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Abstract 
 

A “spurious regression” is one in which the time-series variables are non-stationary and independent. It 

is well-known that in this context the OLS parameter estimates and the R2 converge to functionals of 

Brownian motions; the “t-ratios” diverge in distribution; and the Durbin-Watson statistic converges in 

probability to zero. We derive corresponding results for some common tests for the Normality and 

homoskedasticity of the errors in a spurious regression. 
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1.  INTRODUCTION 
 
Testing and allowing for non-stationary time-series data has been one of the major themes in 

econometrics over the past quarter-century or so. In their influential and relatively early 

contribution, Granger and Newbold (1974) drew our attention to some of the likely consequences of 

estimating a “spurious regression” model. They argued that the “levels” of many economic time-

series are integrated or nearly so, and that if such data are used in a regression model a high R2- 

value is likely to be found even when the series are independent of each other. They also illustrated 

that the regression residuals are likely to be autocorrelated, as evidenced by a very low value for the 

Durbin-Watson (DW) statistic. Students of econometrics soon, rather simplistically, equated a 

“spurious regression” with one in which R2 > DW. Granger and Newbold (1977) and Plosser and 

Schwert (1978) added to our awareness and understanding of spurious regressions, but it was 

Phillips (1986) who provided a formal analytical explanation for the behaviour of the Ordinary Least 

Squares (OLS) coefficient estimator, the associated t-statistics and F-statistic, and  the R2 and DW 

statistics in such models. 

 

Phillips (1986) developed a sophisticated asymptotic theory that he used to prove that in a spurious 

regression, inter alia, the DW statistic converges in probability to zero, the OLS parameter 

estimators and R2 converge weakly to non-standard limiting distributions, and the t-ratios and F-

statistic diverge in distribution as ∞↑T . Phillips “solved” the spurious regression problem, and 

proved that the unfortunate consequences of modelling with integrated data cannot be eliminated by 

increasing the sample size. This paper uses Phillips’ asymptotic theory to demonstrate that the 

pitfalls of estimating a spurious regression extend to the application of standard diagnostic tests for 

the normality or homoskedasticity of the model’s error term. We prove that the associated test 

statistics diverge in distribution as the sample size grows, so that one is led inevitably to the false 

conclusion that there is a “problem” with the usual assumptions about the error term. In fact, the real 

“problem” is a failure to take account of the non-stationarity of the data when specifying the model. 

The positive aspect of these results is that they provide us with an extended basis for detecting that 

we are unwittingly trying to estimate a spurious regression model. 
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The next section establishes some of the basic asymptotic results that we use in the later analysis. 

Section 3 establishes and illustrates the asymptotic behaviour of a well-known omnibus test for 

normality proposed by Bowman and Shenton (1975), and justified as a Lagrange multiplier test by 

Jarque and Bera (1987). Two simple variants of the homoskedasticity tests proposed by Breusch and 

Pagan (1980) and Godfrey (1988) are examined in a similar way in section 4; and some concluding 

remarks are given in section 5. 

 
2.  SOME BASIC ASYMPTOTIC RESULTS  
 

For our purposes, it is sufficient to consider the simple univariate regression model, estimated by 

Ordinary Least Squares (OLS): 

 ttt uxy ++= βα .      (1) 

The regression is “spurious” because both the dependent variable and the regressor follow 

independent I(1) processes:  

 ),0(~; 2
1 vtttt iidvvyy σ+= −     (2) 

 ),0(~; 2
1 wtttt iidwwxx σ+= −     (3) 

with vt and wt independent for all t, and (without loss of generality) 000 == wv . In fact [Phillips 

(1986, p.313)] vt and wt may have heteroskedastic variances, a point that is relevant in section 4 

below. So, the true parameter values are 0== βα . 

 

From Phillips (1986, pp.315 and 326) we know that, by the strong law of McLeish (1975, Theorem 

2.10) for weakly dependent sequences, and the Functional Central Limit Theorem [e.g., Hamilton 

(1994, pp. 479-480)]: 

∫∑ =⇒−
1

0
1

2/3 )( ξσσ w
t

wt drrWxT ,    say    (4) 

and 

∫∑ =⇒−
1

0
1

2/3 )( ησσ v
t

vt drrVyT ,    say    (5) 

where ⇒  denotes weak convergence of the associated probability measures as ∞↑T , and W(r) and 
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V(r) are independent Wiener processes on C[0,1], the space of all real-valued functions on [0,1]. 

Using the same approach as Phillips it is also readily shown that 

  ∫∑ =⇒+−
1

0

2/)2( ))(( k
k
w

k

t

k
w

k
t

k drrWxT ξσσ ,    say;     k = 1, 2, 3, 4, ........ (6) 

and 

  ∫∑ =⇒+−
1

0

2/)2( ))(( k
k
v

k

t

k
v

k
t

k drrVyT ησσ ,    say ;     k = 1, 2, 3, 4, ........ (7) 

From Phillips (1986, p.315) we also know that 

 
2

12
222 )()( ξξσ −⇒−∑−

t
wt xxT       (8) 

2
12

222 )()( ηησ −⇒−∑−

t
vt yyT       (9) 

and 

  11
2 Ψ⇒∑−

t
vwtt yxT σσ ,       (10) 

where 

  ∫ ==Ψ
1

0

))(())(( k
k
v

ji
ij drrVrW ησ ;     i, j = 1, 2, 3, 4, ......    (11) 

 

3.  ASYMPTOTIC BEHAVIOUR OF AN OMNIBUS TEST FOR NORMALITY 

 

Omnibus tests for departures from normality, based on the standardized third and fourth sample 

moments, have a long tradition dating back at least to Geary (1947a, 1947b). Classic contributions 

include those of  D’Agostino and Pearson (1973) and Bowman and Shenton (1975). Jarque and Bera 

(1980) proposed a Lagrange multiplier test for normality of the errors in a regression model, and 

subsequently [Jarque and Bera (1987)] proved that their test is identical to the omnibus test of 

Bowman and Shenton (1975).  In the context of regression residuals, the omnibus test statistic is 

 

]4/)3()[6/( 2
43 −+= mmTOM      (12) 
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where 
2331

3 ]/)([ ∑ −= −

t
t suuTm )       (13) 

∑ −= −

t
t suuTm 441

4 /)ˆ(       (14) 

and 

∑ −= −

t
t uuTs 212 )() .       (15) 

If the model includes an intercept, then of course 0=u , and for a regression model with stationary 

data, the limiting null distribution of OM is 2
2χ . However, in the case of a spurious regression the 

situation is fundamentally different. 

 

Theorem 1 

When applied to the spurious regression model (1), )( 1OMT − converges weakly as, ∞↑T  and so OM 

itself diverges at the rate “T”. 

 

Proof 

From Phillips (1986, pp. 330-331): 

 θσσξξηξσσβ )/()]/())[(/( 2
121111 wvwv =−−Ψ⇒

)
,   say  (16) 

and 

)]([ 2
12

22
12

222 ξξθηησ −−−⇒−
vsT .     (17) 

So, by the Continuous Mapping Theorem [e.g., Billingsley (1968, pp. 30-31)], 
kk

wv
k θσσβ )/(⇒
)

;      k = 1, 2, 3, .......    (18) 

and  
kk

v
kk sT )]([ 2

12
22

12
22 ξξθηησ −−−⇒− ;       k = 1, 2, 3, ...... (19) 

First, consider m3 in (13). Defining )(* yyy tt −= and )(* xxx tt −= , note that 

∑ ∑ ∑ ∑∑ =+−=
t t t t

t
t

tttttt xxyxyyu 3*32**2*2*3*3 33 βββ
)))) .  (20) 

 



 
 6

So, applying the Continuous Mapping Theorem to (20), and using results (18) and (A.1) - (A.4) from 

the Appendix, we see that the quantity ∑−

t
tuT 32/5 ) converges weakly as ∞↑T . Finally, using this 

result and (19) (with k = 3), and applying the Continuous Mapping Theorem to the terms in (13), we 

see that m3 converges weakly with increasing “T”. 

 

Second, consider m4 in (14), and note that  

   ∑ ∑ ∑ ∑ ∑−=+=
t t t t t

tttttttt xyxyxyyu 4**3*3*2*2*24*4 426 βββ
)))) . (21) 

 

Again, applying the Continuous Mapping Theorem to (21), and using results (18) and (A.5) - (A.9) 

from the Appendix, the quantity ∑−

t
tuT 43 ) converges weakly as ∞↑T . Finally, using this result and 

(19) (with k  =  4), and applying the Continuous Mapping Theorem to the terms in (13), we see that 

m4 converges weakly with increasing “T”. Finally, it follows immediately from (12) that T-1OM 

converges weakly, so OM diverges at the rate “T” as ∞↑T . ▄ 

 

The implication of this result is analogous to that associated with Phillips’ (1986, pp. 333-334) result 

that (T ×DW) converges weakly in the case of a spurious regression, and hence DW itself has a zero 

probability limit as ∞↑T . That is, testing for serial independence or for normality in the errors of a 

spurious regression will always lead to a rejection of the associated null hypotheses, for large enough 

T, whether these hypotheses are false or true. If a spurious regression is inadvertently estimated, these 

results may provide an ex post signal to this effect. It should also be noted that the result in Theorem 

1 is independent of the initial values and distributions of vt and wt in (2) and (3). In particular, these 

random errors need not be normally distributed. Table 1 presents some Monte Carlo evidence to 

illustrate this point, and the results there also demonstrate the rate of divergence of the OM statistic 

as ∞↑T . The Monte Carlo experiment involved 5,000 replications with the values of vt and wt 

generated as standard normal, uniform (0,1), the inverse of standard normal, and log-normal 

independent random variables. The simulations were conducted using the SHAZAM (2001) 

econometrics package.  
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4.  ASYMPTOTIC BEHAVIOUR OF THE BREUSCH-PAGAN-GODFREY TEST 

      FOR HOMOSKEDASTICITY 

 

As is well known, many of the familiar tests for the homoskedasticity of regression errors can be 

formulated as Lagrange multiplier (LM) tests. For example, see Breusch and Pagan (1980) and 

Godfrey (1988). One simple example of the Breusch-Pagan-Godfrey (BPG) test involves an 

alternative hypothesis in which the regression error’s variance is proportional to a linear combination 

of the regressors. For the simple regression model, the implementation of the test involves obtaining 

the OLS residuals, tu) , from (1), and then fitting the following auxiliary regression: 

ttt bxau ε++=2) .       (22) 

Let a)  and b
)

 be the OLS estimators of a and b, and as before let ∑−=
t

tuTs 212 ) . Then the coefficient 

of determination associated with the estimation of (31) can be expressed as: 

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
= ∑∑

t
t

t
t suxbR 222*22 )(/ ))

     (23) 

and an LM test of the homoskedasticity of the errors in (1) can be constructed using (TR2  ). For this 

model, if the variables in (1) were stationary then the test statistic would converge in distribution 

to 2
1χ if the null hypothesis were true. As is discussed by Godfrey (1988, Chap. 4) and Greene (2000, 

pp.509-510), an asymptotically equivalent LM test can be based on the statistic (SSR / 2), where 

“SSR” denotes the “regression” (“explained”) sum of the squares from OLS estimation of the model 

 

ttt xbasu ε++= '')/( 22)  .     (24) 

 

In the case of a spurious regression, these two test statistics no longer converge in distribution 

to 2
1χ under the null of homoskedasticity. As was the case for the OM test for normality of the errors, 

the statistics for both the (TR2 ) and (SSR / 2) variants of the LM test diverge in distribution as ∞↑T , 

as we now show. 
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Theorem 2 

When applied to the spurious regression model (1), R2 defined in (24) converges weakly as ∞↑T  , 

and so TR2 diverges at the rate “T”. 

 

Proof 

We can write (24) as 

⎥
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so,  
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Now, note that 

∑ ∑ ∑−−−−− −+=−
t t t

ttt uTsTsTuTsuT )(2)( 222142432223 )))   (28) 

 

and so using (17) - (19), (21) and results (A.5) - (A.9) from the Appendix, the expression in (28) 

converges weakly as ∞↑T , by the Continuous Mapping Theorem. 

 

Further, we can write 

⎥
⎦

⎤
⎢
⎣

⎡
−+= ∑ ∑ ∑∑ −−

t t t
ttttt

t
tt yxbxbyxTuxT *2*3*22**2/52*2/5 2

)))  , (29) 

and by using (18), (A.1), (A.3) and (A.4), the expression in (27) also converges weakly as ∞↑T . 

Finally, using (8), (28) and (29), the Continuous Mapping Theorem ensures the weak convergence of 
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R2 in (27). Accordingly, (TR2) diverges at the rate “T” as ∞↑T  .    ▄ 

 

Theorem 3 

When applied to the spurious regression model (1), the statistic (T -1SSR) converges weakly as 

∞↑T , and so the LM test statistic (SSR / 2) diverges at the rate “T”. 

 

Proof 

We can write 

∑=
t

txbSSR 2*2' )(
)

,      (30) 

where 'b
)

is the OLS estimator of 'b  in (24). Noting that the sample mean of the dependent variable in 

(24) is unity, we have 

⎥
⎦

⎤
⎢
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⎡
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and 

 
2
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t
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So, using results (8), (17) and (29), it follows by the Continuous Mapping Theorem that (SSR / 2)  

itself diverges at the rate “T” as ∞↑T .      ▄  

       

 

From Theorems 2 and 3, we see that however it is formulated, the BPG test will increasingly 

“discover” hetereoskedasticity if we unwittingly apply it in the context of a spurious regression. 

Recall from section 2 that vt and wt need not be homoskedastic for our various asymptotic results to 

hold. So, regardless of whether the null hypothesis under test here is true or false, it will be rejected 

with increasing probability as the sample size grows. This is illustrated in Tables 2 and 3 for the case 
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where the null hypothesis is true, and a nominal 10% significance level (based on the asymptotic 
2
1χ distribution that would apply for stationary data) is used. The experimental design is the same as 

in section 3 above. The rates of divergence of the two test statistics, and the commensurate size 

distortions for the LM tests, can be seen in these tables for various distributions for the errors. Except 

for the (SSR / 2) version of the test, with T = 10 and either normal or uniform errors, there is positive 

size distortion. As the sample size grows, applying the BPG test in the context of a spurious 

regression leads one to increasingly come to the wrong conclusion that the errors are heteroskedastic. 

Although this point has been illustrated here with a very simple alternative hypothesis (namely that 

the variance of the regression errors is proportional to the sole regressor), it is clear that the same 

basic result also applies to more general variants of the BPG test in which the error variance is 

proportional to some linear combination of variables under the alternative hypothesis. These results 

also apply to either the (SSR / 2) or (TR2) versions of White’s (1980) test for homoskedasticity against 

an arbitrary heteroskedastic alternative, and to other similar tests. 

 

5.  CONCLUSIONS 

 

Many of the basic pitfalls associated with the use of non-stationary data in regression analysis have 

been well documented. In particular, Phillips (1986) exposed the underlying reasons for several 

observed empirical features of “spurious regressions”. Among other things, he showed that the 

standard t-test and F-test statistics diverge as ∞↑T , and the Durbin-Watson statistic converges to 

zero in probability. Thus, each of the associated null hypotheses will be rejected with increasing 

probability as the sample size grows, even though in fact they are actually true. This paper follows 

this theme and extends these results by considering what will be encountered by an applied researcher 

who (wisely) undertakes some other common types of regression diagnostic testing, but (unwittingly) 

does so in the context of a spurious regression model. 

 

Clearly, we should test the data for stationarity (and possible cointegration) before estimating a time-

series regression. However, the low power of unit root tests, and their sensitivity to structural breaks 

in the data, are well known. Accordingly, in practice there is a real risk that a spurious relationship 
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involving non-stationary data will be fitted. A high value for the coefficient of determination, in 

conjunction with a small value for the Durbin-Watson statistic provides a signal that this has 

occurred. We have shown that additional such signals emerge when, at the same time, standard tests 

for the normality and homoskedasticity of the model’s error term also lead to clear rejections of these 

hypotheses. 

 

As the sample size grows, these diagnostic tests will increasingly reject the null hypotheses, as a 

matter of course. To then conclude that the model needs to be reformulated in order to deal with 

discovered “problems” associated with the error term would be as spurious as the estimation of the 

original model itself. Although our formal proofs are set in the context of a simple regression model, 

it is clear from Phillips (1986, pp.319-322) that they extend directly to the multiple regression model. 
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Table 1 

Mean Values and Rejection Rates for the OM Test Statistic 

(Monte Carlo Simulation, Data Generating Process Given by Equations (1) – (3), 

5000 Repetitions, Nominal 10% Significance Level)1 

 
 
 

N(0,1)   U(0,1)            [1/N(0,1)]  exp[N(0,1)] 

 

T       RR           Mean        RR         Mean    RR         Mean           RR           Mean 

      (%)          (%)       (%)             (%)  
 

 

10     1.34          0.91      0.54        0.78  10.02     2.03        4.24 1.28 

20     3.36          1.45      1.34        1.08  23.06         8.22      11.26 2.90 

50    13.84          2.97      8.06        2.30  55.64            49.38      26.94 7.09  

100    45.78          5.95    35.10        4.48  81.08          158.42      55.28          11.37 

250    79.68        14.29    67.84        8.77  93.54        1036.56      77.72          20.90 

500    91.14        29.57    89.36      22.25  97.20        6594.69      91.28          31.61 

1000    95.90        57.94    95.34      45.02  98.74      19997.91      95.86          53.83 

2000    98.08      121.83    97.96      90.52  99.24      92016.16      97.74        100.63 

5000     99.30      290.83    99.18    231.64  99.76      39813.92      99.04        233.01 

10000    99.50      600.22    99.50    451.83  99.82      60762.71      99.64        479.90 

 
 
 

1.  The 10% critical value for the Chi Square distribution with 2 degrees of freedom is 4.60517. ‘RR’ 

denotes the ‘rejection rate’ - i.e., the percentage of the 5,000 simulated values for JB that exceeded this 

critical value. 
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Table 2 

Mean Values and Rejection Rates for BPG Test Statistic: TR2 Version 

(Monte Carlo Simulation, Data Generating Process Given by Equations (1) – (3), 

5000 Repetitions, Nominal 10% Significance Level)1 

 
 
 

N(0,1)   U(0,1)            [1/N(0,1)]  exp[N(0,1)] 

 

T       RR           Mean        RR         Mean    RR         Mean           RR           Mean 

      (%)          (%)        (%)             (%)  
 

 

10     12.68         1.14    14.30        1.20  25.32     1.86       25.36 1.74 

20     19.54         1.55    21.58        1.59  39.58               3.17       35.54 2.60 

50    38.88          3.24    42.86        3.56  58.76             7.52       52.28 5.30 

100    53.14          6.26    57.94        7.00  70.80            14.98      63.82            9.49 

250    69.82        15.44    72.94      17.57  80.80            70.70      74.96          20.76 

500    78.00        31.54    79.94      34.37  87.54            75.01      81.06          38.27 

1000    84.84        64.62    85.34      70.01  90.80          149.41      86.84          75.54 

2000    88.54      123.67    90.14    140.97  93.22          298.48      91.08        147.95 

5000     93.34      304.76    93.06    339.70  95.80          736.72      93.50        358.96 

10000    94.78      614.62    95.86    698.52  97.44        1575.00      94.94        675.14  

  
 
 

1.  The 10% critical value for the Chi Square distribution with 1degree of freedom is 2.70554. ‘RR’ 

denotes the ‘rejection rate’ - i.e., the percentage of the 5,000 simulated values for BPG that exceeded 

this critical value. 
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Table 3 

Mean Values and Rejection Rates for BPG Test Statistic: SSR Version 

(Monte Carlo Simulation, Data Generating Process Given by Equations (1) – (3), 

5000 Repetitions, Nominal 10% Significance Level)1 

 
 
 

N(0,1)   U(0,1)            [1/N(0,1)]  exp[N(0,1)] 

 

T       RR           Mean        RR         Mean    RR         Mean           RR           Mean 

      (%)          (%)       (%)             (%)  
 

 

10      4.88          0.73      6.14        0.79  15.50     1.40      15.08 1.27 

20    12.16          1.13    14.40        1.22  34.00                2.91      27.84 2.23 

50    30.32          2.38    34.88        2.87  56.28              7.53      45.56 4.74  

100    45.74          4.73    50.34        5.71  68.24            14.61      57.68            8.35 

250    64.92        11.74    67.60      14.38  79.78            39.61      70.60          17.96 

500    74.72        23.84    75.94      28.30  86.68            78.11      77.34          32.34 

1000    82.76        48.17    82.90      56.61  90.84          153.11      84.42          63.12 

2000    86.46        94.37    88.16    114.92  92.80          303.22      89.56        122.28 

5000     92.12      228.55    91.56    284.06  95.36          774.02      92.50        296.50 

10000    93.98      460.56    94.78    570.44  97.10        1605.40      94.02        556.36 

 
 
 

1.  The 10% critical value for the Chi Square distribution with 1 degree of freedom is 2.70554. ‘RR’ 

denotes the ‘rejection rate’ - i.e., the percentage of the 5,000 simulated values for BPG that exceeded 

this critical value. 
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APPENDIX 

 
RESULTS USED FOR THE PROOF OF THEOREM 1 
 

∑ ∑ −+−= −−

t
t

t
ttt xxxxxxTxT )33( 32232/53*2/5               

∑ ∑ ∑∑ ∑∑ −−−−−−− −+−=
t t t

t
t t

tt
t

ttt xTTxTxTxxTTxT 312/32/521212/532/5 )()()(3))((3)(  

                   

∑ ∑ ∑∑ ∑∑ −−−−−− −+−=
t t t

t
t t

tt
t

ttt xTxTxTxTxTxT 32/32/322/3222/332/5 )()()(3))((3)(              

Then, repeatedly applying result (6) in section 2 (with k = 1, 2, 3), and appealing to the Continuous 

Mapping Theorem, we obtain: 

 
∑ +−⇒− ]23[ 3

1213
33*2/5 ξξξξσ wtxT .                (A.1) 

 
Similarly, the repeated application of result (7) in section 2 yields: 

∑ +−⇒− ]23[ 3
1213

33*2/5 ηηηησ vtyT .           (A.2) 

Also,  

∑ ∑ ∑ ∑ ∑ ∑∑ ⎟
⎠

⎞
⎜
⎝

⎛
−+−+−= −−

t t t t t t
t

t
tttttttt yxyyxyxxyyxyyxTxyT 22222/5*2*2/5 22  

                       ∑ ∑ ∑ ∑ ∑−−−−− −−=
t t t t t

ttttttt yTxTyxTyTyxT ))(())((2)( 222/322/322/5  

                                       ∑ ∑−−+
t t

tt yTxT 22/32/3 ))((2  

Then, by the Continuous Mapping Theorem, using definition (11) and results (4), (5), (10) in section 

2, and generalizing the last of these three results in a natural manner, we get: 

∑ +−Ψ−Ψ⇒−

t
wvtt xyT )]2(2)[( 2

12111112
2*2*2/5 ηηξησσ .         (A.3) 

Interchanging the *
ty  and *

tx  variables in the derivation of (A.3) above, we get: 

∑ +−Ψ−Ψ⇒−

t
vwtt yxT )]2(2)[( 2

12111121
2*2*2/5 ξξηξσσ .        (A.4) 
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Next, 

      ∑ ∑ ∑ ∑ ∑∑ ⎟
⎠

⎞
⎜
⎝

⎛
+−+−= −−

t t t t tt
ttttt yyyyyyyyTyT 43223434*3 464  

∑ ∑ ∑ ∑ ∑−−−−− +−=
t t t t t

ttttt yTyTyTyTyT )()(6))((4)( 2222/532/52/343  

                            ∑ ∑−− +−
t t

tt yTyT 42/342/3 )()(4 . 

Then, using the Continuous Mapping Theorem, result (7) from section 2 repeatedly, and gathering 

terms, we get: 

 

∑ −+−⇒−

t
vtyT ]364[ 4

12
2
1314

44*3 ηηηηηησ .          (A.5) 

 

Interchanging the *
ty  and *

tx  variables in the derivation of (A.5) above, we get: 

 

∑ −+−⇒−

t
wtxT ]364[ 4

12
2

1314
44*3 ξξξξξξσ .           (A.6) 

 

Next, 

∑ ∑ −+−+−= −−

t
tttttttttt

t
tt yxyyxyxxyyyxyxxxyTxyT 2222222/32*2*3 2422(  

)2 22222 yxxyxxy tt +−+  

∑ ∑ ∑ ∑ ∑−−−−− +−=
t t t t t

ttttttt yTxTyxTxTyxT )()())((2)( 2222/322/52/3223  

∑ ∑ ∑ ∑ ∑−−−−− +−
t t t t t

tttttt yxTyTxTxyTyT ))()((4))((2 22/32/322/52/3  

   ∑ ∑ ∑∑ −−−− +−
t t t

t
t

ttt xTyTxTyT )()()()(2 2222/322/322/3  

∑ ∑ ∑ ∑−−−− +−
t t t t

tttt yTxTyTxT 22/322/322/322/3 )()()()(2 . 

By the Continuous Mapping Theorem, using definition (11) and results (6), (7) and (10) in section 2, 

and generalizing the last of these three results in a natural manner, we get: 
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∑ −Ψ+Ψ−++Ψ−Ψ⇒−

t
wvtt xyT ]3422)[( 2

1
2
111112112

2
12

2
112122

222*2*3 ξηηξηξηηξξσσ .      (A.7) 

Similarly, 

    ∑ ∑ ∑ ∑ ∑ ∑∑ +−++−= −=

t t t t t t
tttttttttt

t
tt yxyyxyyyxyxyxyyxTxyT 2223233*3*3 22(  

∑ ∑ ∑∑∑ +−+−++
t t t

t
t

tttt
t

tt yxTyxyyxyyyxyyxyxy 322222 222  

                ∑ ∑ ∑ ∑ ∑−−−−− −−=
t t t t t

ttttttt yTxTyxTyTyxT ))(())((3)( 32/52/322/52/333  

            ∑ ∑ ∑∑∑ −−−−− ++
t t t

tt
t

tt
t

tt yxTyTyTyTxT )()(3))()((3 222/3222/32/3  

∑∑ −−−
t

t
t

t yTxT 32/31/3 ))((3 . 

Again, by the Continuous Mapping Theorem, using definition (11) and results (7) and (10) in section 

2, and generalizing the last of these three results in a natural manner, we get: 

 

                     ∑ +−Ψ+−Ψ−Ψ⇒−

t
wvtt xyT ]3333)[( 211

3
1111

2
13112113

3*3*3 ηηξηξηηξησσ .           (A.8) 

 

Finally, interchanging the *
ty  and *

tx  variables in the derivation of (A.8) above, and using result (6), 

we get: 

 

                   ∑ +−Ψ+−Ψ−Ψ⇒−

t
wvtt yxT ]3333)[( 211

3
1111

2
13121131

3*3*3 ξξηξηξξηξσσ .      (A.9)
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