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Abstract 

 

Using small-disturbance expansions, we derive analytic expressions for the bias of the OLS 

estimator of an elasticity in a linear model, both at an individual sample point and at the sample 

mean. The magnitudes of these biases are illustrated with Australian expenditure data. 
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1. Introduction 

The linear regression model is frequently used to estimate elasticities between variables of 

interest. When the model is linear in the variables and parameters, the elasticities and their 

estimators are nonlinear functions of the random data. Accordingly, these estimators are biased in 

finite samples – a point that is invariably ignored in practice. This paper explores the magnitude 

of this bias. Specifically, suppose that the model is 

 

    uXy σβ +=               (1) 

 

where X  is )( kn× , non-random and of full rank, and ],0[~ nINu . At observation ‘i’ the OLS 

estimator of the elasticity of y with respect to the j’th. regressor is 

    
i

ij
jij y

x
βη ˆˆ =  ;             (2) 

or if we estimate the elasticity at the sample mean, 

    
y
x j

jj βη ˆˆ =  ,             (3) 

where jβ̂ , the OLS estimator of jβ  (j = 1, 2, …., k), is itself a function of the y data. Under mild 

conditions, these estimators are consistent. Of greater interest is their behaviour in finite samples. 

The exact biases of the estimators are complicated by the fact that (2) and (3) are non-linear 

functions of the ‘y’ data. 

.  

The plan of the rest of the paper is as follows. In the next section we discuss small-sigma 

approximations and present the principal results that we use in our derivations. Section 3 presents 

the main theoretical results, and interprets their implications. An empirical example that 

illustrates these implications is provided in section 4, and section 5 concludes. 

 

2. Small-Disturbance Approximations 

The biases of the elasticity estimators can be approximated in various ways. One option is to use 

an approximation based on an analytic expansion whose accuracy improves as ‘n’, the sample 

size, grows. Such approximations, proposed by Nagar (1959) in the econometric context, involve 

an expansion of the sampling error such that the successive terms are in decreasing order of ‘n’, 

in probability. When used to determine the moments of an estimator, this approach yields the 

moments of the Edgeworth expansion of that estimator’s distribution (Ullah, 2004, p.29). 
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An alternative (e.g., Kadane, 1971) is to approximate the finite-sample moments of the estimator 

via an expansion of the sampling error such that successive terms are in decreasing order of the 

population standard deviation, σ, in probability. These ‘small-disturbance’, or ‘small-σ’, 

approximations have been found to be extremely valuable for a number of problems in 

econometrics. They are valid for any sample size, and they do not require any additional 

assumptions about the behaviour of the sample moments of the data as n increases.1 A good 

recent discussion of ‘small-disturbance’ expansions is given by Ullah (2004, 36-45). 

  

Consider the data-generating process: 

 

ii uy σμ +=  ; i = 1, 2, …., n            (4) 

 

where 0≠μ and the ui’s are independently and identically distributed with 

 

   3)(;)(;1)(;0)( 2
4

1
32 +==== γγ iiii uEuEuEuE .        (5) 

 

So, the skewness and excess kurtosis of the population distribution are 1γ  and 2γ  respectively. 

Our objective is to determine the magnitude of the biases of the elasticity estimators in (2) and 

(3), under very mild assumptions about the population distribution, to O(σ4). We use the 

following result. 
 

Lemma 1 (Ullah, 2004, 38.) 

Let ‘y’ be an n-element random vector, with uy σμ += , where ‘u’ satisfies the conditions in (5) 

above, and the non-zero mean, μ, is a function of a parameter vector, θ. Let )(ˆ yh=θ be an 

estimator of θ, where h(y) and its derivatives exist in a neighborhood of μ. Then3 
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3. Results 

Now consider model (1) under the conditions of Lemma 1. Using standard partitioning results,  

 

      )()( 1 yMxxMx jjjjjj −
−

− ′′=β
)

;        j = 1, 2,..., k ;                (7)    

where , jx  is the j’th. column of X, and  jX −  is the 

regressor  matrix excluding jx . 

 

3.1 Elasticity at an Individual Data Point 

So the OLS estimator of the elasticity of y with respect to jx  for the i’th. observation is: 

==
i
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x
βη ˆˆ ijx 1)( −
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jj
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yMx )( −′

= ijx 1)( −
−′ jjj xMx )(yh             (8) 
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iy
yy =∗               .                                                (10)   

Then the small-σ asymptotic approximation to the bias of this elasticity estimator is : 

Theorem 1 
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where ii  is an )1( ×n  column vector whose i’th. element is unity, and all other elements are zero. 

Summations run from 1 to n. 

 

 

Proof 

From equation (8), 

         Bias ( )ijη) = ijx 1)( −
−′ jjj xMx Bias [ )(yh ]     ,                     (11) 

and from (9), 

M I X X X Xj j j j j− − − −
−

−= − ′ ′( ) 1
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Some tedious but straightforward partial differentiation yields the following results. For s = 2, 3, 

4, ….. 
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So from Lemma 1, and recalling that β')( ii xyE =   (i = 1, 2,……, n): 
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422 Δ=Δ  , 

Finally, applying Lemma 1 and (11), the result in Theorem 1 follows immediately, and the sign 

and magnitude of the bias are indeterminate. 

 

Corollary 1 

If the model has only a single regressor and is fitted through the origin, then the bias of the 

elasticity estimator for any particular observation is:  
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Again, the sign and magnitude of the bias are indeterminate, in general. However, using Hölder’s 

inequality (Kendall and Stuart, 1977, p.39), for positive regressors the bias is positive to )( 2σO , 

and also positive to )( 4σO for symmetric and leptokurtic (or mesokurtic) data. 

  

3.2 Elasticity at the Sample Mean 

Theorem 1 provides us with the bias of the elasticity estimator with respect to one particular 

independent variable for any particular observation. In practice, it is common to report a 
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representative elasticity by evaluating it at the mean of the sample size. In this case, we have: 
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where i  is an )1( ×n one column vector.  

 

Proof 

From  (13), 

Bias ( jη̂ ) = jx 1)( −
−′ jjj xMx Bias [ )(yg ]                               (16) 

For s = 2, 3, 4, ….. 
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where X  is a )1( k× vector whose  i’th. element is the mean value of the i’th. column of 

X . Finally, applying Lemma 1 and (16), the result in Theorem 2 follows immediately. 

 

Corollary 2 

If the model has only a single regressor and is fitted through the origin, then the bias of the 

elasticity evaluated at the sample mean is: 
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Bias(η̂ ) = )1( 22 ∑
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Interpreting this result, first by Jensen’s inequality, nxx
i

i /22 ∑≤ . So to )( 2σO , regardless of 

the underlying distribution of the errors and the sample values, the elasticity estimator is biased 

upwards. A sufficient, but not necessary, condition for the bias to be upwards, to )( 4σO is: 

1+ 222
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1  . 

If the regressor takes only positive values, and if the errors follow a symmetric and leptokurtic 

distribution, Bias(η̂ ) > 0, to )( 4σO . 

 

4. Empirical Illustration 

To illustrate these results we have estimated linear Engel curves for alcoholic beverages and 

marijuana, using Australian data from Clements and Zhao (2005). Expenditure on each good is 

explained by total expenditure on the group of goods.2 The OLS-estimated elasticities and 

percentage biases appear in Table 1, from which bias-adjusted elasticities are readily deduced.3  

The estimated biases are positive, ranging from 0% to 10% for individual sample points, but are 

negligible for elasticities evaluated at the sample mean.4  The bias estimates to )( 2σO  are very 

close to those to )( 4σO , and their signs partly reflect the positive data and regression coefficient 

estimates.  

 

5. Conclusions 

We have derived analytic expressions for the bias of the OLS estimator of the point elasticity in a 

linear model, both at an individual sample point and at the sample mean. These expressions are 

based on small-disturbance expansions. These biases can be substantial enough to warrant 

attention in practice, especially in the case of point elasticities. Additional empirical evaluations 

undertaken by the authors corroborate this finding. 
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Table 1: Estimated Elasticities and Biases 

 
   Beer      Wine 

 

Year Elasticity  % Bias   Elasticity  % Bias 

   )( 2σO   )( 4σO    )( 2σO   )( 4σO  

 
1988   0.6760  0.0744  0.0743  1.4234  3.6568  3.7783 
1989   0.6868  0.0774  0.0773  1.4977  3.6772  3.7994 
1990   0.6852  0.0814  0.0813  1.6239  3.5513  3.6693 
1991   0.6991  0.0824  0.0823  1.6449  3.6255  3.7460 
1992   0.7007  0.0802  0.0801  1.5507  3.7538  3.8788 
1993   0.6982  0.0804  0.0803  1.5099  3.8563  3.9848 
1994   0.7056  0.0817  0.0816  1.4804  4.0455  4.1805 
1995   0.6967  0.0836  0.0835  1.4371  4.2166  4.3576 
1996   0.7072  0.0862  0.0861  1.4257  4.4607  4.6102 
1997   0.7167  0.0874  0.0873  1.3696  4.7863  4.9473 
1998   0.7333  0.0878  0.0877  1.3507  4.9964  5.1647 
 
Mean   0.7011  0.0006  0.0006  1.4748  0.0257  0.0258 
 
    

Spirits      Marijuana 

 

Year Elasticity  % Bias   Elasticity  % Bias 

   )( 2σO   )( 4σO    )( 2σO   )( 4σO  

1988   2.5389  5.4676  5.7492  0.5653  3.4044  3.2512 
1989   2.4314  6.0742  6.3890  0.5486  3.7219  3.5540 
1990   2.4268  6.4001  6.7328  0.5298  4.0536  3.8702 
1991   2.5241  6.3563  6.6866  0.5061  4.3997  4.1999 
1992   2.3772  6.5941  6.9376  0.5308  4.0770  3.8925 
1993   2.0773  7.6130  8.0135  0.5757  3.7447  3.5757 
1994   1.9807  8.2451  8.6815  0.5885  3.7612  3.5914 
1995   1.9640  8.4130  8.8591  0.6123  3.6477  3.4832 
1996   2.0035  8.6546  9.1145  0.5956  3.9379  3.7598 
1997   1.9886  8.9874  9.4666  0.6013  4.0108  3.8293 
1998   1.9518  9.4478  9.9538  0.5942  4.1764  3.9871 
 
Mean      2.1694  0.0425  0.0427  0.5671  0.0260  0.0260 
 
 

Note: ‘Mean’ refers to evaluation at the sample mean. 
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Footnotes 

 

1. Assumptions of the latter type are required for the validity of ‘large-n’ expansions, 

and can be difficult to verify in practice. 

2. The regressions include an intercept and the sample covers 1988 – 1998. 

3. The true elasticity values are unknown. Estimated ‘% bias’ is 100 times the ratio of 

the estimated bias to the ‘bias-adjusted’ elasticity estimate. 

4. Differences of this order between the individual and mean results can be explained 

from Theorems 1 and 2, using Jensen’s inequality; and by considering 

)/)ˆ(( ijij xBias ∂∂ η . Some experimentation with other data yields similar results. 

 

 


