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Abstract 

 
The binary logistic regression or logit link model is commonly used to test for racial disparate treatment in fair 
lending studies undertaken by government agencies, including the Office of the Comptroller of the Currency (OCC) 
and the Federal Reserve Board (FRB).   Ensuring race neutrality in lending remains a concern of regulators and 
consumer advocates.  Improving the understanding of any shortcomings of either bank internal models or regulatory 
agency models will enable those participants in the mortgage industry to better serve the needs of consumers.  We 
explore this issue using five bank studies undertaken by the OCC.  We consider the impact of the logit link  
assumption, as this determines how race affects the likelihood of loan approval, by moving to three other links: 
probit, gompit and complementary log log; the latter two are examples of asymmetric links.  As our data sets have 
been obtained using stratified sampling procedures, which has been typical at the OCC, rather than being drawn via 
simple random sampling, moving away from the logit link complicates estimation; it is no longer possible to use a 
standard estimation command with an adjustment for stratum effects.  Our results reveal that the choice of link 
function, despite exhibiting similar sample fit, can influence findings of disparate treatment at the nominal level of 
significance commonly accepted as the legal standard.  We also find that the use of a resampling method, which 
aims to better approximate the finite sample null distribution, for obtaining p-values typically leads to support for 
discrimination more often than arises from use of the standard normal approximation.    

Keywords: Logit; Fair lending; Stratified sampling; Binary response; Semi-parametric 
maximum likelihood; Pseudo log-likelihood; Profile log-likelihood; Without 
replacement resampling; Bootstrapping. 
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1. Introduction 

A number of programs that exist today in the U.S. housing finance market have their 

origin in the Depression era.  During that period, the focus was on providing affordable 

housing to every American, as is clear from the National Housing Act of 1934, which 

states that “the Congress affirms the national goal that every American family be able to 

afford a decent home in a suitable environment”.  This focus has changed little over the 

decades, as is evident from the following statement obtained from the U.S. Housing 

Policy statement 42 U.S.C. §12702: 

The objective of national housing policy shall be to reaffirm the long-

established national commitment to decent, safe, and sanitary housing for every 

American by strengthening a nationwide partnership of public and private institutions 

able ….(6) to provide every American community with a reliable, readily available 

supply of mortgage finance at the lowest possible interest rates… 

One potential obstacle to this goal of making every American family able to afford a 

decent home is disparate treatment in the mortgage lending market against minorities.  

Such discrimination can take on various forms including the turning down of a loan 

application based on certain personal characteristics of the applicant such as race, age, 

and gender1, which is prohibited under U.S. laws.  Data collected by the Federal 

Financial Institutions Examination Council (FFIEC) under the Home Mortgage 

Disclosure Act (HMDA), enacted by the Congress in 1975, are designed to help 

regulators enforce such fair lending laws.  Results from this data indicate that loan 

approval rates for minority applicants have been and continue to be lower than those of 

white applicants, but this evidence alone does not allow one to infer that lending 

discrimination exists, as account must be taken of differences in variables representing 

creditworthiness.  

A large empirical literature exists that has augmented the HMDA data with additional 

information, including variables on creditworthiness, and has applied statistical models to 

                                                 
1 Discrimination in mortgage lending can take other forms, e.g., prescreening, unfavorable terms for an 
approved loan and redlining.  Our concern is with discrimination in the loan approval process. 
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estimate the effect of race on the probability of loan approval2.  One such work is the 

well-known study by Munnell et al. (1992), commonly known as the Boston Federal 

Reserve Study (BFS), which found evidence of racial discrimination in mortgage 

lending3.  The BFS, and its published version, have received several criticisms (Zandi, 

1993; Day and Liebowitz, 1998; Harrison, 1998; Horne, 1994, 1997; Stengel and 

Glennon, 1999; among others).  Comprehensive reviews are given in Ross and Yinger 

(1999, 2002); they suggest that the findings hold up reasonably well despite the 

criticisms.  One crucial concern with the BFS study is its use of aggregated data across a 

number of institutions, which might be inappropriate as it assumes that institutions have 

similar underwriting criteria (e.g., Stengel and Glennon, 1999; Courchane et al., 2000b).   

Several government regulatory agencies monitor lending practices of institutions, 

including the Office of the Comptroller of the Currency (OCC), which uses statistical 

models and bank-specific approaches as part of most fair lending reviews; see Courchane 

et al. (2000b) and Dietrich (2005) for a detailed description of OCC review practice. In 

the instances from which the data in our paper are drawn, regulators from the OCC met 

with bank underwriters to understand the factors that the bank considers in assessing a 

loan application.  Data were  then recorded on relevant variables for a subset of 

applicants from which statistical models are estimated to arrive at a conclusion regarding 

racial discrimination in mortgage lending at that bank.  The underwriting process was 

estimated using a binary outcome logistic regression or logit model for a bank, with the 

dependent variable being loan outcome (approved or denied) for applicants against a set 

of regressors, such as loan-to-value ratio, debt-to-income ratio, one or more credit score 

variables, and various dummy variables representing insufficient funds to close, race 

(e.g., White, African American, Hispanic American) etc.  Tests were undertaken on the 

race coefficients to examine whether the probability of loan approval differs across races; 

if applicants from one race with similar profiles as applicants from another race face a 

statistically significant lower probability of approval, then disparate treatment exists. 

                                                 
2 See, for example, LaCour-Little (1999) for an excellent review of the literature on discrimination in 
mortgage lending.  See, also, Courchane et al. (2000b), who examine the use of statistical analysis as a tool 
for detecting discrimination. 
3 A revised version was published as Munnell et al. (1996).  The final conclusion remained unchanged. 
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 The logistic regressions we examine were estimated using a sample from all loan 

applications processed by the bank that are either approved or denied.  It would be 

preferable to use the information from all such applications, but this data, though 

collected and kept by the banks for a legally mandated time period, are typically 

unavailable electronically, which necessitates the drawing of a sample, given the time and 

cost that would be involved for the assessor to manually code the population data.  

Population statistics on whether the applicant’s loan is approved or denied and on some 

other covariates, including race, are readily available, being required information by 

HMDA.  This information enables stratification of the applications, with a sample then 

being formed by randomly selecting from each of the strata rather than a simple random 

sample from all applications, as is usually assumed to be the case.  Stratification can 

result in substantial gains in efficiency when estimating parameters and in power when 

undertaking inference; Clarke and Courchane (2005) illustrate such possibilities for fair 

lending studies.  Heterogeneity of characteristics across strata and homogeneity within 

strata will magnify the gains of stratified sampling over simple random sampling. 

How the applications are stratified prior to drawing the sample has implications for 

estimation and inference.  If the applications are divided into strata by race, with a sample 

then formed from randomly drawing from each of the racial strata, then there are no 

implications on estimation and inference; such a scheme is sometimes called exogenous 

sampling (ES), as the stratification is exogenous to the dependent variable of interest.   

Estimation and inference may or may not be affected when the applications are first 

divided into strata by loan outcome (those with loans approved and those with loans 

denied), with the sample then formed from randomly selecting applicants from these two 

groups; for example, there are implications for the estimation of all parameters for some 

binary response models (e.g., probit) but only for the stratum effects for others (e.g., 

logit)4.  This sampling scheme is often called choice-based sampling (CBS) or case-

                                                 
4 Given the popularity of logit and probit, we used them as examples of models impacted by stratification.  
This may suggest that it is the error term distribution that determines whether stratification affects all 
parameters, which is only partially the story; the key is whether our regression model is a so-called 
multiplicative intercept model.  In a multiplicative intercept model the log-odds-ratio of the probability of a 
loan being approved is a known function of the regression parameters and the predictors plus a variation-
independent intercept parameter; logit satisfies this assumption whereas probit does not.  See, for example, 
Hsieh et al. (1985), Weinberg and Wacholder (1993) and Rabinowitz (1997).  
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control sampling or endogenous sampling, as the stratification is on the choice or 

dependent variable, often “cases” of disease and “controls” in medical applications.   

The researcher can stratify applications endogenously by loan outcome and 

exogenously by race (sometimes called stratified choice-based sampling - SCBS), which 

has implications for estimation of, and inference on, racial dummy variable coefficients 

when using logit but on all parameters when using probit; e.g., Cosslett (1981b), Scott 

and Wild (2001).    Clarke and Courchane (2005) show, using Monte Carlo experiments, 

that stratified choice-based sampling is usually preferable to exogenous sampling or 

choice-based sampling in logistic regressions for fair lending.   

 The impact of the choice of a logistic regression (that is, a choice of a logit link 

function) and the use of asymptotic distributions to approximate unknown finite sample 

distributions, when undertaking hypothesis tests, on the discrimination outcome remain 

unexplored.  We study these issues in this paper.  We examine whether, ceteris paribus, 

the outcome of the non-discrimination test in regression models remains unchanged when 

we move to other common link functions: probit, gompit and complementary log log (the 

latter two are examples of asymmetric links), allowing for the impact of stratified choice-

based sampling on obtaining estimators and their variance-covariance matrices.  We also 

consider the sensitivity of the inference results to the use of asymptotic approximation 

theory by undertaking bootstrap experiments, which aim to better approximate the finite 

sample null distribution, to estimate p-values; we tailor the simulations to take account of 

the finite sub-population and the adopted stratified sampling procedure.  The question of 

robustness or non-robustness, as the case may be, of findings of discrimination from 

statistical models commonly used is of importance to the regulatory agencies and the 

bodies to whom cases are referred (the Department of Justice and the Department of 

Housing and Urban Development), bank officials and the consultants hired by these 

banks, academic researchers, and consumers affected by possible discrimination.    

This paper is organized into the following sections.  Section 2 presents our model 

setup, including a discussion of the link functions; section 3 considers estimation 

methods and hypothesis testing procedures when the data are stratified both, 

endogenously, by the dependent variable and, exogenously, by our categorical race 
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covariate; section 4 details our data, including particulars on covariates; section 5 

provides the empirical results and section 6 concludes.    

 

 

2. Binary response model, cdfs and link functions 

Our adopted statistical models arise from bank-specific examinations that aim to 

model underwriting practices.  A regression models whether a loan is approved or denied 

as a function of covariates such as loan-to-value ratio (LTV), debt-to-income ratio (DTI), 

income, one or more credit score variables, dummy variables used to capture bad credit, 

insufficient funds to close, and race (e.g., White, African American, Hispanic American).  

More generally, for each bank, we assume a binary outcome dependent variable, yj, 

which takes values yj = 0, when a mortgage loan application is denied, and yj = 1, when it 

is approved; j=1,...,N, the number of applicants whose loan applications have been denied 

or approved5.  We suppose K race categories with a vector xj, of dimension K, which 

contains categorical dummy variables that describe the race of an applicant: xjk =1 if the 

j’th applicant belongs to racial group k (k=1,…,K), 0 otherwise; then, xj = [xj1, xj2, ..., 

xjK]′.  There is an additional q-dimensional vector zj that contains the other discrete and 

continuous variables that describe characteristics of the loan application.  Our aim is to 

estimate a binary response model of the form: 

  h(P1(wj;β)) = wj′β ,  j=1,2, ..., N    (2.1)  

where, for i=0,1, );w|iy(pr);w(P jjji β==β and β is a p-dimensional coefficient vector 

(p=K+q); β=[β1, β2, …, βK, βK+1, …, βp]′.   Having appropriately estimated (2.1), whether 

a bank is deemed to be racially discriminating is determined by testing whether the 

impacts of the racial categorical variables are equal; i.e., we test the K!/(2((K-2)!)) 

distinct null hypotheses, 0:H kj
j
0 =β−β , j≠k, j, k=1,…,K; against, usually, a one-sided 

alternative hypothesis (e.g., that discriminatory treatment is towards African Americans 

over Whites and so on). 

                                                 
5 Typically, applications that were incomplete or withdrawn are excluded from data sets, and approved, but 
not yet accepted, loans are treated as accepted. 
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In model (2.1), the vector wj is partitioned as ]zx[w jjj ′′=′ and h(.) is the link 

function.  We can equivalently write (2.1) as: 

  P1(wj;β) = h-1(wj′β) = F(wj′β)     (2.2) 

where F(.) denotes a cumulative distribution function (cdf) so the link function is the 

inverse of the cdf.  Statistical analyses undertaken by fair lending regulators have, to our 

knowledge, exclusively considered a logistic cdf, which corresponds to the logit link 

function6: 

  logit(P1(wj;β)) = log[P1(wj;β)/(1- P1(wj;β))] = wj′β   (2.3) 

or, equivalently, 

  ))wexp(1/()wexp();w(P jjj1 β′+β′=β . 

Another link function, though not commonly adopted in fair lending studies, is the 

normit, which results in the probit regression: 

  Φ-1(P1(wj; β)) = wj′β       (2.4) 

or, equivalently, 

  )w();w(P jj1 β′Φ=β  

where Φ is the cumulative distribution function of a standard normal variate. 

The logistic cdf has fatter tails than the probit cdf, appoaching zero and one more 

slowly; we illustrate cdfs or probability plots in Figure One, with corresponding density 

functions in Figure Two.  Often this difference is unimportant, particularly when the 

predicted probabilities of a loan approval are not extreme.  However, when there are large 

numbers of observations or when many of the predicted probabilities are close to zero or 

one, choice of a logit or a normit link can lead to different conclusions.  The bank data 

sets we examine range from 145 to 420 observations, not particularly large compared to 

the thousands of observations often used in the estimation of binary response models, 

which may lead to little difference between logit and probit models.  We provide the 

percentage distribution of the predicted probabilities for our five banks, denoted as Bank 

1 to Bank 5 for confidentiality reasons, using logit in Table 1; a significant percentage of 

                                                 
6 An exception in the academic literature is Courchane et al. (2000a), who adopt generalized entropy 
models.  As our goal is to examine robustness to the choice of link, we do not incorporate this approach.    
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the predictions are close to one for Banks 2, 3 and 4, suggesting our exploration of probit 

may be warranted. 

The probability );w(P j1 β approaches zero and one at the same rate for the logit and 

probit models, as their links are symmetric.   This may be a questionable assumption for 

the sub-populations of bank applications, which feature few denials compared to 

approvals; an asymmetric link that leads );w(P j1 β  to approach zero and one at different 

rates may be preferred.  Incorrectly assuming a symmetric link will likely lead to 

substantial bias in our coefficient estimates and detrimentally affect our disparate 

treatment test; e.g., Czado and Santner (1992).  There are many possible classes of 

parametric links that lead to such skewness; e.g., Stukel (1988) and Chen et al. (1999).  

We consider two common asymmetric links: gompit and cloglog.  The gompit model is: 

  -log(-log(P1(wj;β))) = wj′β      (2.5) 

or, equivalently, ))wexp(exp();w(P jj1 β′−−=β , with );w(P j1 β approaching zero faster 

than one.  The cloglog, or complementary log-log, model is:  

log(-log(1-P1(wj;β))) = wj′β      (2.6) 

or, equivalently, ))wexp(exp(1);w(P jj1 β′−−=β , with );w(P j1 β approaching one faster 

than zero.  We illustrate in Figures One and Two. 

 

Table 1:  Distribution of Illustrative Predicted Probabilites of Loan Approval*  
Range for Predicted Probability 

0-

<0.10 

0.10-

<0.20 

0.20-

<0.30 

0.30-

<0.40 

0.40-

<0.50 

0.50-

<0.60 

0.60-

<0.70 

0.70-

<0.80 

0.80-

<0.90 

0.90-<1 

Bank 1: N=7013, n=332 

5.1% 7.5% 6.3% 7.2% 11.7% 7.5% 8.1% 12.7% 19.9% 13.9% 

Bank 2: N=2959, n=245 

5.7% 3.7% 2.4% 3.3% 2.0% 7.8% 6.1% 6.9% 12.2% 49.8% 

Bank 3: N=939, n=340 

8.2% 4.1% 3.5% 2.1% 2.1% 3.2% 5.9% 5.0% 14.1% 51.8% 

Bank 4: N=3550, n=420 

10.7% 3.8% 4.8% 4.0% 4.0% 5.5% 6.0% 6.7% 15.0% 39.8% 

Bank 5: N=1976, n=228 

1.8% 1.8% 2.6% 2.2% 2.2% 11.0% 16.2% 29.8% 26.3% 3.1% 

* The probabilities are from the OCC logistic regressions. 
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Figure One: Probability Plots (Cumulative Distribution Functions)
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Figure Two: Probability Density Functions
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3. Estimation under stratified sampling 

The likelihood, for an arbitrary cdf or link function, assuming that the applicant is 

from a simple random sample from all those who present at the bank, is:    

 SRSL = ∏∏
==

β=β
N

1j
jjjj

N

1j
j )w(g);w|y(pr)|w,y(pr .    (3.1) 

As we assume that g(wj) does not involve β, we can base estimation on: 

L = ∏
=

β
N

1j
jj );w|y(pr = ∏

=

−ββ
N

1j

)y1(
j0

y
j1

jj );w(P);w(P .   (3.2) 

Unfortunately, in practice, all of the variables in wj are not electronically available to 

the examiner.  For cost and efficiency reasons, a sample of size n is drawn from the N 

available, files are pulled for the chosen applicants, data are manually coded and 

regression models estimated; the final step is to undertake the disparate treatment 

hypothesis tests based on the sample of n applicants, rather than the subpopulation of size 

N.  Simple random sampling (SRS) would be one way to draw the n applications; then 

the likelihood contribution of interest is of the form of (3.2) with N replaced by n.  This 

approach, however, ignores additional information that the bank is required to collect: 

loan disposition and racial class are electronically available for each subpopulation 

member because of HMDA requirements.  Let Ni,k be the number of applicants in racial 

class k with yj=i, i=0,1, k=1,2,...,K; ∑ ∑
= =

1

0i

K

1k
k,iN = N.  This additional information can be 

partially or fully incorporated into a sampling scheme: 

(i) Exogenous sampling (ES), for which the information on the race of each applicant 

only is used prior to drawing the sample.  Let N+,k be the number of applicants in race 

k; N+,k=N0,k+N1,k, ∑
=

+ =
K

1k
k, NN .  ES randomly draws n+,k applicants from the N+,k 

available; nn
K

1k
k, =∑

=
+ .  This sampling scheme ignores that the outcome of the loan 

application is known for each applicant. 

(ii) Choice-based sampling (CBS) or case-control sampling, for which the information on 

yj only is used prior to drawing the sample.  Let Ni,+ be the number of applicants with 
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yj=i; Ni,+= ∑
=

K

1k
k,iN , N0,++N1,+ = N.  We randomly select ni,+ applicants from the Ni,+ 

available with CBS, ignoring the race of each applicant when forming the sample; 

n0,++n1,+ = n.   

(iii) Stratified choice-based sampling (SCBS), for which the prior knowledge on the race 

and outcome of the loan application for each case is used prior to drawing the sample.  

Under SCBS, we draw ni,k applicants from the Ni,k available, i=0,1, k=1,2,...,K; 

∑ ∑
= =

=
1

0i

K

1k
k,i nn . 

Using the known prior information about race and loan outcome in these ways can 

change the likelihood for β, as applicants are potentially sampled at different rates from 

strata.  Under ES, the assessor draws an applicant j from race k (that is, fixes xjk) and 

observes whether the application has been approved or denied; corresponding values for 

zjk are then recorded.  The likelihood under such a sampling scheme is: 

  ESL   = ∏ ∏
= =

+
β

K

1k

n

1j
jkjkjk

k,
);x|z,y(pr g(xjk) 

= ∏ ∏
= =

+
β

K

1k
jkjk

n

1j
jkjk )x(g)z(g);w|y(pr

k,
    (3.3) 

using Bayes’ Rule.  As g(zjk) and g(xjk) are assumed not to depend on β, we can write 

(3.3) as: 

  LES = ES
2

ES
1

K

1k

n

1j
jkjk

K

1k

n

1j
jkjk LL)x(g)z(g);w|y(pr

k,k,
=
















β ∏ ∏∏ ∏

= == =

++
 (3.4) 

so that estimation for, and inference on, β can be based solely on ES
1L ; that is, on: 

  ES
1L  = ∏ ∏∏

= ==
β=β

+K

1k

n

1j
jj

n

1j
jkjk );w|y(pr);w|y(pr

k,
   (3.5) 

which corresponds to the likelihood under SRS; i.e., we can assume that a sample 

obtained via ES is a simple random sample (see, e.g., Manski and Lerman, 1977, and 

Cosslett, 1981a,b). 

However, such is not the case with CBS or SCBS; e.g., Anderson (1972), Prentice 

and Pyke (1979), Cosslett (1981a,b), Scott and Wild (2001) and the many references 
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therein.  We define two strata with CBS: those cases with yj=1 and those with yj=0, from 

which we draw two independent random samples: ni,+ applicants from those units with 

yj=i.  We then record the corresponding wij values, where we now subscript w by i, in 

addition to j, given the sampling scheme used: i=0,1, j=1,2,...,ni,+.  The likelihood for 

such a sampling scheme is: 

LCBS  = ∏ ∏
= =

+
=

1

0i

n

1j
jij

,i
)iy|w(pr     

 = ∏ ∏
= =

+
==

1

0i

n

1j
jijijj

,i
)iy(pr/)w(g)w|iy(pr  

 = ∏ ∏
= =

+
=β

1

0i

n

1j
jijiji

,i
)iy(pr/)w(g);w(P      (3.6) 

using Bayes’ Rule.  As pr(yj=i)= ∫ β )w(dG);w(P ijiji , where G(.) denotes the appropriate 

marginal distribution function, we cannot separate out g(wij) when estimating β. 

 Similarly, under SCBS, where there are S=2K strata, from which we sample ni,k units 

with yj=i and xj is such that the case belongs to race k, which we denote by kx j ∈ , and 

we then record the corresponding wijk values; the k subscript noting that the case belongs 

to the k’th race class, k=1,2,...,K, i=0,1, j=1,2,...,ni,k.  The likelihood is then: 

LSCBS = ∏ ∏ ∏
= = =

∈=
1

0i

K

1k

n

1j
jjijk

k,i
)kx,iy|w(pr  

 = ∏ ∏ ∏
= = =

∈=∈∈=
1

0i

K

1k

n

1j
jjjijkjijkj

k,i
)kx|iy(pr/)kx|w(g)kx,w|iy(pr  

= ∏ ∏ ∏
= = =

∈=∈∈β
1

0i

K

1k

n

1j
jjjijkjijki

k,i
)kx|iy(pr/)kx|w(g)kx|;w(P    (3.7) 

using Bayes’ Rule, from which we again cannot separate out the density for w, given the 

dependence of pr(yj=i| kx j ∈ ) on β.   We write (3.7) in log-likelihood form: 

)kx|w(glog)kx|;w(Plog jijk
1

0i

K

1k

n

1j

1

0i

K

1k
j

n

1j
ijki

k,ik,i
∈+∈β= ∑ ∑ ∑∑ ∑ ∑

= = == = =
l  

 ∑∑∑
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∈=−
1

0i

K

1k
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1j
jj )kx|iy(prlog

k,i
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 As our focus is on SCBS, we explore the maximization of (3.8), although the 

discussion applies equally to samples generated by CBS.  We use semiparametric 

maximum likelihood estimation, where the term “semiparametric” is taken to mean that 

we parametrically model Pi(wijk;β| kx j ∈ ) (for example, using one of the links provided 

in the previous section) and we nonparametrically model g(wijk| kx j ∈ ); e.g., Cosslett 

(1981b), Lawless et al. (1999), Neuhaus et al. (2002), Scott and Wild (1991, 1997, 2001), 

among others.   The literature proposes two routes for solving for estimates for β: 

maximizing either a profile log-likelihood or a pseudo log-likelihood.  The former, 

considered in the next sub-section, leads to maximum likelihood estimates irrespective of 

the form of the link function, but is less user-friendly in the sense of not being 

straightforward to code in standard packages (e.g., EViews, SPSS and Stata).  The 

alternative path of maximizing a pseudo log-likelihood, which we detail in sub-section 

3.2, is uncomplicated to code, but, for many common link functions, has severe 

computational issues.  Accordingly, we also consider a computationally simpler 

estimator, which is consistent, but not usually asymptotically efficient, that is available 

via the pseudo log-likelihood route.  

 

3.1 A profile log-likelihood route 

 Without proof (see Scott and Wild, 2001), the profile log-likelihood for β 

))(ĝ,()(P ββ=β ll , after nonparametrically modeling the density of w by replacing its 

(unknown) cumulative probability distribution with its empirical distribution7, is: 

 {∑
=

−β+β−−=βρβ=β
n

1j
j1jj1j

*
P );w(Plogy));w(P1log()y1())(,()( ll  

   [ ]( ( −ρ−βµ+βµ∑
=

k,1k1

K

1k
j1k1j0k0jk m);w(P);w(PlogS  

    ) )}n/))exp(1log()mm( k,1k1k0 ρ++     (3.9) 

                                                 
7 The empirical distribution is the maximum likelihood estimate of an unknown distribution function; e.g., 
Kiefer and Wolfowitz (1956). 
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where: mik = (Ni,k-ni,k); i
k,1

k,1ik
k,ik ))(exp(

))exp(1(m
N

ρ

ρ+
−=µ + ; Sjk=1 if the j’th applicant 

belongs to stratum k, 0 otherwise; i=0,1, k=1, …, K, j=1,2, …, n.  Excluding variance-

covariance matrix parameters, this objective function has (p+K) unknown parameters, p 

from β and K from ρ1,1 … ρ1,K, which arise from the nonparametric modeling of the 

density of w; these additional parameters relate to unconditional probabilities.  

Specifically, let Qi,k be the unconditional probability that y=i in stratum k 

with∑
=

=
1

0i
k,i 1Q , then ρi,k=log(Qi,k/Q0,k) with ρ0,k=0.   

 The criterion (3.9) is highly non-linear in β and ρ (=[ρ1,1 … ρ1,K]), although, for fixed 

β, the ρ parameters are orthogonal, as each involves only observations from the relevant 

stratum.  We apply the iterative routine suggested by Scott and Wild (2001, p.18) to solve 

for the maximum likelihood solutions, say PRβ̂ and PRρ̂ ; throughout this paper, a 

subscript “PR” will refer to a statistic or a p-value obtained by means of the profile log-

likelihood.   Specifically, the additional sub-population information on Ni,k provides 

initial, consistent, estimates of ρ1,1 … ρ1,K, say K,11,1 ρρ K , which are then used to 

maximize (3.9) for estimates of β, say β*.  With β fixed at β*, we again maximize (3.9) to 

obtain new ρ estimates and so on until we converge to PRβ̂ and PRρ̂ .  When solving for 

β, our algorithm used the score vector and information matrix provided by Scott and 

Wild (2001, p.18).  Convergence usually resulted in fewer than five such major loops, 

with ten major loops being the highest number required for our data sets.   

 

3.2 A pseudo log-likelihood route 

Without proof (e.g., Cosslett, 1981b; Scott and Wild, 2001), when we model g(.) 

nonparametrically, maximizing l is equivalent to maximizing the pseudo log-likelihood 

function:   

  ),;w(Plog kijk
1

0i

K

1k

n

1j

*
i

* k,i
κβ= ∑ ∑ ∑

= = =
l      (3.10) 
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with  ),;w(P kijk
*
i κβ defined by setting 

  logit ),;w(P kijk
*
i κβ = logit )kx|;w(P jijki ∈β +log kκ .  (3.11) 

The parameter kκ is the ratio of the sampling rates for race class k: 

  kκ = 










∈=










∈= )kx|0y(pr
n

/
)kx|1y(pr

n

jj

k,0

jj

k,1    (3.12) 

and  

logit )kx|;w(P jjk11 ∈β = log 










∈β

∈β

)kx|;w(P
)kx|;w(P

jjk00

jjk11  .  (3.13) 

The objective function (3.10) is termed a “pseudo log-likelihood” because in general it is 

not equal to the log-likelihood l ; they are equal at their maximums. 

A logit link model with stratum constants has logit )kx|;w(P jjk11 ∈β = β′+β jk z , 

where β  is a q-dimensional parameter vector, with *
1P also logistic in form: 

logit ),;w(P kjk1
*
1 κβ = β′+κ+β jkk zlog , k=1,2,...,K.  Clearly, we cannot identify both βk 

and κk without the use of supplementary information; separate identification is crucial as 

our disparate treatment hypothesis tests are of the equality of race stratum effects.  These 

results hold more generally, indeed for any multiplicative intercept model where 

logit )kx|;w(P jjk11 ∈β  = βk+H(zj, β ). 

The probit regression model, on the other hand, is an example of a non-multiplicative 

model as logit )kx|;w(P jjk11 ∈β =H( β′+β jk z ); we have 

 logit )kx|;w(P jjk11 ∈β = H( β′+β jk z ) = 
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and 
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*
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The gompit link and cloglog link models are also non-multiplicative intercept 

models and can be similarly expressed.  

 

Thus, κ1,...,κK are identifiable in a non-multiplicative intercept model, such as probit, 

gompit and cloglog, although there may be some multicollinarity issues that might cause 

convergence concerns.  To further complicate computational matters, the stationary point 

of (3.10) occurs at a saddlepoint in the combined parameter space; Cosslett(1981b), Scott 

and Wild (2001).   Therefore, to summarize where we are at, there is an identification 

issue in multiplicative intercept models and computational concerns associated with a 

saddlepoint solution that needs addressing to proceed to obtain the maximum likelihood 

estimators under SCBS via the pseudo log-likelihood. 

 This may suggest that it is preferable to avoid working with the pseudo log-likelihood 

(3.10), which only requires minor coding in packages (e.g., EViews, Gauss, SAS, SPSS, 

Stata).  However, the supplementary information available on sub-population stratum 

totals enables us to consistently estimate κk; specifically: 

   kκ̂ = 










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



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

k,0

k,0

k,1

k,1

N
n

/
N
n

       (3.16) 

is a consistent estimator of κk.   Use of this rule for the logit link leads to the estimator of 

β examined by Clarke and Courchane (2005) in their fair lending study; this estimator is 

known to be in fact the maximum likelihood estimator of β (Anderson, 1972; Prentice 

and Pyke, 1979)9.  That is, for the logit link, maximum likelihood estimates of all the 

parameters, except stratum constants, are obtained by estimating the logit model as if it 

were from a simple random sample; a simple minor adjustment provides the maximum 

likelihood estimates of stratum constants. 

 With non-multiplicative links, use of kκ̂ will lead to a consistent, but not necessarily 

asymptotically efficient, estimator of β - we denote this estimator as PSβ̂ 10 - a pseudo 

log-likelihood one-step estimator; hereafter, a subscript “PS” will refer to a statistic or p-
                                                 
9 This holds for multiplicative intercept models with a complete set of stratum constants; e.g., Hsieh et al. 
(1985). 
10 It is, in fact, one form of the Manski-McFadden (1981) estimator. 
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value obtained via the pseudo log-likelihood.  Obtaining the maximum likelihood 

estimator requires iteration, taking account that we are locating a saddlepoint.  There are 

computational difficulties with this, while it is computationally straightforward to obtain 

PSβ̂ .  Comparing outcomes for our disparate treatment tests using the (consistent but 

asymptotically inefficient) one-step pseudo log-likelihood estimator, PSβ̂ , and the 

maximum likelihood estimator obtained by iteration via the profile log-likelihood, PRβ̂ , 

is instructive, as the former is easier to code.  It may well be that the gains in efficiency 

do not lead to practically significant changes in test outcomes.   

    

3.3 Variance-covariance matrix 

Our discussion, so far, has centered on estimation of the parameters of the response 

model under SCBS.  Testing the null hypotheses of interest also requires variance-

covariance matrices for our estimators obtained from the profile and pseudo log-

likelihood routes.  

When using the pseudo log-likelihood procedure for either the logit link or another 

multiplicative intercept model, a consistent estimator of var( PSβ̂ ), say varest( PSβ̂ ), is 

given by (e.g., Scott and Wild, 1986): 

  varest( PSβ̂ ) =  var*( PSβ̂ ) - 







00
0A

     (3.17) 

where var*( PSβ̂ ) is the inverse of the pseudo-information matrix for PSβ̂ , assuming 

simple random sampling, and A is a (K×K) diagonal matrix with elements:  
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
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n

1a ; k=1,2, …, K.  (3.18) 

The first term is the reduction in variance from stratifying, while the second term is the 

increase in variance arising from using kκ̂ to estimate κk. 

When using a non-multiplicative intercept model, such as probit, gompit and cloglog, 

the one-step estimator PSβ̂ is obtained by maximizing the pseudo log-likelihood (3.10) 

with kκ̂ as the estimator of κk, and a consistent estimator of var( PSβ̂ ) is given by 
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var*( PSβ̂ ), the inverse of the pseudo-information matrix; see, e.g., Scott and Wild (2001).  

The disparate treatment null hypotheses – 0:H kj
j
0 =β−β , j≠k, j, k=1,…,K, are tested 

using j
PSt = ( )ˆˆ.(e.s/)ˆˆ

k,PSj,PSk,PSj,PS β−ββ−β , where PSβ̂ =[ 1,PSβ̂ , 2,PSβ̂ , …, K,PSβ̂ , …, 

p,PSβ̂ ]′ and =β−β )ˆˆ.(e.s k,PSj,PS  )ˆ,ˆcov(2)ˆ(var*)ˆ(var* k,PSj,PSk,PSj,PS ββ−β+β .  It 

follows (e.g., Cosslett, 1981b, Scott and Wild, 2001), that the limiting null distribution 

for j
PSt  is standard normal, from which p-values are usually obtained.  We provide these 

p-values in section 5, in addition to bootstrapped p-values, the methodology for which is 

in the next sub-section. 

As we use the analytic score vector and Hessian matrix in our routine to solve for the 

maximum likelihood estimator, β̂ , by way of the profile log-likelihood, we estimate this 

estimator’s asymptotic covariance matrix as the inverse of the information matrix, 

evaluated at the maximum likelihood estimates; see. e.g., Scott and Wild (2001, pp. 14-

15).   Obvious modifications to the statistics j
PSt  provides the rules we use to examine 

0:H kj
j
0 =β−β when using the profile log-likelihood estimators; let j

PRt denote this test 

statistic, which has a standard normal limiting null distribution, from which we find p-

values.  We do not provide bootstrapped p-values for these cases, although this is 

feasible, because, as we shall see, there is little practical qualitative difference between 

the test outcomes using the one-step pseudo and profile log-likelihood methods.   

 

3.4 Bootstrapped p-values 

To allow for the finite sub-population of N applicants presenting at a bank and the use 

of SCBS to form the sample of n applicants, when forming our bootstrapped p-values we 

take the following steps, primarily suggested by Booth et al. (1994) and Presnell and 

Booth (1994). 

Step 1: The first step is to create an empirical subpopulation for a bank.  Let fi,k=ni,k/Ni,k 

so that Ni,k=gi,kni,k+si,k, 0≤si,k≤ni,k, gi,k=int(1/fi,k), i=0,1, k=1,2,…,K.  If gi,k is an integer 

for all i,k then we can create a unique empirical subpopulation by combining gi,k copies 

of the kth stratum’s sample; e.g., Gross (1980).  More often than not, this is not possible, 
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as, typically, one or more gi,k are not integers.  Then, we create an empirical 

subpopulation by combining gi,k copies of the appropriate stratum’s sample with a 

without replacement sample of size si,k from the original sample. 

Step 2: We draw B without replacement resamples of size n, stratified as per the original 

sample, from the empirical subpopulation; i.e., each resample has stratum denial ratios 

that match the original sample.  For a particular link choice, we estimate the regression 

models for each resample, forming B values of the K!/(2((K-2)!)) test statistics to 

examine ,0:H kj
d
0 =β−β j≠k, j,k=1,…,K, d=1,…, K!/(2((K-2)!)); denote the 

bootstrapped statistics as d
B

d
1 t,t K .  As our data may not have been drawn from a 

subpopulation that satisfies d
0H , we follow the advice of Hall and Wilson (1991) by 

centering when forming these bootstrapped statistics, which has the effect of increasing 

power.  That is: we form 

  
)bb(se

)ˆˆ()bb(
t k

i
j
i

k,PSj,PS
k
i

j
id

i,PS
−

β−β−−
=  ; i=1,…,B 

where j
ib  is the estimate of βj from the ith bootstrap resample and so on11.   

Step 3: Let d
samp,PSt be the statistic value for the original sample for testing d

0H .  The 

bootstrapped p-value is then the simulated number of rejections obtained by comparing 
d

B,PS
d

1,PS tt K with d
samp,PSt ; e.g., the bootstrapped p-value is 

)tt(I)B/1(p d
samp,PS

B

1i

d
i,PS

d <= ∑
=

when the alternative hypothesis is 0:H kj
d
a <β−β .   

Step 4: Repeat Steps 2 and 3 for each bank using the other links. 

 

We follow the pretesting method advocated by Davidson and MacKinnon (2000) to 

choose B, the number of bootstraps; typically, this led to B=99 for our chosen 5% 

nominal level of significance. 

 

4. Data 

                                                 
11 As we are sampling from a finite subpopulation, we resample without replacement, rather than with 
replacement, as the latter would not be consistent with our original data collection. 
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The data used in this research were collected by the OCC in the course of several fair 

lending examinations in the late 1990s.12  The data here come from five separate national 

banks geographically distributed from the East to the West and the Midwest.  The logistic 

approach requires that a certain minimum number of files be distributed across the values 

of the explanatory variables for that variable to be viable.  To allow the use of many 

underwriting variables, the examinations were restricted to bank loan products that had at 

least 50 minority denials.  Each statistical model was structured to best reflect banks’ 

underwriting procedures in the approval or denial of a mortgage application.  The logit 

estimations use as independent variables a combination of explicit elements collected 

from bank loan files and variables that were created from the primary data to measure 

credit worthiness.   

The data elements typically collected at the examination include a number of 

elements from a credit bureau report on the borrower applicant such as credit score, 

public record information (bankruptcies, foreclosures, and unpaid collections and 

judgments), numbers and types of credit derogatories in the past 24 months, levels of 

current debts, and numbers of trade lines.  Additional collected variables might include 

employment status (self-employed or not), the presence of gift funds, levels of reserves, 

job stability and the particular loan program through which the application was 

submitted.  Each bank might use these variables differently in their credit decisions and 

an attempt was made to replicate the underwriting guidelines as closely as possible. 

A number of variables used by the banks to assist with their decisions were also created 

by the examination team.  These include variables such as debt-to-income ratio, loan-to-

value ratio, threshold variables indicating whether or not the applicant exceeded the 

bank’s guidelines for ratios, insufficient funds to close (a reserves measure) and often a 

variable that indicated whether the applicant did or did not receive private mortgage 

insurance if they had applied for it.  Sometimes an explanation variable was included that 

simply noted if the bank had asked for, received, or accepted explanations for credit 

bureau or underwriting elements from the applicant.  At a few institutions, the existence 

of a banking relationship for the applicant was included as an independent variable and 

                                                 
12 Examination procedures at the OCC may no longer follow these procedures.  See, e.g., Dietrich (2005), 
an economist at the OCC, for up-to-date information. 



 
 

 
Clarke, Courchane and Roy: On the robustness of racial discrimination findings in mortgage lending studies 

Page 21 of 36 

for those with very low values of LTV an indicator variable noting that that low value 

served as a compensating factor in the lending decision was included.  For some loan 

programs, collateral needs were noted.  Table 2 provides a list of regressors included in 

the model specifications for our five banks, and brief broad meanings of the covariates 

are given in Table 3.   The specific definition of each variable used in the modeling 

process depends on bank-specific factors; e.g., DTI is a one/zero binary regressor with a 

threshold DTI ratio determining the switch for one bank, while it is the actual DTI ratio 

for another bank.  Despite these differences, the list indicates that many variables are 

common across institutions. 

 

 

Table 2: Explanatory Variables 

Bank  

Variable Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 
Credit score × × × × × 
LTV × × × × × 
Public record ×  ×  × 
Insufficient funds   × ×  
DTI × × × × × 
HDTI   ×   
PMI   ×   
Bad credit ×  × × × 
Gifts/grants ×  ×   
Relationship   ×   
Income/savings    ×  
Explanation ×  ×   
Gender  ×    
White × × × × × 
African American × ×  × × 
Hispanic American ×  × × × 

 

As previously noted, the modeling is undertaken using a stratified sample from the 

subpopulation of applicants presenting at the bank.  A predetermined number of denied 

and approved loan applications, further stratified by racial group, are drawn.  This 

sampling strategy results in sample racial stratum denial rates that differ from those for 

the subpopulation.  We provide denial rates in Figure Three.  Racial groups are denoted 

as follows:  Whites - k=1; African Americans - k=2; Hispanic Americans - k=3.  We see  
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Table 3: Broad Variable Definitions 

Variable Definition 

Credit Score Derived from the bank’s underwriting guidelines manual.  Typically, a specified 
procedure is used to calculate a score variable, combining information across obtained 
credit bureau scores and the applicant and any co-applicant. 
 

LTV Loan-to-value ratio.  May also be a dummy variable equal to 1 if the loan-to-value ratio 
exceeds specific guidelines; otherwise 0. 
 

Public record Public record information, created to be approximately uncorrelated with the bad credit 
variable. 
 

Insufficient 
funds 

Dummy variable equal to 1 if there were not sufficient funds to close. 

DTI Debt-to-income (gross) ratio.  May also be a dummy variable equal to 1 if DTI value 
exceeds bank guidelines; otherwise 0 
 

HDTI House payment-to-income (gross) ratio 
 

PMI Dummy variable equal to 1 if the applicant applied for private mortgage insurance and 
was denied 
 

Bad credit Derived from bank specific information on credit records.  Equal to 1 if a bad credit 
element is observed, or this variable may be number of derogatories or delinquencies 
depending upon the underwriting standards of the bank. 
 

Gifts/grants Sum of gifts and grants, which may provide down payment information.  
 

Relationship Dummy variable equal to 1 if the applicant has any type of relationship with the bank, 
such as deposits or previous loan at the bank. 
 

Income/savings Income and savings information 

Explanation Various dummy variables equal 1 if the bank asked for, received, or accepted 
explanations for credit bureau or other underwriting elements; 0 otherwise 
 

Gender Dummy variable equal to 1 if the applicant is Female; 0 otherwise 
 

White Dummy variable equal to 1 if the applicant is White; 0 otherwise 
 

African 
American 

Dummy variable equal to 1 if the applicant is African American; 0 otherwise 

Hispanic 
American 

Dummy variable equal to 1 if the applicant is Hispanic American; 0 otherwise 
 

  



 
 

 
Clarke, Courchane and Roy: On the robustness of racial discrimination findings in mortgage lending studies 

Page 23 of 36 

Figure Three: Bank Denial Ratios
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that for Banks 1,4 and 5 there are three racial strata (K=3), while for Banks 2 and 3 there 

are only two (K=2).  The subpopulation measures are denoted by “N”, the sample 

measures by “n”, and denial of a loan application by “0”; e.g., “N01” is the number of 

denied whites loans, “n2” is the number of African Americans in the sample, and so on.  

We observe denial rates for African Americans that always exceed those for Whites and, 

when present, the denial rates for Hispanic Americans fall between those for African 

Americans and Whites. 

 

5. Results 

To assess the impact of the link function on the disparate treatment test outcome, we 

estimated the five bank-specific models, with the covariates summarized in Table 2, 

using the estimators  PSβ̂ and PRβ̂ for the four links detailed in section 2; recall that these 

two estimators are equivalent for the logit link but not for the other three studied links.  

We used Gauss, with the MAXLIK sub-routine, to obtain the maximum likelihood 

estimates from the profile log-likelihood, and EViews, Stata and Gauss – to satisfy 

ourselves that results were similar across standard packages – to obtain the one-step 

estimates from the pseudo log-likelihood.    
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Prior to comparing p-values, we detail two measures of fit for the models, as these 

may provide guidance on link preference for a particular bank.  The value of the average 

log-likelihood function offers one way to assess model fit.  Table 4 provides this 

information, with the measures given relative to the average log-likelihood value for the 

logit link; e.g., a number less than one indicates that the logit link has a smaller average 

log-likelihood value.  Although the results suggest this measure is similar across link 

functions, with the average log-likelihood values being different by at most 7%, there is 

some preference for the logit link for Bank 5, the gompit link for both Banks 1 and 4 and 

the probit link for Bank 2.   Interestingly, for Bank 3, the logit link is outranked by the 

other link choices when using the profile approach, but is favoured with the pseudo route.   

Usually, irrespective of bank, the cloglog link is least preferred; this link, we recall, leads 

to P1(wj; β) approaching one faster than zero.   

 

Table 4: Relative average log-likelihood values 

Regression Model  

Bank/ 

Method 

logit probit gompit cloglog 

Bank 1 
profile 
pseudo 

 
1 
1 

 
1.000 
1.003 

 
0.989 
0.999 

 
1.002 
1.014 

Bank 2 
profile 
pseudo 

 
1 
1 

 
0.999 
0.999 

 
1.000 
1.003 

 
0.999 
1.020 

Bank 3 
profile 
pseudo 

 
1 
1 

 
0.983 
1.008 

 
0.983 
1.007 

 
0.983 
1.025 

Bank 4 
profile 
pseudo 

 
1 
1 

 
1.002 
1.026 

 
0.989 
0.999 

 
1.004 
1.056 

Bank 5 
profile 
pseudo 

 
1 
1 

 
1.000 
1.005 

 
1.001 
1.004 

 
1.001 
1.007 

 

As the logit link’s average profile log-likelihood and pseudo log-likelihood values are 

identical, the numbers in Table 4 also provide one measure of loss, for the non-

multiplicative links, in using the one-step pseudo log-likelihood approach over the profile 

log-likelihood method.  For the banks we examine, the loss in average log-likelihood 
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value is at most 5.2% with the average loss being 1.6%; this suggests, according to this 

measure, that it may be practically reasonable to work with the computationally easier 

pseudo log-likelihood.        

Another commonly reported measure of model performance is the percentage 

correctly predicted, obtained by comparing the predicted and observed outcomes of the  

binary response.  Classification of the predicted probabilities into 0/1 outcomes is 

achieved by relating them to a chosen cutoff value and counting the matches of observed 

and predicted outcomes; a classification is “correct” when the model predicts the 

applicant’s loan disposition.   We provide this information in Tables 5a and 5b, using 

three cutoff values  – the standard value of “0.5”, a reasonable choice in samples with a 

balance of 1/0 outcomes, “sf”, which is the frequency of y=1 observations in the sample, 

and “spf”, which is the frequency of y=1 observations in the subpopulation; Table 5a 

presents the outcomes from the pseudo log-likelihood approach, while those from the 

profile log-likelihood route are given in Table 5b.  As our subpopulations are unbalanced, 

as are also the samples despite the OCC’s oversampling of denials, the “spf” and “sf” 

cutoffs are likely more realistic and sensible; e.g., Cramer (1999).   

We observe only minor differences, usually, between the profile and pseudo log-

likelihood percentages.  Even for the few cases when there are practical differences, it is 

often less than two percentage points, although we do observe significant differences for 

the cloglog link for some banks.   

The outcomes highlight the influence of the choice of cutoff value; when it is “0.5” or 

“sf”, the models do far better at predicting approvals than denials, while their 

performance is more equitable when “spf” is adopted as the cutoff.  Indeed, for some 

banks with “spf”, the models do better at predicting denials rather than approvals.   

Overall, the models correctly classify, approximately, 65% to 90% of outcomes, 

irrespective of cutoff value.   

Contrasting prediction abilities across links, we observe little difference, although, as 

expected, given its asymmetry, the gompit’s ability to predict loan approvals is the same 

or higher than for the other links, with an associated minor loss, usually, in predicting  
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Table 5a: Percentage correctly predicted from pseudo log-likelihood route 

Loan Outcome 

Denied (y=0) Approved (y=1) 

 

Overall 

Bank/ 

Cutoff 

Value logit Probit gompit cloglog logit probit gompit cloglog logit probit gompit cloglog 

Bank 1             

0.5 45.9% 45.9% 45.1% 42.1% 94.5% 95.0% 95.5% 95.5% 75.0% 75.3% 75.3% 74.1% 

sf 57.9% 57.9% 57.1% 56.4% 89.9% 89.9% 90.5% 89.9% 77.1% 77.1% 77.1% 76.5% 

spf 78.2% 78.9% 78.2% 80.5% 65.3% 64.3% 66.8% 61.8% 70.5% 70.2% 71.4% 69.3% 

Bank 2             

0.5 41.7% 40.0% 40.0% 28.3% 96.2% 96.8% 96.8% 93.5% 82.9% 82.9% 82.9% 77.6% 

sf 73.3% 73.3% 66.7% 61.7% 90.3% 87.6% 91.4% 81.1% 86.1% 84.1% 85.3% 76.3% 

spf 86.7% 88.3% 86.7% 76.7% 77.8% 76.8% 78.4% 70.3% 80.0% 79.6% 80.4% 71.8% 

Bank 3             

0.5 60.5% 58.1% 55.8% 58.1% 97.2% 97.2% 97.6% 97.2% 87.9% 87.4% 87.1% 87.4% 

sf 76.7% 76.7% 72.1% 77.9% 90.6% 89.8% 92.5% 87.4% 87.1% 86.5% 87.4% 85.0% 

spf 83.7% 83.7% 82.6% 83.7% 83.9% 82.3% 85.8% 79.1% 83.8% 82.6% 85.0% 80.3% 

Bank 4             

0.5 42.1% 37.6% 44.4% 27.1% 100% 100% 100% 100% 81.7% 80.2% 82.4% 76.9% 

sf 56.4% 54.1% 56.4% 45.9% 98.6% 99.3% 98.6% 100% 85.2% 85.0% 85.2% 82.9% 

spf 82.0% 84.2% 80.5% 85.0% 80.1% 78.0% 80.1% 75.6% 80.7% 80.0% 80.2% 78.6% 

Bank 5             

0.5 15.3% 9.7% 13.9% 6.9% 99.4% 99.4% 99.4% 99.4% 72.8% 71.1% 72.4% 70.2% 

sf 29.2% 25.0% 23.6% 22.2% 96.8% 96.8% 96.8% 96.8% 75.4% 74.1% 73.2% 73.2% 

spf 61.1% 61.1% 61.1% 65.3% 68.6% 67.9% 69.2% 64.1% 66.2% 65.8% 66.7% 64.5% 
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Table 5b: Percentage correctly predicted from profile log-likelihood route 

Loan Outcome 

Denied (y=0) Approved (y=1) 

 

Overall 

Bank/ 

Cutoff 

Value logit probit gompit cloglog logit probit gompit cloglog logit probit gompit cloglog 

Bank 1             

0.5 45.9% 46.6% 45.1% 41.4% 94.5% 95.0% 96.0% 95.5% 75.0% 75.6% 75.6% 73.8% 

sf 57.9% 59.4% 57.1% 50.4% 89.9% 89.4% 91.5% 90.5% 77.1% 77.4% 77.7% 76.8% 

spf 78.2% 78.9% 76.7% 80.5% 65.3% 63.8% 66.3% 60.8% 70.5% 69.9% 70.5% 68.7% 

Bank 2             

0.5 41.7% 41.7% 30.0% 26.7% 96.2% 96.2% 92.4% 94.6% 82.9% 82.9% 77.1% 78.0% 

sf 73.3% 73.3% 51.7% 66.7% 90.3% 89.2% 85.4% 82.7% 86.1% 85.3% 77.1% 78.8% 

spf 86.7% 90.0% 78.3% 76.7% 77.8% 75.7% 70.8% 69.7% 80.0% 79.2% 72.7% 71.4% 

Bank 3             

0.5 60.5% 58.1% 55.8% 58.1% 97.2% 97.2% 97.6% 97.2% 87.9% 87.4% 87.1% 87.4% 

sf 76.7% 76.7% 72.1% 77.9% 90.6% 89.8% 92.5% 87.4% 87.1% 86.5% 87.4% 85.0% 

spf 83.7% 83.7% 81.4% 83.7% 83.9% 82.7% 85.8% 92.5% 83.8% 82.9% 84.7% 90.3% 

Bank 4             

0.5 42.1% 37.6% 37.6% 56.4% 100% 99.7% 99.7% 100% 81.7% 80.0% 80.0% 86.2% 

sf 56.4% 52.6% 56.4% 46.6% 98.6% 98.3% 98.6% 99.7% 85.2% 83.8% 85.2% 82.9% 

spf 82.0% 82.0% 79.7% 86.5% 80.1% 76.7% 80.5% 75.3% 80.7% 78.3% 80.2% 78.8% 

Bank 5             

0.5 15.3% 9.7% 13.9% 6.9% 99.4% 99.4% 99.4%   99.4% 72.8% 71.1% 72.4% 70.2% 

sf 29.2% 26.4% 23.6% 25.0% 96.8% 96.8% 97.4% 97.4% 75.4% 74.6% 74.1% 74.6% 

spf 61.1% 62.5% 61.1% 63.9% 68.6% 67.3% 68.6% 63.5% 66.2% 65.8% 66.2% 63.6% 
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denials.  The logit link often correctly predicts more denied loans than the other links, 

although there is usually little difference between this link’s ability and that of the 

cloglog link when using the profile log-likelihood route.  Interestingly, for our data sets, 

the probit link never dominates another link in predictive ability.  This is an important 

practical finding, as researchers often arbitrarily choose between probit and logit for their 

analysis.  Our findings illustrate that there can be gains, albeit minor, in one link over 

another.   

When comparing overall classification ability, irrespective of loan disposition, our 

findings suggest that the computationally easier logit link is likely a good starting choice.  

That the gompit link usually dominates at predicting approvals, while the logit is often 

preferred for predicting denied loans correctly, suggests the need for further exploration 

of link choice in future research. 

We now turn our attention to the hypothesis tests for racial discrimination.  We 

examined one or three hypotheses. For Banks 2 and 3, as there are only two racial classes 

(K=2), the null is 0:H 21
1
0 =β−β against 0:H 21

1
a >β−β for Bank 2, which reflects 

favourable loan disposition towards Whites over African Americans, while the alternative 

hypothesis is specified as 0:H 21
1
a <β−β for Bank 3, reflecting possible discrimination 

against Whites in favour of Hispanic Americans.  For the other banks – Banks 1, 4 and 5 

– with three racial classes (K=3), we test 0:H 31
2
0 =β−β versus 0:H 31

2
a >β−β and 

0:H 32
3
0 =β−β versus 0:H 32

3
a ≠β−β , in addition to 1

0H  against 0:H 21
1
a <β−β .   The 

alternative hypothesis 2
aH  reflects that discrimination, should it exist, is typically in favor 

of Whites. As there is usually no a priori expectation when testing whether an African 

American is favored over a Hispanic American, we examined a two-sided alternative 

hypothesis.  

We report p-values for t-ratios for testing the nulls using the standard normal (SN) 

distribution, the limiting null distribution, and the bootstrap procedure, outlined in sub-

section 3.4.  Table 6 provides results.  The legal standard for a statistically significant 

race effect is two or three standard deviations, which suggests a nominal 5% or 1% 
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significance level14.  Such a choice effectively gives the benefit of doubt to the bank, as it 

implies a belief in nondiscrimination unless the sample evidence is extreme in suggesting 

otherwise.  We adopt a 5% level here; in Table 6, we highlight rejection cases for this 

level by use of the bold font. 

Examination of the p-values reveals that although general similarities exist in the 

pattern of outcomes, differences are also evident.   Consistent findings arise for racial 

disparate treatment for Bank 2 and Bank 1 (when examining Whites versus Hispanic 

Americans), nondiscrimination of African Americans against Whites for Bank 5, 

Hispanic Americans against Whites for Bank 4, and African Americans against Hispanic 

Americans for Banks 1 and 5, whereas variations in outcome occur for the other cases.   

For instance, the SN p-values suggest that Bank 5 does not favor Whites over Hispanic 

Americans, irrespective of whether we work from the profile or pseudo log-likelihoods 

and regardless of link choice, while we conclude discrimination is possible for this bank 

using the bootstrapped p-values.   

Banks 3 and 4, when testing 1
0H , provide examples that illustrate the importance of 

link: comparing the PR SN p-values, the logit and probit models suggest discrimination 

for Bank 3, whereas we conclude nondiscrimination for the gompit and cloglog models. 

This results despite the similar fit of the probit, gompit and cloglog models.  The SN p-

values from the profile log-likelihood for Bank 4, when testing 1
0H , show the impact of a 

small, seemingly insignificant, difference in fit on test outcomes, using the legal standard 

level of 5%.  The average profile log-likelihood value for the gompit model was 

marginally better than for the other links, and we now observe that the gompit profile SN 

p-value is marginally higher than 5% for the gompit model, while the SN p-values for the 

other links are less than 5%.   

Our results show that there is usually no qualitative difference in test outcomes 

between the SN p-values, for the probit, gompit and cloglog models, from the pseudo and 

profile routes15.  This is useful for practitioners, as obtaining estimates via the pseudo  

                                                 
14 See, e.g., Kaye and Aicken (1986).  LaCour-Little (1999) provides a useful commentary on this matter. 
15 When comparing the SN p-values via these two methods, we do not automatically expect the profile SN 
p-values to be smaller than those from the one-step pseudo route, because, although the profile estimator 
has higher precision than the pseudo estimator, at least asymptotically, coefficient estimates also change, 
which may result in a smaller (in magnitude) test statistic. 
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Table 6: P-values for testing for racial disparate treatment  

Regression Model Bank: p-value 
Logit probit gompit cloglog 

 0:H 21
1
0 =β−β vs.  0:H 21

1
a >β−β * 

Bank 1: PS SN p-value 0.000 0.040 0.101 0.032 
Bank 1: PS boot p-value 0.000 0.000 0.000 0.000 
Bank 1: PR SN p-value 0.000 0.000 0.008 0.000 
Bank 2: PS SN p-value 0.000 0.004 0.001 0.022 
Bank 2: PS boot p-value 0.000 0.000 0.000 0.000 
Bank 2: PR SN p-value 0.000 0.000 0.000 0.000 
Bank 3: PS SN p-value 0.050 0.248 0.156 0.287 
Bank 3: PS boot p-value 0.000 0.122 0.010 0.145 
Bank 3: PR SN p-value 0.050 0.044 0.136 0.689 
Bank 4: PS SN p-value 0.036 0.085 0.079 0.111 
Bank 4: PS boot p-value 0.010 0.010 0.000 0.000 
Bank 4: PR SN p-value 0.036 0.031 0.052 0.006 
Bank 5: PS SN p-value 0.591 0.622 0.716 0.565 
Bank 5: PS boot p-value 0.505 0.535 0.798 0.509 
Bank 5: PR SN p-value 0.591 0.529 0.726 0.492 
 0:H 31

2
0 =β−β vs.  0:H 31

2
a >β−β  

Bank 1: PS SN p-value 0.000 0.012 0.012 0.017 
Bank 1: PS boot p-value 0.000 0.000 0.000 0.000 
Bank 1: PR SN p-value 0.000 0.000 0.000 0.000 
Bank 4: PS SN p-value 0.411 0.397 0.424 0.361 
Bank 4: PS boot p-value 0.616 0.283 0.419 0.343 
Bank 4: PR SN p-value 0.411 0.349 0.455 0.223 
Bank 5: PS SN p-value 0.285 0.214 0.229 0.364 
Bank 5: PS boot p-value 0.000 0.000 0.030 0.010 
Bank 5: PR SN p-value 0.285 0.238 0.285 0.246 
 0:H 32

3
0 =β−β vs.  0:H 32

3
a ≠β−β  

Bank 1: PS SN p-value 0.054 0.754 0.353 0.972 
Bank 1: PS boot p-value 0.495 0.687 0.121 0.691 
Bank 1: PR SN p-value 0.054 0.888 0.069 0.958 
Bank 4: PS SN p-value 0.149 0.265 0.219 0.366 
Bank 4: PS boot p-value 0.000 0.020 0.000 0.030 
Bank 4: PR SN p-value 0.149 0.182 0.057 0.145 
Bank 5: PS SN p-value 0.569 0.445 0.282 0.492 
Bank 5: PS boot p-value 0.394 0.414 0.283 0.485 
Bank 5: PR SN p-value 0.569 0.590 0.360 0.735 
Notes:  PS = pseudo log-likelihood; PR = profile log-likelihood; SN = standard normal; 

Boot = bootstrap 
 * The alternative hypothesis for Bank 3 is 0:H 21

1
a <β−β  
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log-likelihood is substantially easier than from the profile log-likelihood.  However, there 

are some cases (e.g., Banks 3 and 4 when testing 1
0H ) for which the gain in efficiency 

does lead to a smaller p-value, which results, at the 5% legal standard, in a switch in test 

outcome to discrimination.   We note, however, that these cases result when using links 

that showed marginally less favourable fit.    

In addition, we observe that the bootstrapped and SN p-values are markedly different; 

the bootstrapped p-values are usually smaller than the SN p-values, which suggests a 

finite-sample null distribution for the t-ratio that is thinner tailed than the standard 

normal; i.e., platykurtic.  Such a feature leads us to support the nondiscrimination null 

when using the SN p-values, for a given nominal level of significance, more than should 

be the case, which has serious fair lending policy implications.  It is evident even when 

using the logit link, as has been standard in the fair lending empirical literature.  For 

example, the findings for Bank 4 when testing 3
0H change from supporting the 

nondiscrimination hypothesis to rejecting it as we move from using SN p-values to 

bootstrapped p-values.  As tests based on bootstrapped p-values are generally believed to 

perform better than those based on approximate asymptotic distributions, these findings 

support adoption of bootstrapping to generate p-values in statistical analysis for racial 

discrimination.   

Moreover, despite our use of consistent estimators of the parameter vector, finite-

sample bias, known to be present, likely differs across the links and between the profile 

and pseudo methods.  This is also possibly contributing to different test outcomes.  

Benefits of adopting bias-reduction techniques, such as bootstrapping and jackknifing, 

would be worth exploring in future research.   

 

6. Concluding remarks 

Concerns regarding racial disparate treatment in mortgage lending have not abated 

over the years, despite legislation and efforts by regulators.  Much of the evidence arises 

from formal statistical analyses of lender underwriting behavior that attempt to model the 

probability of application approval, with borrower’s race as one of the factors. The 

question “Is race a statistically significant determinant of the likelihood of approval, after 
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controlling for lender underwriting criteria?” is, usually, then addressed as a test of 

statistical significance of the race effect.  The most common framework assumes a logit 

link function, which implies linearity in the log-odds ratios.   

Given the social, economic, political and legal ramifications of disparate treatment, it 

is important to understand any shortcomings of, and lack of robustness of outcomes from, 

the statistical models.  Debate has focused on omitted variables and possible simultaneity 

bias, but the issue of link function has received little, if any, attention.  Our study begins 

the exploration of this question by comparing the logit disparate treatment test outcomes 

with those from probit, gompit and cloglog links.   

We show evidence that discrimination findings can be sensitive to this choice, despite 

most of the links providing similar sample fit. We show bank-specific examples for 

which a conclusion of discrimination (nondiscrimination) with the logit link became a 

nondiscrimination (discrimination) finding with one of the other links, using the legal 

standard (nominal) significance level of 5%.  Because of the possibility of such a feature 

arising, we recommend that regulators, bank officials and others interested in testing for 

racial disparate treatment routinely examine links aside from the logit.  Our inability to 

identify a clear and consistent link preference also suggests that this issue be the focus of 

future research. 

For most of the cases presented, qualitative disparate treatment test outcomes are not 

sensitive to whether we estimate via the one-step pseudo log-likelihood, which accords 

with a consistent, but asymptotically inefficient, coefficient estimator, or the profile log-

likelihood, from which we obtain maximum likelihood estimates.  This has 

computational advantages for applied researchers.  However, we do observe cases for 

which the profile route would lead to a conclusion of disparate treatment, whereas non-

discrimination arises from the pseudo log-likelihood method.    As these arose when 

using links that were marginally sub-optimal from a fit perspective, such situations are 

possibly less likely in practice. 

 Our investigation highlights the importance of the method adopted to determine p-

values.   For some banks, the resampling and standard normal approximations lead to 

consistent findings of discrimination or nondiscrimination, whereas for other banks, the 

two procedures result in divergent conclusions.  Predominantly, we observe that the 
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resampling distribution has thinner tails than the standard normal distribution.  Such a 

feature has important policy implications, given prevailing usage of this approximation 

from asymptotic theory in fair lending studies - if the resampling p-values are more 

accurate than the standard normal p-values, regulators, bank officials, consumers and 

court officials need to be aware that the latter may be significantly overstated.  For such a 

case, an outcome of nondiscrimination might indeed be discrimination.    Given this 

potential event, we advocate that resampling procedures become standard practice when 

determining p-values in fair lending studies.   
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