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1 Introduction

The economics of sport serves as a perhaps stereotypical example of the gradual emergence

into respectability of a new field within a discipline. Beginning in scattered journal articles

and spoken of in hushed and mocking tones as the bastard child of other areas like labor

economics and industrial organization, the field gradually became recognizable in occasional

books and edited volumes. Its maturity is now evidenced by the establishment of the Journal

of Sports Economics, survey articles in the Journal of Economic Literature (Fort and Quirk,

1995; Szymanski, 2003), a symposium in the Economic Journal (2001), and the frequent

inclusion of sessions related to sports economics in conference programs. Courses on sports

economics have usurped a place in undergraduate calendars as a popular elective, a market

now served by several textbooks such as Downward and Dawson (2000), Fort (2003), Leeds

and von Allmen (2002), and Sandy, Sloane, and Rosentraub (2004). The field is now well-

placed to claim its noble lineage to such pioneering contributions as Rottenberg (1956),

Jones (1969), Scully (1974), and Rosen (1981).

This emergence is in large measure attributable to the quality and quantity of data

available for this industry. Whereas data on conventional markets and industries is often

difficult to obtain—particularly at the level of individual agents such as firms and workers—

a vast array of data are readily available on teams and players. Thus sports economics

has provided a natural testing ground for ideas that in principle might be of interest in

other industries or markets, but where data limitations constrain empirical inquiry. Sports

economics has, therefore, emerged as a heavily empirical discipline.

The essential premise of the field is that sports teams may be modeled as profit maximiz-

ing firms serving a demand for their product in their output market. This in turn generates

a derived demand for their factors of production—most importantly players. The nature

of the industry provides almost endless scope for collusive and strategic behavior in these

product and factor markets, and most research in the field concerns itself in one way or

another with aspects of this product or factor market activity.

However the analogy of players and teams with conventional workers and firms only

extends so far, and there is much that is specific to sports as an industry that must be

treated in empirical analysis. For example, the dominant component of team variable costs
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is player salaries, and one view is that the factors of production are properly viewed as the

skill characteristics embodied in players. Although these skill characteristics are directly

measurable, their prices are not: instead they are hedonic prices that must be estimated.

This interpretation of the factor market for players as an “implicit market” for their skills is

exposited in detail in Stewart and Jones (1998) and applied in Ferguson, Jones, and Stewart

(2000).

Similarly, the nature of output in the industry is less clear-cut than in conventional

industries. If teams serve a demand for their output in their product market, what is that

output? Consumer demand for the product has traditionally been viewed as a demand for

attendance at sporting events: see Cairns (1990), Downward and Dawson (2000, Chaps.

5,6), and Fort (2003, Chap. 2). However, clearly teams do not literally produce attendance;

instead attendance is being used as a proxy for the direct outputs of teams that are less

readily measurable. But what are these direct outputs?

The conjecture of this paper is that teams are best thought of as multi-product firms with

two outputs, performance and entertainment. In our view it is these outputs that in turn

determine attendance and gate receipts (and, peripherally, concession and parking income),

media and merchandizing revenue, and ultimately profits. If our notion is correct, and if

performance and entertainment can be separated and measured satisfactorily, estimations

of behavioral outcomes will, presumably, be more accurate than those based on a single

omnibus attendance variable. This, in turn, calls into question the adequacy in sports

economics of demand analyses based on the assumption that teams produce a single output.

We explore our conjecture by applying the methodology that is used to study multi-

product firms in other industries: a multi-output cost function. In doing this, we adopt the

view of Stewart and Jones (1998) and Ferguson, Jones, and Stewart (2000) of the factor

market as an implicit market for player skills in which factor prices are hedonic. As in

those studies, we focus our analysis on Major League Baseball, the only sport in which the

detailed salary and player skill data are available to estimate the necessary hedonic prices.

In principle, however, the procedure should be applicable to any team sport.

We find that single output measures are rejected, suggesting that sports teams should

be viewed as multi-product firms. There is, however, evidence that these multiple outputs

may sometimes be adequately treated as a production aggregate.

2 Modeling Framework

Adopting the premise of sports economics generally, we draw on the standard microeconomic

theory of the firm to describe sports teams. It is assumed that teams maximize profit by

2



employing inputs x = [x1, . . . , xn] to produce outputs y = [y1, . . . , ym] using a technology

t(y, x) = 0. (1)

The dual of this profit maximization problem is the cost function

C(y, p), (2)

where p = [p1, . . . , pn] is the vector of factor prices. The n factor demand equations may be

obtained using Shephard’s lemma:

xi =
∂C(y, p)

∂pi
= xi(y, p) (i = 1, . . . , n). (3)

Potentially this cost function may be parameterized in a number of ways. By far the most

widely used cost function in empirical work, in both single- and multiple-output contexts,

has been the translog. However it has several important limitations that have increasingly

led researchers to turn to alternative flexible functional forms, notably the symmetric gen-

eralized McFadden (SGM) cost function of Diewert and Wales (1987). The most common

motivation for using the SGM model is that it permits the imposition of concavity, some-

thing that the translog does not.1 However for our purposes there are even more important

reasons for using the SGM model. First, the translog model applies logarithmic transforma-

tions to all variables and so is not applicable in contexts in which some observations have

zero prices or output levels. Although some modifications of the translog model address this

through the use of Box-Cox terms, the cleanest approach is to abandon the model entirely

in favor of one that is formulated in terms of the untransformed variables, as is the SGM

model. Second, in applying Shephard’s lemma to derive factor demands from the cost func-

tion, key parameters of the translog model relating to the dependence of cost on output are

lost. Consequently some important hypotheses and elasticities—such as those relating to

returns to scale—require the estimation of the cost function joint with the system of factor

demands, something that requires data on the level of costs. By contrast, the SGM model

involves no loss of parameters in going from the cost function to the factor demands, and so

the estimation of the factor demand system alone enables the recovery of all the parameters

of the cost function. Both these considerations turn out to be of critical importance in

studying baseball teams as multi-product firms.

2.1 Separability and Output Aggregation

A special case that is of particular interest in the present context is that in certain circum-

stances the production technology (1) may be separable of the form ψ(y) = f(x). The

function ψ(·) may be interpreted as an aggregator so that ψ(y) is a single aggregate output.
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In this case it is well known from Hall (1973) that the cost function (2) can be written as

C(p, ψ(y)), and the factor demands take the form

xi =
∂C(p, ψ(y))

∂pi
= xi(p, ψ(y)) (i = 1, . . . , n). (4)

The traditional situation of a single output y is the special case in which the production

technology is y = f(x), the cost function has the form C(p, y), and the factor demands are2

xi =
∂C(p, y)

∂pi
= xi(p, y) (i = 1, . . . , n). (5)

In this framework there are two ways of interpreting the question posed by the title

of this paper. One is as the hypothesis that modeling teams as multi-output producers is

not a significant improvement over viewing them as single-output producers, so that the

multi-output factor demand system (3) is no better a description of team behavior than

the system (5) based on a single output. In this paper we use model selection criteria and

nested and nonnested testing to examine this hypothesis.

The second way of interpreting the question of this paper is as the hypothesis that teams’

production technologies are separable, so that even if teams produce more than one output

these outputs are treated in their production decisions as a single aggregate ψ(y). This is

the restriction of the general demand system (3) to the separable system (4). In the context

of the SGM model it turns out that as long as we consider aggregator functions of a linear

form,

ψ(y) =
∑

k

βkyk, (6)

separability imposes parametric restrictions on the general demand system (3) that can be

tested. Because the aggregator ψ(y) is an argument of xi(p, ψ(y)) it is identified only up to

a multiplicative constant and so requires an additional normalizing restriction in estimation,

something we comment further on below. Essentially, then, ψ(y) has the interpretation as

a production index with arbitrary base determined by the normalization.

3 Data

Our SGM factor demand system for baseball player skills is based on m = 2 outputs yt =

[y1t, y2t] and n = 4 inputs xt = [x1t, x2t, x3t, x4t]. These are observed over the 1986–91

seasons for the 26 major league baseball teams that existed during those years, for a total

of T = 156 observations indexed by t.

As described in the introduction, our conjecture is that teams’ outputs are best thought of

as performance y1 and entertainment y2. The obvious measure of a team’s performance is the

proportion of the games it wins over the season (“wins” for short). An appropriate measure
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Figure 1: Wins and road attendance, 1986–91: correlation = 0.364

of a team’s entertainment value is, on the other hand, more elusive: home attendance as

such a measure, for example, is inextricably confounded with team performance. In an

attempt to abstract from performance in measuring the entertainment value of a team, we

propose the total season attendance at its games away from home (“road attendance” for

short). That is, all other things equal, entertaining teams should draw large crowds when

on the road. Their performance, on the other hand, works in two offsetting directions that

may roughly balance in affecting road attendance. On one hand, it might be thought that

high-performance teams should draw large crowds at their away games. But on the other

hand, home town fans tend to stay away from games that the home team is likely to lose.

Because performance works in offsetting directions in its affect on road attendance, road

attendance figures may be regarded as primarily reflecting a team’s entertainment value.

In summary, our two outputs are

y1t = team performance, measured by wins;
y2t = entertainment value of the team, measured by road attendance.

It is to be emphasized that neither of these corresponds to the measure of output most often

used in the sports literature, which is, as we noted in the introduction,

y3t = attendance at home games (“home attendance” for short).

To be sure, y1t and y2t are positively related to some degree: winning teams tend to

draw large crowds at their away games. But as the scatter plot of our complete sample of

(y1t, y2t) values in Figure 1 indicates, the relationship is not particularly strong: the sample

correlation is 0.364. This suggests that the idea that these outputs play distinct roles in

teams’ production decisions is not to be dismissed out of hand.
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Teams produce these outputs by employing player skills. Following Stewart and Jones

(1998), our four skill inputs are defined as follows:

x1t = experience, measured by the total years of experience in the major
leagues of all players on the team;

x2t = hitting skills, measured by the published team slugging average
for the current season, scaled by the number of hitters;

x3t = pitching skills, measured by the ratio of total strikeouts to walks
for all pitchers over the current season, scaled by the number of pitchers;

x4t = stars, measured by the number of players who were elected to the
Sporting News All-Star or Gold Glove teams, or who played in the
all-star game, in the current season.

Hitting and pitching skills x2t and x3t are each scaled by the number of players involved

in order to yield factor inputs interpretable as total rather than average quantities, con-

sistent with the other two inputs x1t and x4t. The justification for the choice of these

skill characteristics and the details of the estimation of the associated hedonic price vectors

pt = [p1t, p2t, p3t, p4t] are discussed in Stewart and Jones.

Is there any reason to accept our premise that estimated hedonic prices for player skills

can be treated like observed prices for the purpose of applied demand analysis? As a simple

descriptive check on the data, Stewart and Jones computed the cost identity

costs =
n∑

i=1

pitxit = p1tx1t + p2tx2t + p3tx3t + p4tx4t. (7)

The resulting cost series is obtained from estimated hedonic prices and so we will call it

hedonic costs to distinguish it from observed cost data. Because it is, in this sense, a

synthetically constructed series, it would be inappropriate to use it in place of observed cost

data in the estimation of a cost function. Even so, it may be used to obtain the implied

cost shares

vit =
pitxit

costs
(i = 1, . . . , 4).

The average values for these shares obtained by Stewart and Jones are reproduced in Table

1, and imply an entirely plausible breakdown of team variable costs. The estimated hedonic

prices suggest that almost half of the typical team’s payroll is a payment to hitting skills, a

third is for experience, and 12.4% is for pitching skills. Only about 6% is for stars; that is,

controlling for the other skills that stars bring to a team and taking into account the small

number of stars on a team, the employment of stars accounts for a fairly small fraction of

variable costs.

In the present context where the SGM cost function can be reconstructed from the

demand estimates, another simple check on the hedonic approach is available. The estimated

demand system can be used to obtain a fitted cost series that can be compared with hedonic

costs. Consistency between the series serves as an internal check on the legitimacy of our

approach.
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Table 1: Mean Hedonic Cost Shares v̄i

experience: v̄1 = 0.338
hitting: v̄2 = 0.476

pitching: v̄3 = 0.124
stars: v̄4 = 0.061

4 The Multi-Output SGM Demand System

Let us turn to the parameterization of the multi-output cost function (2) that is provided

by the SGM model.

The single-output SGM cost function of Diewert and Wales (1987) has been extended

to the multi-output context by Kumbhakar (1994):

C(y,p) = g(p)
∑

k

βkyk +
∑

i

bipi +
∑

i

biipi

(∑

k

βkyk

)
+

(∑

i

λipi

)∑

j

∑

k

djkyjyk

where

g(p) =
p′Sp

2θ′p
.

Because the matrix S appears in a quadratic form, without loss of generality it is specified

to be symmetric (so sij = sji) and satisfy
∑

i sij = 0 for all j. For similar reasons the djk

are specified as symmetric and a further identifying restriction is imposed on them that we

comment on momentarily. As in Diewert and Wales’s (1987) original single-output version

of the model, for estimation purposes each component of θ is set equal to the sample mean

of the corresponding factor demand: θi = x̄i for all i. By the cost identity (7), θ′p has the

interpretation as the value of costs at the mean level of factor inputs.

Applying Shephard’s lemma, the factor demand system (3) is

xi = gi(p)
∑

k

βkyk + bi + bii

∑

k

βkyk + λi

∑

j

∑

k

djkyjyk (i = 1, . . . , n) (8)

where, letting S(i) denote the ith row of the matrix S,

gi(p) ≡ ∂g(p)
∂pi

=
S(i)p

θ′p
− θip

′Sp

2(θ′p)2
. (9)

Special Case of Two Outputs

In our case of m = 2 outputs this demand system is, using the symmetry restriction d12 =

d21,

xi = gi(p)(β1y1+β2y2)+bi+bii(β1y1+β2y2)+λi(d11y
2
1+2d12y1y2+d22y

2
2) (i = 1, . . . , n).
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Inspection reveals that two further normalizing restrictions are needed for the parameters

of this demand system to be identified. The first is with respect to the coefficients β1 and

β2, which are not separately identified jointly with the sij or bii in the first and third terms.

Although any linear restriction on the βk would serve to identify them (for example, that

they be required to sum to one), estimation is aided by simply setting β1 = 1.

The second normalizing restriction is with respect to the djk, which are not separately

identified jointly with λi in the fourth term. Again, although in principle any linear restric-

tion would identify the djk, estimation is aided by setting d11 = 1.

With these normalizing restrictions, and simplifying notation by relabelling β2 as β, the

SGM demand system with two outputs becomes

M0 : xi = gi(p)(y1 +βy2)+bi +bii(y1 +βy2)+λi(y2
1 +2d12y1y2 +d22y

2
2) (i = 1, . . . , n).

5 Single- Versus Multiple-Outputs

Is the multi-output SGM model a better description of baseball team production decisions

than its single-output counterparts?

Consider the original Diewert and Wales (1987) single-output version of the SGM model,

assigning either wins y1 or road attendance y2 the role of the single output. The factor

demand system (5) is, for each output respectively,3

M1 : xi = gi(p)y1 + bi + biiy1 + λiy
2
1 (i = 1, . . . , n) (10a)

M2 : xi = gi(p)y2 + bi + biiy2 + λiy
2
2 (i = 1, . . . , n). (10b)

Comparing with the multi-output model M0, these are parametric special cases of that more

general model: setting β = d12 = d22 = 0 in M0 yields M1 and, by the symmetry of the

labeling of the outputs y1 and y2, M2 is similarly a special case of M0. Thus either of these

single output models can be tested as a parametric restriction of the multi-output model

(although of course M1 and M2 are nonnested in relation to one another); in the analysis

below we use likelihood ratio tests to do this.

However y1 and y2 are not the only candidates for a single output measure. The obvious

alternative is the conventional one, home attendance y3, and so in addition to the above

models we define

M3 : xi = gi(p)y3 + bi + biiy3 + λiy
2
3 (i = 1, . . . , n).

This is nonnested in relation to all three of M0, M1, and M2.

There are two approaches to comparing nonnested models: a model selection approach

based on information criteria, and nonnested testing. We consider each in the sections that

follow.
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Table 2: Model Selection

M0 M1 M2 M3

L −1532.33 −1547.63 −1564.82 −1548.52
number of coefficients K 21 18 18 18

BIC= −L +
K

2
ln(nT ) 1599.91 1605.56 1622.74 1606.45

5.1 Model Selection Criteria

Let us begin with the model selection approach to comparing our four models, the two-

output model M0 and the single-output models M1, M2, and M3. Their loglikelihood

function values L are reported in Table 2. The loglikelihoods for the single-output models

are directly comparable because they have the same number of parameters, and on this basis

the preference ranking is M1, M3, M2. This is intuitively plausible: if it were necessary to

choose a single output measure a priori, one would almost certainly choose wins or home

attendance rather than road attendance. Note as well that the loglikelihoods of M1 and M3

are almost the same, so the preference for wins over home attendance as the output measure

is a marginal one.

Turning to the two-output model M0, it has a higher loglikelihood than any of the single-

output models, but it is also more generously parameterized. To penalize these additional

parameters we use Schwartz’s Bayesian information criterion (BIC) which, compared to

other popular model selection criteria such as the Akaike information criterion, imposes a

relatively heavy penalty for additional parameters, and in this sense is biased against the

multi-output model. The BIC values are reported in the final line of Table 2. The multi-

output model has a substantially lower BIC than any of the single-output models, indicating

that it is preferred. (A smaller BIC means a preferred model.) Note that, because the single-

output models have the same number of parameters, the ranking of them given by the BIC

is the same as that yielded by L .

5.2 Nested Testing

Because M1 and M2 are each restricted versions of M0, a likelihood ratio (LR) test can

be used to test them. (We use LR tests because our demand systems are nonlinear,

a situation in which Wald statisics—the natural alternative test—have poor invariance

properties.) Using the loglikelihood function values from Table 2, the LR statistic for

M1 against M0 is 2[−1532.33 − (−1547.63)] = 30.60, while that for M2 against M0 is

2[−1532.33−(−1564.82)] = 64.98; both reject the three restrictions in question very strongly.
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(For example, χ2
0.01(3) = 11.34.)

Since the data clearly reject both of M1 and M2 against the multi-output model, these

results are fully consistent with the findings from the model selection criteria.

5.3 Model Selection Tests

The model selection test methodology of Vuong (1989) provides another way of compar-

ing our four models. The likelihood ratio tests just discussed use the traditional Neyman-

Pearson framework of treating null and alternative hypotheses asymmetrically, asking whether

the data provide compelling evidence against the restrictions of the null. We have found

that, in the case of M1 and M2, it does.

By contrast Vuong’s test, although still likelihood-based, treats alternative models sym-

metrically, asking whether the data provide evidence that one is closer to a hypothetical

true model. Our primary interest is in using this to compare models that are nonnested,

namely M3 versus M0 and M1, M2, and M3 against one another. Nevertheless it is also of

interest to use it to compare the nested models—M0 with either of M1 or M2—comparing

the findings with those yielded by the likelihood ratio tests.

The interpretation of Vuong’s test differs somewhat from most nonnested tests and so

requires an understanding of the mechanics of his procedure. It is therefore useful to begin

with a sketch of those mechanics as they apply to our context.

Outline of Vuong’s Model Selection Test

Consider any two of the demand systems M0, M1, M2, and M3. Following Vuong’s notation,

denote the estimable versions of these two models as the following n-equation multivariate

regressions:

Yt = F (Zt; θ) + ut

Yt = G(Zt; γ) + vt.

Here Y ′
t = [x1t · · ·xnt] is the vector of n factors at observation t; Zt is the vector of right

hand side variables. (In the multi-output model M0 this would comprise the full set of

prices and outputs, Zt = [pt; yt], while in the single-output models this would specialize

accordingly.) The disturbances ut and vt are n×1 multivariate normal disturbance vectors,

statistically independent across observations indexed by t.

Consider the first of these demand systems, F (·), and let the covariance matrix of ut be

denoted by Ω : n × n. Let the density of Yt conditional on Zt be denoted f(Yt|Zt, θ). The

logarithm of this conditional density is

lnf(Yt|Zt, θ) = −1
2
T ln(2π)− 1

2
T ln|Ω| − 1

2
u′tΩ

−1ut.
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The loglikelihood function is the sum of these log-densities:

LF (θ) =
∑

t

lnf(Yt|Zt, θ).

The loglikelihood function for the second demand system G(·) is defined analogously:

LG(γ) =
∑

t

lng(Yt|Zt, γ).

Let θ̂ and γ̂ denote the respective maximum likelihood estimators, and LF (θ̂) and LG(γ̂)

the associated maximized loglikelihood function values. In the case of model F , for example,

in which the estimated covariance matrix is denoted Ω̂ and the n× 1 vector of residuals at

observation t is ût = Yt − F (Zt; θ̂), the loglikelihood function value is computed as

LF (θ̂) =
∑

t

lnf(Yt|Zt, θ̂) =
∑

t

[
−1

2
T ln(2π)− 1

2
T ln|Ω̂| − 1

2
û′tΩ̂

−1ût

]
,

and similarly for LG(γ̂).

The observation-by-observation components lnf(Yt|Zt, θ̂) and lng(Yt|Zt, γ̂) of the loglike-

lihood functions are used in the calculation of Vuong’s test statistic. The null hypothesis

that the competing models F and G are equally close to the (unobservable) true model is

stated as

H0 : E0

[
ln

f(Yt|Zt, θ)
g(Yt|Zt, γ)

]
= 0, (11)

where E0 denotes the mathematical expectation with respect to the true conditional density

of Yt. Vuong’s methodology allows this null to be tested against the alternative that F is

closer to the true model than is G,

HF : E0

[
ln

f(Yt|Zt, θ)
g(Yt|Zt, γ)

]
> 0,

and against the alternative that G is closer to the true model than is F ,

HG : E0

[
ln

f(Yt|Zt, θ)
g(Yt|Zt, γ)

]
< 0.

Thus the alternative hypothesis is two-sided.

The test proceeds by using the sample values of the argument of these mathematical

expectations,

`t ≡ lnf(Yt|Zt, θ̂)− lng(Yt|Zt, γ̂) (t = 1, . . . , T ).

The expected value of these deviations is consistently estimated by their sample mean

¯̀=
1
T

∑
t

`t =
1
T

[LF (θ̂)−LG(γ̂)],

while their variance is consistently estimated by

ω̂2 =
1
T

∑
t

(`t − ¯̀)2.
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In analogy with an elementary Student’s t test of a population mean, Vuong shows that the

statistic
¯̀

ω̂/
√

T
=

LF (θ̂)−LG(γ̂)√
T ω̂

is asymptotically standard normal under the null hypothesis H0 given by (11).

Notice that, as we have remarked, Vuong’s procedure treats the competing models sym-

metrically in the formulation of the hypotheses. This is in contrast to most nonnested

tests, where the models are given the asymmetric roles of null and alternative hypotheses,

creating the possibility of inconclusive test outcomes in which both models are rejected or

neither is rejected. An appealing feature of Vuong’s test is that it does not suffer from such

ambiguities of interpretation.

Model Comparisons

Considering the models M0, M1, M2, and M3, Vuong’s test may be applied to any pair

taken from the four. The various possibilities are considered in Table 3. (We conduct

these tests without imposing concavity or separability in order that they not be contingent

on potentially false maintained hypotheses.) It turns out that Vuong’s test yields much

the same conclusions about these models that the information criteria and LR tests did,

although with some new insights. We begin by comparing the two-output model M0 with

the single-output models, and then turn to comparing the single-output models M1, M2,

and M3 among themselves.

Comparing the Multiple- and Single-Output Models Consider first the tests of the

multi-output model M0 against each of the single-output models. When the single-output

model is M1 or M2 the null hypothesis that the multi- and single-output models are equally

close to the true model is strongly rejected in favor of the alternative that the multi-output

model is closer. The rejection is especially strong for the single-output model M2 in which

the output measure is road attendance y2. Not surprisingly, these conclusions are entirely

consistent with those yielded by the LR tests in Section 5.2: if the data strongly reject

restrictions in a Neyman-Pearson framework, they are bound to favor a model in which the

restrictions are not imposed when models are treated symmetrically.

Turning to the more interesting case of the nonnested models M0 and M3, here the

rejection of the single-output model is less strong: the p -value is 0.0500. Somewhat in

contrast to the conclusion yielded by information criteria, therefore, M3 is the least-strongly

rejected of the single-output models—a finding perhaps heartening to researchers who have

followed the traditional practice of using home attendance y3 as a single output measure.

In any case, however, it seems fair to say that the evidence strongly favors the multi-output
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Table 3: Vuong Selection Tests of Multiple- and Single-Output Models

Model Assignment Test
Statistic p -value Conclusion implied by a rejection (in the

F G Value (one-tailed) direction given by the sign of the test statistic):

M0 M1 2.682 0.0037 Two-output model better than single-output
model based on y1 = wins

M0 M2 3.546 0.0002 Two-output model better than single-output
model based on y2 = road attendance

M0 M3 1.645 0.0500 Two-output model better than single-output
model based on y3 = home attendance

M1 M2 1.579 0.0552 Given choice of a single output, model
based on y1 = wins is better than model
based on y2 = road attendance

M1 M3 0.092 0.4633 Given choice of a single output, model
based on y1 = wins is better than model
based on y3 = home attendance

M2 M3 −1.727 0.0421 Given choice of a single output, model
based on y2 = road attendance is inferior to model
based on y3 = home attendance

model over any of the single-output ones.

Comparing the Single-Output Models Suppose that we nevertheless limit ourselves a

priori to the single-output models. We have seen that information criteria yield the ranking

M1, M3, M2, but with M1 and M3 being very close. The last three tests in Table 3 are

consistent with this. The first and third offer fairly strong evidence rejecting M2 relative to

either M1 or M3, with p -values of 0.0552 and 0.0421 respectively. Again, it is intuitively

plausible that road attendance alone should be rejected as a satisfactory output measure.

Comparing M1 and M3, the one-sided p -value is 0.4633; the null that the two models

are equally close to the true model is therefore not rejected. Thus nonnested testing does

not clearly favor one or the other of wins or home attendance as a single output measure.

5.4 Conclusions

In summary, we have found that model selection criteria, LR tests of the nested models,

and Vuong’s model selection tests yield a largely consistent picture of the validity of the

competing models. The two-output model is clearly preferred, with the data providing fairly

strong evidence against any of the single-output models. But if one limits oneself a priori to

a single output measure, on purely statistical grounds there is no strong basis for choosing

between wins y1 and home attendance y3.
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6 Separability

Although these results suggest that performance and entertainment value are both team

outputs, it is conceivable that teams may treat them as a single aggregate output. This is

the hypothesis of separability.

As result (4) indicates, under separability the SGM factor demands take the form of the

single-output demands (10) in which the single output is the aggregate ψ(y):

xi = gi(p)ψ(y) + bi + biiψ(y) + λiψ
2(y) (i = 1, . . . , n). (12)

Here gi(p) is the same as in the multi-output case, and so is given by equation (9); since it

does not involve output, it is not affected by the restrictions associated with separability.

6.1 Testing for Separability

Suppose that separability holds and ψ(y) is an aggregator of the linear form (6). Substituting

this into the demand system (12) yields the special case of the multi-output demands (8) in

which the following restrictions are imposed:

djk = βjβk (j, k = 1, . . . , m).

Thus the hypothesis that outputs are linearly aggregable into a single output measure is

testable as a restricted version of the multi-output system.

In our case of m = 2 outputs, the separable factor demands (12) with a linear aggregator

are

M4 : xi = gi(p)(y1 + βy2) + bi + bii(y1 + βy2) + λi(y2
1 + 2βy1y2 + β2y2

2) (i = 1, . . . , n).

Notice that, just as in the general model M0, identification requires that we impose the

normalizing restriction β1 = 1, which has the effect of eliminating the coefficient on y1 in

all terms. As before, notation is simplified by relabeling β2 as β.

Comparing M4 with M0, it is evident that the hypothesis of separability comprises the

two restrictions d12 = β and d22 = β2. Likelihood ratio tests of these joint restrictions

are presented in Table 4. The test outcomes are similar regardless of whether concavity

is imposed on the model. Separability is not rejected at conventional significance levels,

although it comes close to being rejected at 10%. This suggests that there may sometimes

be a case for treating multiple outputs as a single aggregate.

6.2 Isocost Curves

How does the imposition of separability affect the tradeoff between outputs that teams face

in making their production decisions?
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Table 4: Tests of Separability

loglikelihood function values
LR statistic

unrestricted LU restricted LR 2(LU −LR) p -value

without concavity imposed −1532.330 −1534.471 4.282 0.118
with concavity imposed −1533.654 −1535.767 4.226 0.121

Reconstructing Costs

As our introductory remarks noted, the SGM model has the remarkable feature that there

is no loss of parameters in going from the cost function C(y, p) to the factor demands.

Consequently estimation of the factor demands permits the reconstruction of the companion

cost function, even in the absence of cost data. The reconstructed cost function may be

used to obtain the fitted values Ĉt = C(yt, pt).4

How do these reconstructed costs and their implied factor shares compare with the

hedonic costs we obtained earlier in connection with Table 1? Table 5 offers this comparison.

It shows that the reconstructed cost function—with or without concavity and/or separability

imposed—essentially reproduces the cost shares of Table 1. As well, fitted costs are highly

correlated with hedonic costs; in this sense the “goodness-of-fit” of the reconstructed cost

function is strong, and this goodness-of-fit is robust to the imposition of concavity and/or

separability. (We place “goodness-of-fit” in quotations because it is a goodness-of-fit to

hedonic rather than observed costs.) These are important numerical checks on the internal

consistency of our analysis.

Table 5: Cost Shares and Correlations of Hedonic and Fitted Costs

fitted costs

hedonic no separability separability
costs no concavity concavity no concavity concavity

v̄1 (experience) 0.338 0.343 0.345 0.343 0.345
v̄2 (hitting) 0.476 0.471 0.472 0.471 0.471
v̄3 (pitching) 0.124 0.124 0.123 0.124 0.123
v̄4 (stars) 0.061 0.062 0.060 0.062 0.060

correlation of fitted
with hedonic costs 0.983 0.983 0.982 0.982
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Figure 2: Isocost Curves

Isocost Curves

In addition to evaluating the reconstructed cost function over all points of the observed

sample, it may be evaluated at the mean of its arguments: Ĉ = C(ȳ, p̄). It is then possible

to consider the isocost tradeoff between outputs y = [y1; y2] defined by Ĉ = C(y, p̄).

Figure 2 graphs this tradeoff, both with and without separability imposed. (The graph

happens to be constructed from the cost function without concavity imposed, but it is

unaltered by the imposition of concavity.) The unrestricted model implies a conventional

curved transformation frontier, reflecting a marginal rate of transformation that varies with

the relative levels of the two outputs. In contrast, the separable model generates a linear

transformation frontier, as it must given the a priori specification of a linear aggregator.

Thus, although separability is not rejected statistically at conventional significance levels,

the implied transformation surfaces do differ qualitatively.

7 Elasticities

Our inferences about multiple outputs and separability are conditional on the legitimacy

of our model. What evidence supports the SGM cost function as a credible description of

team behavior? As always with flexible functional forms, coefficient estimates have no direct

economic interpretation. Instead the economic interpretation of the model comes from the

implied elasticities. The following elasticity formulas may be usefully compared with those

for the single-output case given by Kumbhakar (1990) and Rask (1995). In all cases we

evaluate them at the point of variable means.
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Table 6: Allen Elasticities Yielded by Multi-Output SGM Model

separability not imposed separability imposed

experience hitting pitching stars experience hitting pitching stars

concavity −0.1016 0.0378 0.0427 0.0969 −0.1016 0.0378 0.0417 0.0990
not −0.0046 −0.0375 −0.0924 −0.0041 −0.0379 −0.0974
imposed 0.0602 0.0094 0.0505 0.0469

0.4533 0.4038

concavity −0.1077 0.0389 0.0430 0.1224 −0.1080 0.0390 0.0433 0.1216
imposed −0.0141 −0.0155 −0.0442 −0.0141 −0.0156 −0.0439

−0.0172 −0.0488 −0.0173 −0.0488
−0.1390 −0.1370

7.1 Demand Elasticities

The price elasticities of demand are defined as

εij ≡ pj

xi

∂xi

∂pj
(13)

The relevant derivative is

∂xi

∂pj
=

∂gi(p)
∂pj

∑

k

βkyk =

[
sij

θ′p
− (S(i)θj + S(j)θi)p

(θ′p)2
+ θiθj

p′Sp

(θ′p)3

] ∑

k

βkyk.

Defining the factor shares

vj ≡ pjxj

C
,

the Allen elasticities are

σij ≡ εij

vj
=

pj

xi

∂xi

∂pj

C

pjxj

Table 6 gives these Allen elasticities, evaluated for each of the four versions of the

SGM model in which concavity and/or separability are imposed.5 The consideration that

motivated Diewert and Wales’s development of the SGM model is that concavity is often

not satisfied in demand data, and indeed here it is a binding constraint: it is not satisfied

unless imposed. Thus the own-price effects are all negative only in the concavity-constrained

versions of the model. Cross-substitution effects are sometimes negative, suggesting that

there may be some degree of complementarity in the employment of player skills. This is

consistent with the finding of Stewart and Jones (1998) based on a single-output Generalized

Leontief model. These elasticities are not sensitive to the imposition of separability.
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Table 7: Factor Input Elasticities With Respect to Output

separability not imposed separability imposed
skill road road
factor wins attendance wins attendance

concavity experience 0.608 0.686 0.633 0.436
not hitting 0.213 0.281 0.231 0.159
imposed pitching 0.550 0.549 0.621 0.427

stars 1.792 0.707 1.553 1.068

concavity experience 0.617 0.688 0.640 0.438
imposed hitting 0.226 0.296 0.247 0.169

pitching 0.542 0.529 0.612 0.419
stars 1.745 0.680 1.512 1.035

7.2 Factor Input Elasticities With Respect to Output

How much additional input xi is needed to achieve a one percent increase in output yk? For

example, how much additional star status is needed to increase entertainment value? This

is the elasticity
yk

xi

∂xi

∂yk
.

The relevant derivative is

∂xi

∂yk
= gi(p)βk + biiβk + 2λi

∑

j

djkyj .

These elasticities are presented in Table 7. All are positive, so that all player skills are

normal goods in team production. The values are fairly robust across the alternative versions

of the model, in particular being little affected by the imposition of concavity. According

to the non-separability-constrained model, for example, a 1% increase in road attendance

requires around a 0.7% increase in the number of stars on the team. The largest elasticities

are for the stars-wins effect, so that it takes a relatively large increase in the number of stars

to improve team performance. The smallest are for the relationships between hitting and

the two outputs; it takes a relatively small increase in hitting skills to improve either the

entertainment value or performance of teams.

7.3 Cost Elasticities

How costly is it to increase each of the outputs? This is given by the cost elasticities

εk =
yk

C

∂C

∂yk
.
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Table 8: Cost Elasticities and Elasticity of Scale

separability not imposed separability imposed

cost elasticities cost elasticities
road elasticity road elasticity

wins attendance of scale wins attendance of scale

concavity not imposed 0.441 0.452 1.120 0.455 0.313 1.302
concavity imposed 0.448 0.457 1.106 0.463 0.317 1.282

The relevant derivative is

∂C

∂yk
= g(p)βk + βk

∑

i

biipi + 2

(∑

i

λipi

)∑

j

djkyj .

The elasticity of scale—the percentage increase in the outputs generated by a 1% increase

in all inputs—is the reciprocal of the sum of the cost elasticities:

1
ε1 + ε2

.

These elasticities are reported in Table 8. All are positive, as they should be, and their

values are robust across the various versions of the model. A 1% increase in either output

individually implies a slightly less-than-1/2% increase in total costs. This translates into

an elasticity of scale slightly greater than 1, so that that a 1% increase in all player skills

results in a slightly-more-than-1% increase in team performance and entertainment value.

Although this point estimate is not greatly different from constant returns, the difference

is significant. Constant returns to scale may be tested: the restrictions bi = 0, djk = 0 make

the SGM cost function linearly homogeneous in its outputs. Introducing these restrictions

into our two-output non-separable demand system M0 reduces it from 21 to 11 coefficients.

A likelihood ratio test yields a test statistic of 86.268 which, for 10 degrees of freedom,

strongly rejects the CRTS restrictions. (For example, χ2
0.01 = 23.21.)

8 Conclusions

We have used data from Major League Baseball to estimate a system of factor demands

derived from a multi-output symmetric generalized McFadden cost function. Underlying

this approach is a conception of the factor market for players in which teams compete in an

implicit market for player skills, paying hedonic prices for those skills. The estimated model

is supported by elasticities that are plausible in sign and magnitude.

The adoption of the SGM functional form offers several advantages. First, it permits

the global imposition of concavity. Second, it allows the use of hedonic prices even when
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they take on zero values. Third, it permits the recovery of all the parameters of the cost

function even when data on costs are unavailable, as is the case here. Thus we have been

able to use the recovered cost function to obtain fitted costs, which have in turn been used

for several purposes: the calculation of Allen elasticities, the comparison of predicted and

hedonic costs as a check on the internal consistency of the analysis, and to obtain isocost

curves.

The question posed in the title of this paper has been investigated with information-

theoretic and nested and nonnested testing methods. The information-theoretic approach

indicates that the two-output model is preferred over any of the single-output versions, and

nonnested testing rejects the single-output models (the least strongly rejected model being

M3 which is based on home attendance y3, where the p -value is 0.0500). This calls into

question the adequacy of analyses in sports economics that are predicated on the assumption

that teams produce a single output—wins, attendance, or otherwise.

For researchers who nevertheless find themselves obliged to adopt a single output mea-

sure, the empirical evidence offers no strong basis for preferring either wins y1 or home

attendance y3. In our results, both these single-output models have similar likelihood val-

ues and Vuong’s test fails to reject the null that they are equally close to the true model.

In the Introduction we argued that home attendance is the derived result of team outputs

rather than itself being a direct output of the team production function—gate receipts being

just one component of revenue, no different formally from other components such as mer-

chandizing, parking, or broadcast revenue. But despite this a priori argument against home

attendance as the definition of team output it is not rejected on purely statistical grounds

relative to other single-output measures.

Although single-output models are rejected, the hypothesis of separability is not—at

least at conventional significance levels. This suggests that it may sometimes be reason-

able to view teams as producers of an output aggregate measured by a production index.

Our analysis has been based on an index based on performance and entertainment value,

measured respectively by wins and road attendance. However this has been taken as a

maintained hypothesis, and other researchers will no doubt have their own views about the

appropriate conception of team outputs and how best to measure them. Our purpose here

is not to argue that our conjectures about team outputs are the only possible ones; on the

contrary, hopefully this analysis will spur a deeper consideration of the proper specification

of team production functions. Instead our goal has been to advance the view that team

production processes should be regarded explicitly as multi-output ones—a view that may

have implications for how researchers in the expanding field of sports economics investigate

the questions of interest to them.
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Notes

1The SGM cost function is not unique in permitting the imposition of concavity. An
alternative is the Asymptotically Ideal Model (AIM) of Barnett, Geweke, and Wolfe (1991).
The importance of the SGM model is that the imposition of concavity does not destroy
the flexibility of the functional form. By contrast, Terrell (1995) demonstrates that the
flexibility of the AIM is dramatically impaired by the imposition of concavity.

2It was these single-output factor demands that were estimated by Stewart and Jones
(1998), using Generalized Leontief and translog functional forms. Since the latter expresses
factor prices in log form it was estimated over just the subsample of hedonic price vectors
consisting entirely of non-zero prices. The sensitivity of the results to alternative measures of
the single output was investigated by considering both y = wins and y = home attendance.

3In the Diewert-Wales formulation the model is presented with the dependent variables
expressed as input-output ratios xi/yi. Barring other considerations, this is the preferred
form for estimation because it mitigates heteroskedasticity. However Vuong’s test procedure
used in Section 5.3 requires the alternative models to have common dependent variables, as
is typical of most nonnested tests. Thus for the purpose of our implementation of his test
the single-output models are estimated in the form shown.

4This is of course equivalent to evaluating the cost identity (7) using the fitted factor
inputs x̂it yielded by the estimated demand functions. We have checked that this equivalence
is satisfied in our calculations.

5We do not bother to devote space to reporting the price elasticities εij as they are
not of significant independent interest. Approximate values may be obtained from the Allen
elasticities using the cost shares given in Table 5. (The values would be approximate because
using mean cost shares is not identical to evaluating the elasticity expression (13) at the
point of variable means.)
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