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Abstract 

 
We consider the class of generalized entropy (GE) measures that are commonly used to measure 
inequality. When used in the context of very small samples, as is frequently the case in studies of 
industrial concentration, these measures are significantly biased. We derive the analytic expression 
for this bias for an arbitrary member of the GE family, using a small-sigma expansion. This 
expression is valid regardless of the sample size, is increasingly accurate as the sampling error 
decreases, and provides the basis for constructing ‘bias-corrected’ inequality measures. We illustrate 
the application of these results to data for the Canadian banking sector, and various U.S. industrial 
sectors. 
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1. Introduction 
 

Many different measures or indices of inequality have been proposed, and there is a vast literature 

on this topic. Seminal contributions include those of Atkinson (1970, 1983) and Sen (1973), and a 

useful overview is provided by Litchfield (1999). It is widely (although not universally) accepted 

that any useful inequality index should satisfy the following five axioms: anonymity, 

decomposability, income scale independence, the principle of population, and the Pigou-Dalton 

transfer principle. See Cowell (1985) for full details. Many of the standard inequality measures 

can be shown to be special cases of the class of generalized entropy (GE) measures. Such 

measures can be expressed as: 
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these axioms must be a member of the GE family, so this class of measures is of particular 

interest. Specific special members of this family include Theil’s (1967) mean log deviation1: 
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Theil’s (1967) Index: 
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and half the squared coefficient of variation (CV): 
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When any of these measures are constructed in practice, we have a sample estimator of the 

corresponding population measure. A question that then arises is, “to what extent are these 

sample statistics reliable estimators of their population counterparts?” Under mild conditions, 

these statistics are unbiased if the sample is infinitely large, but this is of limited comfort in 

practice. Recently, Breunig (2001) has addressed this question in relation to the squared sample 
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CV, by deriving approximations to its finite-sample bias and mean squared error in terms of a 

large-sample asymptotic expansion. Among other things, he showed that CV2 is biased 

downwards if the underlying population distribution is positively skewed (as would usually be the 

case with income data, for example).2 Deltas (2003) points out that when such measures of 

inequality are used to measure industrial concentration, there is likely to be a sizeable problem 

with bias, as typically such studies (e.g., Hart and Prais, 1956; Ghosh, 1975; Adelaja, 1998) 

involve very small sample sizes. He provides Monte Carlo evidence regarding the magnitude of 

the downward bias of the Gini coefficient in samples of the size likely to be encountered in 

industry concentration studies. He also provides an interesting empirical application that 

illustrates that ignoring this bias can reverse one’s conclusions in practice. 

 

While Breunig’s (2001) ‘large-n’ asymptotic expansion provides a useful approximation to the 

finite-sample bias of  )2(2GE for moderate sample sizes, by its very nature it is unlikely to yield 

an accurate measure of the bias when the sample size is very small. In such cases, an alternative 

approach is needed. In this paper we derive the approximate bias for any member of the GE class 

of inequality measures, using a ‘small-σ’ expansion, rather than a ‘large-n’ expansion. Under 

minimal assumptions, our bias calculations are increasingly accurate as the sampling error 

becomes smaller, regardless of the form of the underlying population distribution, and regardless 

of the sample size. 

 

The plan of the rest of the paper is as follows. In the next section we discuss small-sigma 

approximations and present the principal results that we use in our derivations. Section 3 presents 

the main theoretical results, and interprets their implications. Two empirical examples that 

illustrate these implications are provided in section 4, and section 5 concludes. 

 

2. Small-Disturbance Approximations 

 

As noted in the last section, under some mild conditions, the inequality measures under 

consideration are well behaved, asymptotically. By this, we mean that as the sample size becomes 

infinitely large the sample measures converge in probability to the corresponding population 

measures. In the same manner, we can evaluate the dispersion of the sample measures in terms of 

their asymptotic distribution. However, in practice we are concerned with their behaviour in finite 

samples. 
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The determination of the exact finite-sample bias of )(αGE is confounded by the fact that the 

expression in (1) is highly non-linear in the random (‘y’) data. In such cases, we can consider 

various analytic approximations to this bias. One possible approach is that followed by Breunig 

(2001) in the case of CV2 – we can use an approximation based on an analytic expansion whose 

accuracy improves as ‘n’, the sample size, grows. Such approximations, proposed by Nagar 

(1959) in the econometric context, involve an expansion of the sampling error such that the 

successive terms are in decreasing order of ‘n’, in probability. When used to determine the 

moments of an estimator, this approach yields the moments of the Edgeworth expansion of that 

estimator’s distribution (Ullah, 2004, p.29). 

 

Another option, first proposed by Kadane (1971), is to approximate the finite-sample moments of 

the estimator by using an expansion of the sampling error such that successive terms are in 

decreasing order of the population standard deviation, σ, in probability. These ‘small-

disturbance’, or ‘small-σ’, approximations have been found to be extremely valuable for a 

number of problems in econometrics. They are valid for any sample size, and they have the 

additional merit that they do not require any additional assumptions about the behaviour of the 

sample moments of the data as n increases. Assumptions of the latter type are required for the 

validity of ‘large-n’ expansions, and can be difficult to verify in practice. A good recent 

discussion of ‘small-disturbance’ expansions is given by Ullah (2004, pp.36-45). 

  

Now, consider the following data-generating process: 

 

ii uy σµ +=  ; i = 1, 2, …., n            (2) 

 

where 0≠µ and the ui’s are independently and identically distributed with 
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So, the skewness of the population distribution is 1γ , and 2γ  is its excess kurtosis. The 

)(αGE inequality measures in (1) are highly non-linear functions of the data. If they are 

constructed from a sample of data from this population, they will be biased estimators of their 

population counterparts. Our primary objective is to determine the magnitude of this bias, under 
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very mild assumptions about the population distribution, to O(σ4), and we use the following 

result. 
 

Lemma 1 (Ullah, 2004, p.38.) 

Let ‘y’ be an n-element random vector, with uy σµ += , where ‘u’ satisfies the conditions in (3) 

above, and the non-zero mean, µ, is a function of a parameter vector, θ. Let )(ˆ yh=θ be an 

estimator of θ, where h(y) and its derivatives exist in a neighborhood of µ. Then3 
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3. Bias Results 

 

Our main result, the proof of which is given in the Appendix, now follows. 

 

Theorem 1 

Viewing )(αGE in (1) as an estimator of the corresponding underlying population inequality 

measure, 
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Interpreting this result, first note that, to )( 2σO , for any population distribution 
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where )/( µσυ = is the population coefficient of variation. So, to this rather crude order of 

approximation, )2(GE is 100% upward-biased! This expression is independent of α, and is 

strictly positive. Let us now consider more accurate bias expressions associated with some 

important choices of α. The following results emerge immediately from (5): 

 

Corollary 1 

To )( 4σO , 
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Differentiating these expressions with respect to 1γ , it is easily shown that in these three cases the 

bias is a decreasing function of skewness if .0>µ  This is consistent with Deltas’s (2003) Monte 

Carlo evidence for the Gini coefficient in very small samples. Many distributions (e.g., the log-

normal) that may be of interest in the context of the distribution of incomes are leptokurtic. Now 

suppose that the underlying population is leptokurtic or mesokurtic, so 02 ≥γ . It follows 

immediately from (6) – (8) that in these cases, to )( 4σO , )(αGE will be biased upwards if the 

data are negatively skewed. This is consistent with Breunig’s (2001) ‘large-n’ result for CV2. 

However, when measuring inequality, in practice a more interesting case is when .01 >γ  

 

Corollary 2  

If the population distribution has a positive mean and is positively skewed, then the biases in 

Theorem 2 will be positive, to )( 4σO , if and only if:4 
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To illustrate these results further, note that under the parameterization in (3), for the log-normal 

distribution υ  = (e – 1)1/2 = 1.311, 1γ  = (e – 1)1/2 (e + 2) = 6.185, and 2γ  = (e4 + 2e3 + 3e2 - 3) = 

113.936. It is readily verified that for this distribution, the conditions in Corollary 2 are satisfied 

for all real  ‘n’, so each of these three inequality measures is upward-biased when the underlying 

population is log-normal. In contrast, Deltas (2003) shows that the Gini coefficient has a 

substantial downward bias in small samples for several population distributions, including the 

log-normal, and Breunig (2001, p.17) reaches the same conclusion for CV2 with log-normal data, 

on the basis of his ‘large-n’ asymptotic approximation.5  

 

Approximate bias-corrected variants of the GE inequality measures can be constructed by 

replacing µ, σ, γ1 and γ2 in (5) with their sample counterparts, y , s , g1 and g2, and then subtracting 

this estimated bias from )(αGE . For example, for )2(GE , the corresponding (approximately) 

bias-corrected measure is: 
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4. Empirical Examples 

 

We consider two empirical illustrations of the above results, each relating to industrial 

concentration in the case of very small samples. Our first example involves the size distribution 

of the five largest charter banks in Canada, where size is measured in terms of total assets.6  

These five banks dominate the Canadian banking sector, and are the focus of attention in the 
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context of potential bank mergers. The raw and bias-corrected values for )0(GE , )1(GE  and 

)2(GE for the years 2001 to 2003 appear in Table 1. In each case, the inequality measures are 

biased upwards by a substantial margin. In both value and percentage terms, these biases are very 

similar for )0(GE and )2(GE . In all cases, it is clear that neglecting the bias that arises here due 

to the small sample and the small amount of variation in the data, would be most unwise. 

 

Our second example is for the distributions of the market capitalization of the five largest firms in 

selected U.S. industries.7 Interest in the degree of concentration with respect to the largest four or 

five firms in an industry arises in antitrust cases, for example.8 The results in Table 2 again 

illustrate the substantial biases that can arise when the sample is this small. Also shown in Tables 

1 and 2 are the corresponding percentage biases that would be inferred if Breunig’s (2001) ‘large-

n’ bias approximation were used. From Breunig’s equation (5), the bias of )2(GE  to O(n-1) is 

 

]2)2(6][/)2([)]2([ 1
2/32/12/3 γ−= GEnGEGEBiasn . 

 

These estimated biases are dramatically different in magnitude, and often in sign, from our own 

results. This underscores the potential danger of using a ‘finite sample’ approximation, based on 

an asymptotic expansion that is valid only as the sample size grows, when in fact the sample size 

is fixed at a very small value. In this case, our ‘small-σ’ approximation may be especially useful. 

 

The magnitudes of the biases in these examples may seem surprising. However, by way of an 

example, Deltas (2003) finds comparable biases for the Gini coefficient in similar circumstances. 

His study involves 101 early twentieth century shipping cartels, each comprising between 2 and 

24 firms, with an average of 6.2 firms per cartel. For these data the raw Gini coefficients for the 

distribution of firm size within the cartels are all biased downwards, on average by 40.1%, and by 

degrees ranging from 4.3% to 100%. Indeed, 20% of the biases are effectively 100% in 

magnitude.9 In addition, Breunig (2001, p.18) reports that his ‘large-n’ bias corrections result in a 

change of over 5% for the squared coefficient of variation measure in a sample of 2,400 Kenyan 

households. 
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5. Conclusions 

 

The general entropy family provides a rich and appealing group of measures that are suitable for 

measuring inequality in income or industrial concentration. When these measures are calculated 

in practice, they yield estimates of their underlying population counterparts, and this naturally 

raises the question of their quality in this respect. In this paper we focus on the bias of such 

measures, especially when the sample size is very small. This situation is especially pertinent in 

the context of evaluating industrial concentration, for example. In this case, approximations to the 

bias that rely on infinitely large, or increasingly large, sample sizes are of little use. 

 

We provide analytic expressions for the bias of members of the generalized entropy family, based 

on an analytic expansion whose accuracy relies on increasingly small sampling error, rather than 

increasingly large sample size. We also show how these results can be used to construct 

(approximately) bias-adjusted inequality measures, and we illustrate their application with 

industrial concentration data for Canada and the U.S.A.. These empirical examples provide a 

graphic illustration of the extent to which bias corrections based on large sample approximations 

can be misleading in certain practical situations. 
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Table 1. Inequality Measures and Biases: Assets of Canadian Charter Banks 

 

Year*        Raw Measures**             Bias-Corrected Measures 

 

)0(GE   )1(GE   )2(GE *** )0(ÊG   )1(ÊG   )2(ÊG  

  

    

2001 0.00843  0.00853  0.00869  0.00195  0.00180  0.00183 

 (76.90)  (78.50)  (78.02) [1.04] 

                 

2002 0.00972  0.01012  0.01061  0.00244  0.00545  0.00239 

 (74.88)  (76.34)  (75.13) [1.28] 

                   

2003 0.01363  0.01451  0.01555  0.00375  0.01018  0.00369 

 (72.48)  (74.55)  (72.84) [1.87]  

          

 
* As at 31 October.  

** Percentage biases appear in parentheses. 

*** Percentage biases based on Breunig’s (2001) ‘large-n’ approximation appear in square brackets. 
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Table 2. Inequality Measures and Biases: Capitalized Values in U.S. Industries 

 

Industry*          Raw Measures**             Bias-Corrected Measures 

 

)0(GE   )1(GE   )2(GE *** )0(ÊG   )1(ÊG     )2(ÊG  

 

AM 0.23872  0.24076  0.27632  0.16381  0.01932  0.03376 

 (31.38)  (85.98)  (74.44) [-1.65]                

CE 0.05430  0.04622  0.04096  0.01460  0.00381  0.00587 

 (73.11)  (87.30)  (92.26) [14.71] 

CH 0.17926  0.17100  0.17378  0.12340  0.09328  0.03387 

 (31.16)  (80.19)  (82.24) [11.56] 

DM 0.06338  0.05749  0.05430  0.02086  0.01777  0.00950 

 (67.08)  (83.48)  (86.13) [9.09]             

EU 0.01644  0.01570  0.01511  0.00368  0.00570  0.00237 

 (77.61)  (84.97)  (84.20) [5.34] 

MCB 0.07263  0.07132  0.07279  0.02902  0.04177  0.01489 

 (60.03)  (79.12)  (78.97) [1.68]  

MP 0.08533  0.08857  0.09621  0.03864  0.07028  0.02090 

 (54.72)  (76.41)  (73.45) [-4.85] 

OG 0.08762  0.09026  0.10099  0.04095  0.07028  0.02031 

 (53.27)  (77.50)  (72.72) [-5.55]  

SD 0.55431  0.43084  0.41461  0.63033  0.13052  0.06538 

 (-13.71)  (84.82)  (92.36) [34.64] 

SP 0.02256  0.02324  0.02420  0.00645  0.01601  0.00534 

 (71.41)  (76.98)  (76.12) [-3.47]  

TS 0.19120  0.16738  0.16001  0.11369  0.05752  0.02835 

 (40.54)  (83.06)  (86.91) [15.27] 

 
* AM = Automobile Manufacturers; CE = Communication Equipment; CH = Chemicals (Major 

Diversified); DM = Drug Manufacturers; EU = Electric Utilities; MCB = Money Center Banks; 

MP = Meat Products; OG = Oil & Gas (Major Integrated); SD = Soft Drinks; SP = Shipping; TS = 

Telecom Services (Domestic). 

** Percentage biases appear in parentheses. 

*** Percentage biases based on Breunig’s (2001) ‘large-n’ approximation appear in square brackets. 



 11

Appendix: Proof of Theorem 1 
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Some tedious but straightforward partial differentiation yields the following results: 
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From (A.2) – (A.4), 
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Further, distinguishing between the cases where j = k and kj ≠ , and using (A.6) and the results 

immediately before (A.5): 
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Substituting (A.7) – (A.10) into equation (4) completes the proof of Theorem 1. 
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Footnotes 

 

* I am extremely grateful to Qian Chen for her excellent research assistance, to Aman 

 Ullah for his very helpful comments and suggestions, and to George Deltas for 

 supplying the data used in Deltas (2003). 

1. The results for )0(GE and )1(GE are obtained by applying l’Hôpital’s rule. 

2. This result involves an approximation to O(n-1), where ‘n’ is the sample size. 

3. This result was obtained for non-Normal distributions by Ullah et al. (1995). 

4. Note that it makes sense to measure inequality only if n > 1. These inequalities are 

 preserved in the relatively uninteresting case where 0<µ  if the coefficient of variation 

 is re-defined as |)|/( µσυ = to preserve a positive dispersion measure. 

5. It should be noted that his result for the case where 01 >γ does not depend on 2γ or ‘n’. 

6. Source: www.etrade.ca  

7. Market capitalizations are at the end of trading on the NYSE on 26 July 2005.  

Source: www.yahoo.com 

8. Of course, other measures of concentration are also commonly used. The Herfindahl 

 index is popular in this context, and Hall (2005) provides the exact bias for this measure 

 in the context of count data. 

9. These biases are not reported explicitly by Deltas, but have been calculated from the data 

 that he kindly supplied. 

 


