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1. Introduction 

Several studies have investigated the possibility of psychological barriers or “resistance levels” in 

financial markets. Most of these studies (e.g., Donaldson and Kim, 1993; Ley and Varian, 1994; 

Koedijk and Stork, 1994; and Cyree et al., 1999) assume that the digits of the associated prices 

are uniformly distributed. However, De Ceuster et al. (1997) use Benford’s Law to show that this 

assumption is inappropriate, and their analysis questions previous findings of such barriers.  

 

It is natural to ask whether there are similar resistance levels in other markets, and auction price 

data provides one source of information to address this question. Why won’t certain bidders go 

higher than some price level? What are the thresholds for the bids? We analyze eBay auction data 

for professional football tickets and find no statistical evidence of psychological barriers at a 

variety of levels. 

 

The mechanism behind this research is to extract the significant digits of the auction prices to 

examine whether their distributions follow generalized versions of Benford’s Law, which are 

introduced in section 2. Section 3 describes our data and the use of  ‘M-values’ defined by De 

Ceuster et al. (1997) to capture information about the relative proximity to a psychological barrier. 

Our empirical test results appear in section 4, and some concluding remarks are given in section 5. 

 

2. Benford’s Law 

Benford (1938) re-discovered Newcomb’s (1881) finding that many naturally occurring 

numerical data exhibit special features with regard to the first significant digit. He showed that 

the distribution of first significant digits is non-uniform. Benford’s Law indicates that in numbers 

from many real-life data sources, the first significant digit “1” occurs with a probability of almost 

31%, not 11.1% (1/9). The bigger the digit, the less likely it is to occur as the first significant digit. 

 

Specifically, let D1 denote the first significant digit in a number N . If N = 95,579.43 then D1 = 9; 

if 0498.0=N , then D1 = 4. Benford’s Law states that 

 

)]/1(1[log].[Pr 101 kkD +==   ; k = 1, 2, …., 9. 

What is less well known is that the joint distribution for second and higher significant digits is 
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for }9,...,2,1{∈id  and }9,...,2,1,0{∈jd , 1>j . So, the probability of the first three significant 

digits being 5, 1 and 8 is ]
518
11[log10 + = 0.00084. This distribution is invariant to scale 

(Pinkham, 1961). 

 

Stock prices and tax data (Geyer and Williamson, 2004; Nigrini, 1992; Nigrini and Mittermaier 

1997) obey Benford’s Law, as do winning bids for certain eBay auctions (Giles, 2006). Benford’s 

Law provides a foundation for testing for “resistance levels” in markets. De Ceuster et al. (1997) 

proposed a test for psychological barriers using cyclical permutations of the observed daily stock 

returns and concluded that there was no evidence of psychological barriers in various U.S., U.K. 

and Japanese stock market indices. Aggarwal and Lucey (2006) analysed gold prices in a similar 

way and found evidence that psychological barriers at the 100’s digits (price levels such as $200, 

$300, etc.). 

 

3. Data and M-statistics 

Giles (2006) has shown that the closing prices of successful eBay auctions for pro-football game 

tickets satisfy Benford’s Law, which suggests the absence of market collusion among bidders or 

intervention by sellers. Using his data, our sample comprises all 1,159 successful auctions for 

tickets for professional U.S. football games in the eBay “event tickets” category between 25 

November and 2 December 2004. As Benford’s Law is satisfied, we can use these data to 

construct statistics for testing for the existence of various psychological barriers. 

 

We denote the successful auction prices as Pt, t = 1,…, n, with n = 1,159. We consider potential 

barriers at the levels …, 300, 400, …, etc. (Donaldson, 1990; Donaldson and Kim, 1993; Ley and 

Varian, 1994; De Ceuster et al., 1997) , or: 

100,k ×   k = 1, 2, ….., etc.     (1) 

In order to represent psychological barriers at all levels, we should consider barriers at the 

levels …, 10, 20,…, 100, 200,…,1000, 20000,…, etc., for 

 10 ,ak ×    k  = 1, 2, …, 9; a  = …, -1, 0, 1, …;    (2) 

or at the more comprehensive set of levels …, 10, 11, , …, 100, 110, …, 1000, 1100, …, etc.,  for 

 10ak × , k = 10, 11, …, 99; a =…, -1, 0, 1, ….    (3) 

We then need to define M-values, which are meant to carry the information on the relative 

closeness to a barrier. Corresponding to the above levels defined in equation (1),  



   

  4  

 [ ]mod100a
t tM P= ,        (1a) 

where [Pt] is the integer part of the prices, ‘mod100’ stands for modulo 100, and clearly, the aM  

values are made up of the pair of trailing digits preceding the decimal point. For barriers at the 

levels defined by equation (2) and (3), the M-values are 

 

 
(log )mod1[100 10 ]mod100tpb

tM = ×       (2a) 

 (log )mod1[1000 10 ]mod100tPc
tM = ×       (3a) 

 
aM selects the pair of digits in Pt preceding the decimal point; bM  selects the second and third 

significant digits; and cM  picks the third and fourth significant digits.  Many researchers 

wrongly assume that the M-values are uniformly distributed in the absence of psychological 

barrier, at least in large samples.  De Ceuster et al. (1997) derived of the limit distributions of the 

M-values, which we have applied in part of the following analysis:  
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The limit probabilities in equations (4), (5) and (6) give us the relative frequencies over the 

sample t = 1, …, n,  of the M-values when there are no psychological barriers in the market, and 

the sample size n tends to infinity. The frequencies for the M-values in our data are expected to be 

non-uniform for b
tM and c

tM , and uniform for a
tM . Although the uniformity of a

tM  seems to 

rationalize the standard assumption of uniformity testing for the presence of psychological 

barriers, a
tM can only capture psychological barriers at the levels …, 200, 300,…, 3400, 

3500, …., etc., and the series at those levels is not multiplicatively regenerative (De Ceuster et al., 

1997). Therefore, results that are obtained from investigating only the a
tM  values could lead to 

the wrong conclusion, and it is crucial that the b
tM and c

tM values are also considered. 
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4.  Test results   

First, we test whether our data exhibit properties consistent with the limit distributions in 

equations (4) – (6). The null hypothesis is that there are no psychological barriers in prices for 

pro-football tickets in the eBay auction market. The Kolmogorov-Smirnov (K-S) test and other 

non-parametric tests such as “integrated deviations” tests of the Cramér-von Mises type are not 

appropriate here because of the “circular” nature of our data (Giles, 2006). Kuiper’s test is  

similar to the familiar K-S test, which uses the difference statistics +
nD  and −

nD . Kuiper's test  

combines +
nD  and −

nD  into one statistic, making the test as sensitive in the tails as at the median, 

and making it invariant under cyclical data transformations. If the empirical distribution function 

for the sample is )(xFn , and the null population distribution function is 0 ( )F x , Kuiper’s test 

statistic is: 

   −+ += nnn DDV , 

where 

))()((.sup 0 xFxFD n
x

n −=
∞<<∞−

+  

   ))()((.sup 0 xFxFD n
x

n −=
∞<<∞−

−   . 

Another important feature of Kuiper’s test is that the null distribution of the test statistic is 

invariant to the hypothesized distribution, for all n. Stephens (1970) tabulates critical values for 

the null distribution of the transformed statistic   

 

)24.0155.0( 2/12/1* −++= nnVV nn . 

  

The 10%, 5% and 1% critical values are 1.620, 1.747 and 2.001 respectively, for all n. Our *
nV  

values for aM , bM  and cM  are 0.947, 1.663 and 4.022 respectively. So, our values for aM and 
bM  are consistent with the hypothesis of no psychological barriers, at the 5% level, but our value 

for cM implies a rejection of this hypothesis against the most general of the alternative 

hypotheses considered. 

 

Our goodness-of-fit tests are designed to examine whether the empirical data have characteristics 

consistent with the limit distributions for the M-values discussed above.  De Ceuster et al. (1997) 
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show that extremely large sample sizes are needed for these limit distributions to be applicable, 

and the finite-sample distributions are data-dependent.   

 

We follow De Ceuster et al. (1998) and also test for psychological barriers using cyclical 

permutations of the data. Psychological barriers generate an abnormally low number of M-values 

in the “00” region. Let Ψ be a set of M-values in the neighbourhood of a psychological barrier, 

such as Ψ = {00}, Ψ = {99, 00, 01}, etc. For some Ψ, the auction price Pt is in a neighbourhood of 

a psychological barrier if Mt ∈Ψ. Let IΨ (Mt) = 1 in this case, zero otherwise, and define 

∑
=

Ψ=
n

t
tMI

1
)(ψ . For any M and Ψ, a sufficiently small ψ signals a psychological barrier. The 

distribution of ψ is data-specific, but p-values for the hypothesis of no psychological barrier can 

be bootstrapped as the proportion of bootstrapped ψ values less than the empirical ψ. Our 

experimental results, for 10,000 repetitions, appear in Table 1. The null hypothesis of no 

psychological barriers in the auction prices for football tickets cannot be rejected. 

 

5. Conclusions 

Using some generalizations of Benford’s Law we find that psychological barriers are 

absent in eBay auctions for pro-football tickets. This is consistent with De Ceuster et al.’s 

(1997) finding various stock indices, but contrasts with Aggarwal and Lucey ‘s (2006) 

results for gold prices. Our results have implications for users of eBay’s “proxy bidding” service. 

For example, offering a maximum bid of $100.01 in anticipation that opponents have a 

psychological barrier at or just under $100 may not be a viable strategy. It would be interesting to 

extend this analysis to other eBay categories. 
 

 



   

  7  

Table 1: Bootstrap Results 

 

        Ψ        ψ-Statistic         Bootstrap   p-Value 
           Mean  (%) 

     
 
Ma  {00}   51  51.01  48.07 
  {99,….,01}  71  71.03  48.20 
  {98,….,02}  124  124.12  47.94 
  {97,….,03}  133  133.12  48.11 
  {95,….,05}  190  190.18  48.42 
  {90,….,10}  301  301.16  48.02 
 
Mb  {00}   96  95.97  48.81 
  {99,….,01}  121  121.03  49.13  
  {98,….,02}  174  174.12  48.53 
  {97,….,03}  183  183.14  48.76 
  {95,…..05}  247  247.25  47.86 
  {90,….,10}  409  409.09  48.96 
 
Mc  {00}   445  444.84  49.04 
  {99,….,01}  492  491.88  49.53  
  {98,….,02}  497  496.85  49.43 
  {97,….,03}  498  497.85  49.37 
  {95,….,05}  514  513.81  49.42 
  {90,….,10}  558  557.85  49.75 
 

Note: {97, ……, 03} implies {97, 98, 99, 00, 01, 02, 03}, etc.  
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