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Abstract 

 
We show that certain the winning bids for certain ebaY auctions obey Benford’s Law. One 

implication of this is that it is unlikely that these bids are subject to collusion among bidders, or 

“shilling” on the part of sellers. Parenthetically, we also show that numbers from the naturally 

occurring Fibonacci and Lucas sequences also obey Benford’s Law. 
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1. Introduction 

Consider the daily return on a stock on the NYSE. What is the probability that the first significant 

digit in the return is a “1”, or a “9”, for example? Contrary to what one might think, the answer is 

not (1/9) in either case. Newcomb (1881) appears to have been the first to notice that many 

naturally occurring decimal numbers have a first significant digit that is “1” with probability 

approximately 31%, while the probability of this digit being “9” is less than 5%. His examination 

of this phenomenon was motivated by observing that the first few pages of books of logarithm 

tables were generally dirtier (as a result of being thumbed more often) than were later pages. His 

results were not widely appreciated, and were unwittingly “re-discovered” by Benford (1938). 

 

Benford provided numerous examples of data that obey a particular non-uniform distribution with 

respect to first significant digits, and the phenomenon became known as “Benford’s Law”. His 

examples included the areas of lakes, the lengths of rivers, and the molecular weights of 

compounds. Subsequently, a number of studies (e.g., Pinkham, 1961; Raimi, 1969, 1976; Ley, 

1996; and de Ceuster et al., 1998) have confirmed that Benford’s Law holds for a very large 

range of phenomena, including certain economic data. The purpose of this note is to examine 

whether Benford’s Law holds in the context of certain ebaY auction prices. The importance of the 

results that we obtain is that they can be used as a test of collusion in that market place 

 

In the next section we discuss Benford’s Law and illustrate its application to two important 

naturally occurring data-sets. The main results of the paper are given in section 3, where we 

consider an analysis of ebaY auction prices; and section 4 concludes. 

 

2. Benford’s Law and Natural Phenomena 

Let d denote the first significant digit in a random decimal number, N. So, for example, if N = 

194.23 then d = 1; and if N = 0.00476 then d = 4. Benford’s Law dictates that 

 

)]/1(1[log].[Pr 10 kkd +==    ;      k = 1, ….., 9. 

This result can be established via combinatorial arguments (e.g., Cohen, 1976), and 

straightforward statistical derivations of this result are also available (e.g., Hill, 1995). Further 

motivation is provided by De Ceuster et al. (1998), for example. 

 

Studies that have drawn attention to the relevance of Benford’s Law to economic data include 

those of Ley and Varian (1994); Ley (1996), who investigated one-day returns on the Dow-Jones 
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and Standard and Poor indices for U.S. stocks; and Pietronero et al. (2001), who considered 

prices on the Madrid, Vienna and Zurich stock exchanges. One application of Benford’s Law that 

is relevant to the present paper arises in the context of auditing tax data. Fraudulent activity tends 

to result in figures that are “too uniform”, relative to Benford’s Law, as was discussed by Nigrini 

(1996). This application of Benford’s Law is surveyed by Geyer and Williamson (2004). 

 

To lay the basis for our subsequent analysis, let us consider two specific examples of Benford’s 

Law. As this law apparently occurs widely in the context of natural phenomena, one might 

speculate that it will be satisfied by the well-known Fibonacci series, {1, 1, 2, 3, 5, 8, 13, 21, 34, 

55, 89, 144, ……}, where the terms satisfy the recurrence relationship: F(n+1) = F(n) + F(n-1) , 

and where the irrational number  

....61803.1)](/)1([ ≈+= ∞→ nFnFLimitnφ  

is the co-called ‘golden section’ that occurs widely in nature. Figure 1 compares the empirical 

frequency distribution of first digits for the first 1,476 Fibonacci numbers with the corresponding 

distribution predicted by Benford’s Law.1 Recently, Canessa (2003) has proposed a general 

statistical thermodynamic theory that explains, inter alia, why Fibonacci sequences should obey 

Benford’s Law.2 The visual similarity between the two frequency distributions in Figure 1 is 

apparent, and a formal statistical test of their equality (and hence of Canessa’s theory) is 

discussed in the next section.  

 

The series of Lucas (1878) numbers is {1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ….  }, where the terms 

follow the same recurrence relationship as for the Fibonacci sequence. Interestingly,  

 

φ=+∞→ )](/)1([ nLnLLimitn  , 

and in fact this is true for any sequence of integers of the form {1, x, (1+x), [(1+x) +x], …….}. 

There are numerous relationships between Fibonacci and Lucas numbers. While the Lucas 

numbers are less well known than those of Fibonacci’s sequence, they occur extensively in 

nature, such as in lunar eclipse cycles, and in the properties of electrical circuits, for example.4 

Figure 1 also compares the empirical frequency distribution of first significant digits for the first 

1,475 Lucas numbers with the distribution predicted by Benford’s Law.5 The extent to which the 

Lucas sequence accords with this law is even more striking than for the Fibonacci sequence, but 

this result does not appear to have been observed previously in the literature.  
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3. Analysis of Some ebaY Auction Prices  

The question we wish to address is whether or not the closing prices of successful auctions on the 

ebaY internet auction site are naturally occurring numbers. If they are not, then this may be the 

result of collusion among bidders and/or interference (“shilling”) on the part of the seller. In our 

investigation we have considered all of the successful auctions for tickets for professional football 

games in the “event tickets” category on ebaY, for the period 25 November to 3 December, 

2004.6  Auctions that ended with the “Buy-it-Now” option, and all Dutch auctions, were excluded 

from the data. This resulted in 1,161 successful auction completions.  

 

By not considering college football games we avoided the distortions that might arise in those 

cases where there is a “two-tier” ticketing system. By this we mean the situation where there are 

“student only” tickets and “regular” tickets. Information was recorded for each winning bid. All 

prices are in U.S. dollars as this is the official ebaY currency.7 Figure 2 compares the empirical 

distributions of the first significant digits of prices per lot and prices per ticket with the 

distribution predicted by Benford’s Law. Although these results are less striking than those in 

Figure 1, they still suggest that the auction prices accord with Benford’s Law. Of course, a formal 

test of the equivalence of the distributions is required, and we now turn to this issue. 

 

Typically, chi-square goodness-of-fit tests have been used in association with Benford’s Law. 

Various other nonparametric tests, such as “integrated deviations” tests of the Cramér-von Mises 

type, or “supremum tests” of the Kolmogorov-Smirnov type, could be considered here. These 

tests involve comparing the empirical distribution function of the data with the hypothesized 

distribution, and they rely on the Glivenko-Cantelli Theorem for their justification.8 However, 

none of these tests are actually appropriate here. It is important to note that our data have a 

special characteristic that must be taken into account when considering this testing problem – 

they follow a circular distribution.  This is clear if we consider a pair of prices such as $99.99 and 

$100, say, whose first significant digits are “9” and “1” respectively.  The values “9” and “1” are 

as far apart as is possible within the set of first significant digits, yet the associated prices are as 

close as is possible in an ebaY auction (where bids are in dollars and cents). Recently, Giles 

(2005) has recognized the relevance of distributional circularity in the dating of business cycles. 

 The phenomenon of circularity is common with many types of statistical data, and there is an 

extensive literature dealing with testing for the underlying distribution in such cases (e.g., Fisher, 

1993). One well-known example that meets our needs here is Kuiper’s (1959) VN test, which is a 

modified Kolmogorov-Smirnov test. The crucial point is that such tests are invariant to the 
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location of the origin and the scale on the circle, whereas conventional such tests are not.9 

Suppose that the empirical distribution function for a sample of size N is FN (x), and that the null 

population distribution function is F0 (x). Then, Kuiper’s basic test statistic is given by: 

 

where the two components are the one-sided Kolmogorov-Smirnov statistics: 

 

Another important property of Kuiper’s test is that the null distribution of the test statistic is 

invariant to the hypothesized distribution, regardless of the sample size. Critical values for the 

null distribution of ]24.0155.0[ 2/12/1* −++= NNVV NN  are tabulated for by Stephens (1970).10 

These critical values are provided together with our test results in Table 1. As can be seen there, 

the inferences that were drawn visually from Figures 1 and 2 are very strongly supported by the 

formal tests – we cannot reject the hypothesis that the data for the Fibonacci and Lucas 

sequences, and for the ebaY auction prices obey Benford’s Law.  

 

4. Conclusions 

In this paper we have tested Benford’s Law against a small set of winning prices for ebaY 

auctions for pro-football tickets, and shown that this law cannot be rejected. Had there been 

collusion among bidders, or “shilling” on the part of sellers in these auctions, it is unlikely that 

this positive result would have been achieved. This demonstrates the usefulness of Benford’s Law 

in a different “auditing” context than has been considered previously, and suggests that further 

research along these lines would be valuable. It also sets the scene for work in progress that 

investigates psychological barriers in ebaY auctions.  

 

Peripherally, we have also confirmed Canessa’s (2003) result that numbers from the Fibonacci 

sequence obey Benford’s Law, and we have shown that this also holds for numbers from the 

important and closely related Lucas sequence. 
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Figure 1: Relative Frequency Distributions For 
Fibonacci Digits, Lucas Digits, 

and Benford's Law
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Figure 2: Relative Frequency Distributions for ebaY Auction Prices
for Pro-Football Tickets
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Table 1 

Kuiper Test Results* 

 

          Fibonacci Lucas   ebaY    

Numbers Numbers Prices  

 

N   1,476  1,475                   1,161  

 

VN   0.0217  0.0007      0.0465  

 

V*N   0.8370  0.0270  1.5919  

 

 
* 10%, 5% and 1% critical values for V*N  are 1.620, 1.747 and 2.001, regardless of the sample size.
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Footnotes 

* I am very grateful to Sophie Hesling for her excellent research assistance. 

1. This number of observations is dictated by machine precision. The last number in the 

sequence is F(1,476) = 0.1306989E+309. 

2. Pietronero et al. (2001) provide an explanation for Benford’s Law in terms of 

 multiplicative dynamical processes, and derive a generalization in terms of a power law. 

 Gottwald and Nicol (2002) prove that systems satisfying Benford’s Law do not have to 

 be random or chaotic – they may be deterministic, and are more related to the (near) 

 multiplicative nature of the process than to its chaoticity. 

3. For example, for n > 1, every Lucas number is the sum of two Fibonacci numbers, and 

 for  all n,  L(n) = [F(n+2) – F(n-2)] and [L(n-1)L(n+1) + F(n-1)F(n+1)] = 6[F(n)]2.

 Moreover, n
n nLLimit φ=∞→ )]([ , and this relationship is approximated well even when 

 ‘n’ is quite small. For example, for n = 8, 9, 10 we have L = 47, 76, 123; and nφ = 

 46.971,  75.999 and 123.046. 

4. See McMinn (2003), and Scott (undated). Also, in a sequence of ‘n’ equal resistors, 

connected alternately in series and in parallel, then ∞→nLimit [Total resistance] = φ . If 

the wiring is alternately in parallel and in sequence, ∞→nLimit [Total resistance] = φ/1 .  

5. The last number in the sequence is L(1,475) = 0.111630E+309. 

6. More specifically, the time-span is from 00:00:01 PST on 25 November, to 24:00:00 PST 

 on 3 December, 2004. 

7. Strictly, it is possible for other currencies to be used, but there were no such examples in 

 our population. In any case, Benford’s Law is scale and base invariant, so the choice of  

 (a common) currency does not affect our results. 

8. For a detailed technical discussion, see Durbin (1973), for example. The Glivenko-

 Cantelli Theorem implies that, under quite mild conditions, the empirical distribution 

 function converges uniformly and with probability one to the population distribution 

 function. 

9. Note that if the data are circular, as is the case with the digits “1” through “9”, the 

 distribution of the test statistic should not depend on whether we begin counting at “1” 

 and end at “9” (say), or alternatively begin counting at “6” and end at “5” (say). 

10. See Stephens (197, p.118). The purpose of transforming from VN to V*N is to create a 

 statistic whose null distribution is independent of the sample size. This is especially 

 helpful for large “N”. 


