling” in auctions (e.g., Giles, 2006).  

Figure 2 depicts the distribution function for the discrete version of 2
NU  for Benford’s 

distribution, and Table 2 provides a range of associated percentiles. 

 

3. APPLICATIONS 

 

Canessa (2003) has proposed a general statistical thermodynamic theory that explains, inter alia, 

why Fibonacci sequences should obey Benford’s Law. The distribution of the first digits of the 

first N of the Fibonacci series, {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ……} has been tested 

against Benford’s Law, for various choices of 476,1≤N  (the upper bound being determined by 

the largest Fibonacci number storable in an Excel worksheet). The results, in Table 3, indicate a 
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clear rejection of uniformity (using the percentiles for n = 9 in Table 1) and equally clear support 

for Benford’s Law. 

 

Price data exhibit circularity. Consider two prices such as $99.99 and $100. Their first significant 

digits are as far apart as is possible, yet the associated prices are extremely close. Giles (2006) 

considered all of the 1,161 successful auctions for tickets for professional football games in the 

“event tickets” category on eBay for the period 25 November to 3 December, 2004, excluding 

auctions ending with the “Buy-it-Now” option, and all Dutch auctions. The winning bids should 

satisfy Benford’s Law if they are “naturally occurring” numbers, as would be the case if there 

were no collusion among bidders and no “shilling” by sellers in this market. Table 4 reports the 

results of testing these first digits against the uniform multinomial and Benford hypotheses. 

Uniformity is again strongly rejected. Benford’s Law cannot be rejected for the first 100 winning 

bids, but it is rejected at the 2.5% significance level for N > 100. In contrast, with N = 1,161, 

Giles (2006) marginally fails to reject Benford’s Law when (wrongly) applying Kuiper’s (1959) 

VN  test for continuous data to these integer values. 
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 Table 1. Percentiles of the asymptotic distribution function of 2
NU  for the uniform multinomial 

distribution 

 

n   Lower Percentiles       Upper Percentiles  

 1 2.5 5 10 25  75 90 95 97.5 99 

3 0.0007 0.0019 0.0038 0.0078 0.0213  0.1027 0.1706 0.2219 0.2733 0.3411 

4 0.0029 0.0054 0.0088 0.0146 0.0305  0.1064 0.1649 0.2086 0.2521 0.3094 

5 0.0054 0.0088 0.0129 0.0194 0.0357  0.1070 0.1609 0.2012 0.2414 0.2944 

6 0.0076 0.0115 0.0160 0.0228 0.0389  0.1069 0.1583 0.1969 0.2354 0.2864 

7 0.0095 0.0137 0.0183 0.0251 0.0409  0.1066 0.1567 0.1943 0.2319 0.2815 

8 0.0111 0.0154 0.0200 0.0267 0.0422  0.1064 0.1556 0.1926 0.2295 0.2784 

9 0.0124 0.0167 0.0213 0.0279 0.0431  0.1062 0.1548 0.1914 0.2280 0.2763 

10 0.0134 0.0177 0.0223 0.0288 0.0437  0.1060 0.1542 0.1905 0.2268 0.2748 

15 0.0164 0.0206 0.0249 0.0311 0.0452  0.1056 0.1529 0.1885 0.2241 0.2729 

20 0.0177 0.0217 0.0260 0.0320 0.0457  0.1055 0.1524 0.1878 0.2232 0.2700 

30 0.0188 0.0226 0.0267 0.0326 0.0461  0.1053 0.1520 0.1873 0.2226 0.2691 

 

12 0.0149 0.0192 0.0237 0.0301 0.0446  0.1058 0.1535 0.1894 0.2253 0.2729 

 (0.0195) (0.0218) (0.0248) (0.0299) (0.0435)  (0.106) (0.154) (0.189) (0.225) (0.272)  

 [0.015] [0.019] [0.024] [0.030] [0.045]  [0.107] [0.155] [0.191] [0.224] [0.264] 

 

Note: For n = 12, figures in parentheses are Freedman’s (1981) Pearson curve approximations, and those 

 in square brackets are his Monte Carlo estimates. More extensive results to more decimal  places 

 are available from the author. 

 

Table 2. Percentiles of the asymptotic distribution function of 2
NU  for Benford’s distribution 

 

Lower Percentiles    Upper Percentiles 
1 0.01024     75 0.09651 

2.5 0.01392     90 0.14313 

5 0.01794     95 0.17878 

10 0.02379     97.5 0.21485 

25 0.03744     99 0.26319  
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Table 3. Values of 2
NU  when testing Fibonacci first digits against uniform multinomial and 

Benford’s distributions 

 

 N     2
NU   

    Uniform  Benford 

 50   0.3345   0.0049 

100   0.5678   0.0034 

 250   1.4246   0.0018 

 500   2.7328   0.0007 

 750   3.5323   0.0299 

 1000   4.8953   0.0216 

 1200   6.0650   0.0156 

 1476   7.5542   0.0127 

 

 

 

Table 4. Values of 2
NU  when testing football auction price first digits against uniform 

multinomial and Benford’s distributions 

 

N     2
NU   

    Uniform  Benford 

 50   0.4513   0.0463 

100   0.6938   0.0778 

 250   1.5283   0.2218 

 500   3.6757   0.2713 

 750   4.9501   0.3203 

 1000   6.6153   0.3065 

 1161   7.3380   0.2336 
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Figure 1: Exact Asmptotic Distribution of  Watson's Statistic 
for Uniform Multinomial Population
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Figure 2:  Exact Asymptotic Distribution of Watson's Statistic 
for Population Following Benford's Distribution
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