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Abstract 
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inefficiency is allowed to be dependent on the explanatory variables of the frontier model. Secondly, no 

distributional assumptions are imposed on the inefficiency component of the error term. We show by means of 

simulation experiments that RTFA can outperform the popular stochastic frontier approach (SFA) and the 
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1. Introduction 

The technical or X-efficiency of a firm measures the extent to which the firm’s realised 

output is in line with the production frontier, i.e. the output realised by the “best-practice” 

firms as a function of the input bundle.1 In the last 40 years a vast literature has attempted to 

tackle the difficult problem of establishing the production frontier. This paper introduces the 

Recursive Thick Frontier Approach (RTFA), a new panel data estimation method for 

estimating the production frontier. RTFA does not require a distributional assumption on the 

inefficiency component of the error term, and it allows technical inefficiency to be dependent 

on the explanatory variables of the frontier model. Unlike some of the other panel data 

methods, RTFA works well even if the number of time-periods in the panel dataset is small. 

Traditional frontier estimation techniques can be divided into two groups, full frontier 

models and thick frontier models. Full frontier models assume that all deviations from the 

frontier represent inefficiency. Thus, all observations are lying on one side of the frontier. 

Schmidt (1975) shows that maximum likelihood estimation of full frontier models boils 

down to the linear or quadratic programming techniques introduced by Aigner and Chu 

(1968) for certain distributional assumptions on the inefficiency term. Greene (1980) 

discusses maximum likelihood estimation of full frontier models more generally. Nowadays, 

Data Envelopment Analyses (DEA) is the common name for the mathematical programming 

approach (Charnes, Cooper and Rhodes (1978) and Charnes, Cooper, Lewin and Seiford 

(1994)). 

Thick frontier models or econometric frontier models assume that production levels may 

deviate from the frontier due to measurement errors or to factors beyond the control of the 

firm’s management, besides inefficiency. Thus, observations may lie on both sides of the 
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frontier. Estimation procedures for thick frontier models have been developed for both cross-

section and panel data. Popular cross-section methods are the Stochastic Frontier Approach 

(SFA) of Aigner, Lovell and Schmidt (1977) and Meeusen and Van den Broeck (1977), the 

Generalized Method of Moments of Kopp and Mullahy (1990), the Thick Frontier Approach 

(TFA) of Berger and Humphrey (1992), and the stochastic coefficients approach of Kalirajan 

and Obwona (1994). The probabilistic frontier production function of Timmer (1971) is a 

specific case of the stochastic coefficients approach. Schmidt and Sickles (1984), Battese and 

Coelli (1988), Cornwell, Schmidt, and Sickles (1990), and Kumbhakar (1990) introduce 

panel data methods to estimate the thick frontier. 

RTFA is a thick frontier approach for panel data. RTFA hinges on the logical implication that 

if deviations from the frontier for the best-practice firms are random and symmetric around 

zero, then in a given time-period a best-practice firm is located either above or below the 

frontier with probability a half, independently of its location in other time-periods. This 

hypothesis can be tested in the case of panel data, but it requires sorting the sample into a 

subset of efficient, and a subset of inefficient firms. RTFA uses a recursive method to sort the 

data. 

In a nutshell, RTFA starts with an Ordinary Least Squares (OLS) regression on the full 

sample of pooled observations. Each recursion proceeds with the computation of a Chow test 

statistic to test whether all firms can be considered as efficient. When the Chow test is 

rejected in iteration j, then the sample is reduced by eliminating all time-observations of the 

j*δ  percent of the firms with the lowest residuals. The next iteration repeats the regression 

and the Chow test on the reduced sample. Observe that in each RTFA iteration the sample 

size is reduced by δ  percent of the firms. Each time the regression and the Chow test are 

                                                                                                                                                       
1 The cost frontier represents the cost level of the best-practice firms in the sample as a function of the output 
bundle and input prices. The exposition in this paper focuses on production frontiers, but all that follows applies 
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based on the reduced sample, while the full sample is considered when selecting the 

observations to be discarded. Thus, observations that were discarded in earlier iterations are 

reconsidered. Reconsidering previously discarded observations is important because the 

estimate of the “frontier” may change with each iteration. The RTFA algorithm stops once 

the Chow test fails to reject the hypothesis that all firms in the reduced sample are efficient. 

The RTFA frontier parameter estimates are the OLS estimates of the final iteration. 

The key assumptions behind RTFA are weak in comparison to the assumptions of traditional 

techniques. The core assumption is that there exists a group of firms that are technically 

efficient in each time-period of the data. This seems a reasonable assumption when the 

dataset covers a “short” time span. In a short period of time it is unlikely that management 

undergoes a major change or that new technologies get implemented. It is therefore 

reasonable to assume that differences over time in measured productivity are due to “random 

errors” (measurement errors, good luck or bad luck, market conditions, etc). However, when 

the dataset covers a longer time span, this assumption may be strong. Over a longer time-

period new technologies may be developed and implemented by a new management team. If 

there are no (or hardly any) firms in the dataset that are efficient in each time-period then 

RTFA cannot be applied directly. In this case we recommend splitting up the sample into 

shorter sub-periods and applying RTFA to each sub-period separately. 

RTFA has two appealing features that follow directly from the result that only firms 

classified as efficient determine the frontier. First, RTFA permits correlation between 

inefficiency levels and inputs. Secondly, the frontier parameters are allowed to be different 

for efficient firms and inefficient firms. This is a desirable property because “the frontier 

function ... may not be a neutral transformation of the average function” [Timmer (1971), 

page 779]. 

                                                                                                                                                       
equally well to cost frontiers.   
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RTFA can perhaps best be compared with the Thick Frontier Approach (TFA) of Berger and 

Humphrey (1992). TFA applies OLS to the quarter of the observations with the highest 

average production. In contrast to TFA, RTFA does not impose an assumption that the 

dataset has predetermined proportions of efficient and inefficient firms. In addition, RTFA 

sorts firms on the basis of their distance to the regression line, while TFA looks at average 

production. As a consequence, in the case of increasing returns to scale, TFA tends to omit 

small efficient firms, while large efficient firms tend to be omitted in the case of decreasing 

returns to scale. 

RTFA does not share the two main drawbacks of the SFA production model. First, SFA 

requires a priori distributional assumptions regarding the error terms, which are difficult to 

test, and which affect the estimated frontier and therefore also the inefficiency estimates.2 

RTFA does not require a specification of the inefficiency term. Secondly, SFA hinges on the 

assumption that the inefficiency term is independent of the explanatory variables. For 

example, a significant relationship between firm size and inefficiency will bias the SFA 

estimates, unless the model is scaled by a size variable. The same applies for data exhibiting 

significant correlation between product mix and production efficiency. This problem is of 

course harder to fix than the effect of economies of scale, since it is ex ante difficult to 

predict how the output mix affects efficiency. The independency assumption of SFA is a 

serious weakness because it is violated for many real datasets. As observed by Førsund 

(1985-86, p. 329): “On account of these empirically observed (efficiency) differences it may 

then be unfortunate to assume efficiency differences neutral of the basic relationship between 

                                                 
2 A sizable literature discussing the error term specification of SFA has developed. Stevenson (1980) and 
Greene (1990) assume that the inefficiency terms are distributed truncated normal and Gamma, respectively. 
Van den Broeck, Koop, Osiewalsi, and Steel (1994) adopt the Baysian approach, so that merely weak 
assumptions on the inefficiency term are imposed. Kopp and Mullahy (1990)’s Generalized Method of 
Moments estimation procedure enables various degrees of distributional flexibility and provides moment-based 
specification tests. They specify a parametric relationship between the first and third moments of the 
inefficiency term. This specification is ad hoc in itself, but their procedure enables testing of the validity of the 
distribution of the one-sided error component. 
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inputs and output.” RTFA is not vulnerable to the criticism on SFA just explained. RTFA 

allows technical inefficiency to be dependent on the explanatory variables of the frontier 

model.3 

Standard panel data approaches, such as the fixed effects and the random effects models, and 

RTFA share the advantage that no specific distributional assumptions have to be made 

regarding the distribution of the inefficiency term.4 However, in the fixed effects model this 

comes at the cost of the assumption that inefficiency is time-invariant, and the problem that 

the estimate of the inefficiency term picks up both inefficiency and all other time-invariant 

firm-specific factors. In the case of the random effects model the inefficiency term and the 

regressors are assumed independent (unless the model is estimated with instrumental 

variables). Cornwell et al. (1990) do allow inefficiency to change over time. Their approach 

however imposes a functional form for the time pattern in inefficiency levels and only works 

when many time observations are available.5 Battese and Coelli (1988) use ML estimation of 

the frontier, however this means that distributional assumptions on the error term have to be 

made. 

Finally, RTFA and the Stochastic Varying Coefficients Frontier Approach (SVFA) of 

Kalirajan and Obwona (1994) have in common that the production model may be different 

for efficient and inefficient firms. A drawback of SVFA is that either panel data with many 

time observations must be available, or that many ad hoc parameter restrictions need to be 

                                                 
3 In the case of panel data there is an additional problem with SFA. SFA estimation on the pooled data may bear 
out that the regression residuals are approximately normally distributed (Schure, Wagenvoort and O’Brien 
(2004) find this feature in panel data of European banks). In this case, the researcher would be tempted to 
conclude that the one-sided error component is negligible and therefore that the companies in the sample are 
equally efficient. However, one may find at the same time, that the residuals of individual companies (too) often 
have the same sign in each year of the sample period. In this case many companies have either persistently 
higher or persistently lower production than others. In other words, there are differences in production 
efficiency while this is not revealed by SFA. 
4 The fixed effects model and “within” OLS estimator are sometimes referred to as the Distribution Free 
Approach (DFA) in the context of efficiency studies (see Berger, 1993). 
5  Cornwell et al. (1990) assume that firm inefficiency is quadratic in time. 
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made. RTFA simply makes no assumptions on the technology used by inefficient firms. 

RTFA works with panel data that can be as short as two periods. 

RTFA is explained in detail in the next section. In section 3 we contrast the performance of 

RTFA with standard OLS, SFA, and the “within” OLS estimator6 in several simulation 

experiments. Section 4 concludes. 

2. The Recursive Thick Frontier Approach to Estimating Technical Efficiency 

 
Suppose there are n  cross-sectional units (“firms”) indexed by ni ,..,1= , and T  time-periods 

indexed by Tt ,..,1= , so that the full sample contains nT  observations. Let the set of firms 

},...,1{ nN =  be comprised of two subsets E  and H , the sets of technically efficient and 

technically inefficient firms, respectively. Consider the linear panel data model 

,titiiti xcy εβα +++=  where 0=ic ,     Ei∈ .   (1) 

This model describes the relationship between output tiy  and a k-dimensional input bundle 

tix  for technically efficient firms only. As usual, α  is an unknown constant, β  is a k-

dimensional column vector of unknown parameters and tiε  is the error term of firm i  in 

period t . The error term is random and does not reflect technical inefficiency. For inefficient 

firms the relationship between output and inputs remains unknown but, on average, 

inefficient firms are located below the production frontier: 

0)(1
1

<=−∑
=

i

T

t
titi cxy

T
β ,     Hi∈ .    (2) 

                                                 
6 Within estimates are computed by, first, subtracting the individual means from the observations (i.e. 

∑
=

T

t
tiy

T 1

1
 from the observations on the dependent variable and ∑

=

T

t
tix

T 1

1
 from the observations on the 

independent variables) and, then, applying OLS on the transformed data. The fixed effects are eliminated by the 
transformation of the data but can be easily estimated once the estimates of the parameters on the time-varying 
explanatory factors are obtained. See, among others, Baltagi (2001). 
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Notice that the degree of inefficiency of inefficient firms can be time variant. 

We make the following assumptions: 

Assumptions: 

(A.1) For Ei∈  and Tt ,...,1= , tiε  are independently and identically distributed with 

a distribution that is symmetric around zero. 

(A.2) For Ei∈  and Tt ,...,1= , the orthogonality condition [ ] 0=titi xE ε  holds. 

Assumptions (A.1) and (A.2) are standard assumptions of OLS. Notice, however, that we 

only make these assumptions for efficient firms. For the full sample of observations the 

assumptions may not hold, so that OLS should not be used.  

Assumption (A.1) implies that the probability that an efficient firm is located above or below 

the frontier in a given time-period t is equal to one half, independently of its location in any 

preceding periods. In a panel data framework one can use a Chow statistic Chowλ , to test 

whether the fixed effects ic  are zero for all firms in the dataset (see e.g. Baltagi, 2001). More 

precisely, we test whether 1−n  fixed effects are equal to zero since model (1) includes a 

constant. The Chow test is based on the OLS residuals of the pooled model (i.e. without fixed 

effects) and the residuals of a “within” regression (i.e. including the fixed effects). It is a 

standard result that the asymptotic distribution of Chowλ  is a F-distribution with 

( kTnn −−− )1(,1 ) degrees of freedom under the null hypothesis of no fixed effects.  

RTFA begins with an OLS regression using the full sample of observations. If the Chow 

statistic is larger than the th)1( θ− percentile of the F-distribution then we reject the 

hypothesis that all firms in the sample are efficient and we reduce the sample. In practice, we 

eliminate all time observations of %δ  of the firms with the lowest time-average of the 

residuals. We next repeat the regression and computation of the Chow test statistic on the 
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reduced sample. We continue to reduce the sample until the Chow test fails to reject 

assumption (A.1), i.e. until the largest possible group of efficient firms has been identified. 

The RTFA estimator is the OLS estimator of the last iteration of the algorithm. The details of 

the RTFA algorithm are given below. 

The RTFA algorithm: 

Initialisation:  
 
Step 1: Set 0=j . Let the current sample be the full sample. Choose δ , i.e. the speed of the 

data reduction process, and θ , the significance level applied to the stopping criterion. 
For instance, 01.0=δ  means that 1 percent of the firms are discarded in each 
iteration. 

 
Iteration [The iteration starts with a current sample of %100*)*1( δj−  of the data.]: 
 
Step 2: OLS Estimation 

Compute OLSj ,

^
β , the OLS estimator of the pooled model (the model without fixed 

effects) 
 
Step 3: Test Assumption (A.1) 

Compute the “within” estimates of the model with fixed effects. Use the restricted 
residual sums of squares (RRSS) of the OLS regression of step 2 and the unrestricted 
residual sum of squares (URSS) of the “within” regression to construct the test 
statistic Chowλ . If Chowλ  is smaller than the )1( θ− th percentile of the F-distribution, 
then go to Step 5. Otherwise go to Step 4. 

 
Step 4: Select the Relatively Efficient Firms 

Compute the mean )),..,(( 1 Tiii rrmeanm =  of the residuals OLSjtititi xyr ,

^
β−=  for 

each cross-sectional unit i , including the firms that were discarded in previous 
iterations. Sort the data on im . Set 1+= jj . Discard %100**δj  of the 
observations by selecting %100**δj  of the cross-sectional units i  with the smallest 

im . Go to step 2. 
 
End the algorithm: 
 
Step 5: The RTFA estimator 

Define the RTFA estimator: OLSjRTFA ,

^^
ββ = . That is the RTFA estimator is the OLS 

estimator computed in Step 2 of the last iteration.  
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Notice that the final RTFA estimates are the OLS estimates of a model without (firm-

specific) fixed effects. In the RTFA algorithm the “within” estimator is only used to compute 

the Chow test statistic. In the case of the classical “within” estimator inefficient firms may 

influence the slope parameters of equation (1), while this is not the case for RTFA. 

The significance level θ  applied to Chowλ  must be chosen in such a way that a distinction 

between randomness and inefficiency becomes relevant. In general, too low (high) choices of 

θ  tend to leave (omit) too many inefficient (efficient) firms in the sample and RTFA tends to 

return biased estimates. There is no obvious optimal rule to follow when choosing θ  because 

there is no such thing as an optimal significance level for a statistical test. We suggest to 

routinely carry out a sensitivity analysis based on alternative choices for θ  when using 

RTFA. 

The speed of the data reduction process δ  is best chosen when to be as low as possible. In 

fact, since the RTFA algorithm runs very fast, we suggest setting δ  equal to n/1 . In this 

case the number of firms that are discarded increases one-to-one with the number of 

iterations. 

Once the frontier is established firm i ’s average performance over time is computed as7: 

∑
=

=
T

t
RTFAtitii xy

T
XEFF

1

^
)/(1 β , for Ei∉  

1=iXEFF , for Ei∈ .   (3) 

                                                 
7 One may also compute the average performance of inefficient firms ( Ei∉ ) in period t . However, the 
efficiency of cross-sectional unit i  ( Ei∉ ) in period t  cannot be estimated with RTFA unless assumptions 
are made about the distribution of tiXEFF  such as the SFA model assumptions. 
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The efficiency measure iXEFF  indicates whether the firm optimally uses its resources tix . In 

other words, equation (3) measures X-efficiency, i.e. the firm’s technical efficiency or 

managerial efficiency, rather than scale or scope efficiency. 

Model (1) considers a production function with a single output. When the firm produces 

multiple outputs RTFA can be used to establish the cost frontier instead of the production 

frontier. Under weak conditions on the best-practice firms the principle of duality applies so 

that the cost function represents the production technology just as well as the production 

function. 

The core assumption of RTFA is that there exists a group of firms that are technically 

efficient in each time-period of the data. This assumption may be strong when the dataset 

spans many time-periods. In this case we recommend splitting up the sample in subsets of at 

least two time-periods and applying RTFA to each subset. It is difficult to decide a priori 

how to break up long time-series and we suggest again that the researcher carries out a 

sensitivity analysis. 

Finally, two pitfalls that are relevant for all thick frontier estimators have to be taken into 

account for RTFA as well. First, serial correlation in the errors of the efficient firms is a 

warning that the production model is not well specified. It generally implies that the frontier 

is shifting over time (e.g. because of technological progress). This problem may be resolved 

by introducing time dummies that pick up structural factors over time. The second pitfall 

concerns the adjustment for outlying observations. While outliers are problematic in general, 

they are even more alarming for frontier models (see e.g. Timmer, 1971). RTFA eliminates 

the inefficient firms step by step, including outliers that lie below the production frontier. 

However, outliers that are positioned above the production frontier may still push the frontier 

too far up. In order to obtain outlier-robust estimates we recommend the use of robust 
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estimators such as a High Breakdown Point Generalised M (HBP GM) technique instead of 

OLS (see e.g. Simpson et al. (1992) or Hinloopen and Wagenvoort (1997)). Simar (2003) 

proposes to carry out, in a first step, an exploratory data analysis to detect “super-efficient” 

outliers before using any frontier estimation method. The outlier detection tool introduced by 

Simar (2003) uses the nonparametric “order-m frontier” estimator of Cazals et al. (2002). 

3. Simulation Study Results 

We evaluate the relative performance of the Recursive Thick Frontier Approach with respect 

to OLS, the “within” estimator, and the traditional Stochastic Frontier Approach (SFA) 

through Monte Carlo simulations. OLS serves as a benchmark because it is the optimal 

approach when all firms in the sample are efficient. When there are differences in efficiency 

then OLS is biased. In that case, the within estimator is consistent (though not necessarily 

efficient) provided that the inefficiency component is independent of the explanatory 

variables. We compare RTFA with SFA since SFA is the most widely applied technique 

among the thick frontier approaches. Our setup consists of a labour productivity model where 

productivity is log-linear in the capital-to-labour ratio and inefficiency.  

Below we will first assess the performance of the above-mentioned estimators in estimating 

the frontier parameters using Mean Squared Error (MSE) as our main criterion. After that we 

compare the distribution of the X-efficiency estimates and the distribution of the true X-

efficiencies. 

 

3.1. Design of the experiments 

We generate labour productivity data of 500 firms for five time-periods. The data generating 

process is the following: 

500,..,1,5,..,1),( === itEXPxy tititi εβ   (4) 
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such that 

   ,1010 titix η+=      (5) 

.tititi uv +=ε       (6) 

Here tiy  represents the output of firm i  per unit of labour in period t  and tix  is the capital-

to-labour ratio. Thus, apart from disturbances we have a very simple production function for 

which labour productivity increases by β  percent when the capital-to-labour ratio increases 

by 1 percent. The error term tiε  consists of an inefficiency component, tiu , and a random 

component, tiv . 

Throughout the simulation study we assume that tiη  is a random draw from a standard half-

normal distribution; that tiv  is normally distributed with zero mean and variance equal to 1/9; 

and that 1=β  for all firms i . Regarding the inefficient component of the disturbances, we 

study three different cases. In Case 1 we follow the SFA assumptions of Aigner et al. (1977). 

In Case 2 we examine the impact of a small perturbation in the SFA assumptions and set the 

inefficiency component tiu  at zero for efficient firms. In Case 3 we assume that inefficiency 

is related to the capital-to-labour ratio. This clearly violates the SFA assumptions. In all three 

cases we estimate the model in logs. 

Case 1: The SFA assumptions 

The data generating process of (4)-(6) becomes the SFA model of Aigner et al. (1977) when 

taking logs of both sides of equation (4); assuming that each individual firm suffers from the 

inefficiency term tiu  (i.e. NH =  and .∅=E ); and tiu  is generated by a standard (negative) 

half normal distribution, 

  0≤tiu , Ni∈ . 
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In Case 1, firms meet the output targets set on the basis of the production function with 

probability zero. Indeed, each firm i  is, on average, 01
1

≠∑
=

T

t
tiu

T
 away from potential labour 

productivity. For many real-word datasets, one may a priori expect that at least some firms 

are actually efficient. Cases 2 and 3 provide examples of such more realistic scenarios. 

Case 2: Modified SFA assumptions. The inefficiency term is zero for efficient firms.  

In Case 2 we assume that the first 250 firms are fully efficient in all five periods. The 

inefficiency component of the 250 inefficient firms follows a standard (negative) half-normal 

distribution in each time-period. Thus, 

0=tiu , }250,..,1{=∈ Ei   

0≤tiu , }500,..,251{=∈Hi . 

Case 3: Inefficiency is negatively related to capital intensity 

In Case 3 there is a negative relationship between inefficiency and the capital-to-labour ratio. 

In other words, inefficient firms that are capital-intensive are relatively more efficient than 

labour-intensive firms. In particular, 

0=tiu , }250,..,1{=∈ Ei   

  





=

x
x

u ti
ti

5.0
ln , }500,..,251{=∈Hi , 

where x  is the average of the time-averaged capital-to-labour ratio of all inefficient firms. 

For instance, an inefficient firm i with an average capital-to-labour ratio in period t  (i.e. 

xxti = ) is 50% inefficient since its labour productivity is half the corresponding ratio of an 

efficient firm with an equal capital intensity. Similarly, an inefficient firm with half the 

average capital-to-labour ratio in period t  (i.e. xxti 5.0= ) is 75% inefficient. A firm with 

twice or more the average capital-to-labour ratio in period t  (i.e. xxti 2≥ ) is not inefficient. 
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Therefore, although the likelihood of this event is small, some of the firms in H  could 

actually be positioned above the production frontier (on average). 

We report statistics for each case based on ten thousand successfully completed trials. When 

implementing RTFA we chose the speed of the data reduction equal to 1 firm per iteration 

( n/1=δ ) and applied a significance level of 05.0=θ  to the Chow test statistic. To compute 

the SFA estimates we used the Newton-Raphson algorithm to find the maximum likelihood 

estimators for β  and λ , i.e. the ratio of the standard deviation of u  to the standard deviation 

of v . As starting conditions for the Newton-Raphson algorithm we chose OLS

^
ββ =  and 

.5.0=λ  Two convergence criteria are applied when running SFA. Firstly, the percentage 

change in the parameter estimates between the final and next to last iteration must be less 

than 0.01%. Secondly, the absolute value of each entry of the gradient must be smaller than 

0.0001. We terminated the Newton-Raphson algorithm when we obtained complex numbers 

or the number of iterations exceeded 100. 

3.2 Estimating the elasticity of labour productivity 

Table 1 shows the simulation results regarding our estimations of β , the elasticity of labour 

productivity. The top, middle, and bottom panel of Table 1 show the results for Case 1, 2, 

and 3 respectively. The first row of each panel contains the mean of the parameter estimates 

for β  over 10,000 successfully completed trials. The remaining rows of each panel show the 

median, the minimum and maximum value over the 10,000 runs, as well as the variance and 

the Mean Squared Error of the parameter estimates. 

3.2.1 Case 1: The SFA assumptions 

Table 1 shows that SFA outperforms RTFA according to the MSE criterion. This is an 

unsurprising result since SFA provides the minimum variance unbiased estimation technique 

under the SFA assumptions (see Aigner et al., 1977). RTFA breaks down in case 1 because it 
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is unable to distinguish between efficient and inefficient firms. Indeed, the rounded average 

of the number of firms that is selected as efficient by RTFA is equal to 500. Therefore, 

RTFA effectively becomes OLS for a typical trial, which explains why the RTFA results are 

very similar to the OLS findings. RTFA and OLS are clearly biased. RTFA fails because in 

each period t  the set of efficient firms is completely different. 

3.2.2 Case 2: Modified SFA assumptions. The inefficiency term is zero for efficient firms 

In Case 2 the inefficiency term is zero for efficient firms throughout the sample period. Table 

1 shows that RTFA outperforms SFA in terms of the MSE. RTFA, on average, comes very 

close to the true value of .1=β SFA overestimates β  by 13% on average. The number of 

firms predicted to be efficient by RTFA is a bit higher than the actual number of best-practice 

firms. Note b of Table 1 shows that RTFA classifies on average 273, instead of 250, firms as 

efficient. The fact that RTFA removes too few firms on average is the reason why the 

elasticity parameter β  is slightly under-estimated. In the first run of the simulation 

experiment we found that all truly efficient firms were indeed used by RTFA to estimate the 

frontier. We did not check this for the remaining 9,999 rounds. In Case 2 all RTFA estimates 

are found in the [0.97, 1.01] range, while SFA estimates vary between –0.97 and 5.47.  

The literature has shown that SFA is extremely sensitive to the distributional assumptions 

regarding the inefficiency component. Case 2 provides clear evidence of this problem. By 

simply assuming that efficient firms have an inefficiency term of zero SFA becomes far from 

consistent.  

In Case 2, RTFA is also better than OLS and the “within” estimator in terms of MSE. In 

addition, OLS gives estimates that are on average biased by 14%. The within estimator is 

consistent, but has a substantially higher variance in the parameter estimates and is thus less 

efficient than RTFA. 
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3.2.3 Case 3: Inefficiency is negatively related to capital intensity 

In Case 3, the true elasticity parameter of 1=β  is not found by the within estimator, SFA or 

OLS. The reason is that inefficiency and the capital-to-labour ratio are correlated. This 

violates the standard orthogonality condition. RTFA removes inefficient firms from the 

sample and is thus able to find the true parameter 1=β  on average. RTFA selects 262 firms 

on average, which is not far from the true number of 250 efficient firms. RTFA also 

outperforms the within estimator, SFA and OLS in terms of MSE. 
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Table 1. Estimation of the elasticity of labour productivity; A comparison beween 

RTFA, SFA, OLS, and the “within” estimator for cases 1, 2, and 3. True parameter 

value is .1=β  a  

 RTFAb SFAc OLS Within OLS 
 

Case 1: The SFA assumptions 
 

Mean  0.72250 0.99998 0.72238 1.00064 
Median 0.72246 1.00017 0.72233 1.00077 

     
Minimum 0.70632 0.73181 0.70632 0.81933 
Maximum 0.74393 1.02782 0.74393 1.17265 

     
Variance 0.00002 0.00007 0.00002 0.00240 

Mean Squared Error 0.07703 0.00007 0.07710 0.00240 
 

Case 2: Modified SFA assumptions. The inefficiency term is zero for 
efficient firms 

Mean  0.99180 1.12972 0.86117 0.99977 
Median 0.99180 1.13609 0.86117 1.00041 

     
Minimum 0.97444 -0.96811 0.84558 0.85163 
Maximum 1.00937 5.46939 0.87498 1.14533 

     
Variance 0.00003 0.00504 0.00001 0.00143 

Mean Squared Error 0.00009 0.02187 0.01929 0.00143 
 

Case 3: Inefficiency is negatively related to capital intensity 
 

Mean  0.99537 1.08581 0.87654 1.49986 
Median 0.99537 1.08585 0.87654 1.49999 

     
Minimum 0.97607 1.06056 0.86757 1.40255 
Maximum 1.01409 1.10939 0.88612 1.60089 

     
Variance 0.00002 0.00004 0.00001 0.00073 

Mean Squared Error 0.00004 0.00740 0.01525 0.25059 
a Statistics are based on ten thousand successfully completed iterations for each estimation procedure.  
b The average number of  “efficient firms” as determined by RTFA is equal to 500, 273, and 262 in cases 1, 2, 
and 3 respectively. RTFA did not fail in any of the first 10,000 iterations. 
c SFA failed to converge 13,179, 13,585, and 0 times in cases 1, 2, and 3 respectively, so that the total number 
of iterations was 23,179, 23,585, and 10,000, respectively.  
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3.3 Estimating X-efficiency 

Let us now contrast the distributions of the X-efficiency estimates of RTFA, SFA, OLS, the 

within estimator, and the true X-efficiencies. To do this we computed, for each run, the 

average X-efficiency of each firm over the five time-periods. We obtained the true average 

X-efficiency of firm i  by ignoring the random component tiv  and setting tiu  to its true value: 

∑∑
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According to RTFA the average X-efficiency of firm i  is given by: 
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In the case of SFA we use the result of Jondrow, Lovell, Materov, and Schmidt  (1982) who 

show that the conditional distribution of tiu  given tiε  is truncated normal when tiu  is half 

normal. In particular, we computed the expected value of tiu  as: 
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Here f  and F  represent the density function and the distribution function of the standard 

normal distribution, respectively; tie  is the residual of firm i  in period t ; and vσσ ,  and uσ  

are the estimated standard deviations of titi v,ε  and tiu  respectively. The average X-

efficiency is now computed as follows: 

∑
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By definition, X-efficiency is equal to 1 for all firms when applying OLS. Finally, in the case 

of the “within” OLS estimator, the average inefficiency of firm i  is estimated as: 

)û( i, EXPXEFF Withini =     (11) 

where )max(û iii cc −= , and ic  is the estimated fixed effect corresponding to firm i .  

The simulation results regarding the X-efficiency estimates are presented in Figure 1 and 

Table 2. Figure 1 shows the histogram of the X-efficiency scores over 10,000 successfully 

completed trials. That is, we divided the “X-efficiency domain” (i.e. [0%, 100%]) into 20 

intervals (i.e. [0%, 2.5%), [2.5%, 7.5%), [7.5%, 12.5%), etc.) and estimated the relative 

frequency of finding a X-efficiency score in each bracket over the 10,000 trials. Table 2 

contains the average of the distribution shown in Figure 1. Thus, Table 2 shows the average 

X-efficiency level over all periods, all firms and all trials. 

3.3.1 Case 1: The SFA assumptions 

Table 2 shows that, as expected, the SFA model produces an average X-efficiency score that 

is close to the true average X-efficiency level of 52%. We discussed above that RTFA fails in 

Case 1 because it does not manage to distinguish between efficient and inefficient firms. 

RTFA hence produces X-efficiency scores of 100% just like OLS. The “within” estimator 

estimates average X-efficiency at 47%. Although the “within” estimator is unbiased for β , it 

overestimates the maximum of the fixed effects associated with the most “efficient” firm due 

to the relatively short time-dimension of the generated data. As a consequence, X-efficiency 

is underestimated by 5% on average. 

Figure 1 reveals that the distribution of the X-efficiency scores based on SFA is relatively 

close to the distribution of the true X-efficiency scores in Case 1. SFA tends to find slightly 

too few firms with a X-efficiency score between 60% and 100%, and slightly too many with 
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a X-efficiency score between 40% and 60%. The performance of SFA to estimate X-

efficiency however contrasts favourably with the “within” estimator, which produces a 

distribution which is centred too far to the left. 

Table 2. Estimation of average X-efficiency; A comparison between RTFA, SFA, OLS, 

and the “within” estimator for cases 1, 2, and 3. 

 RTFA SFA OLS Within OLS True 

Case 1 100% 51% 100% 47% 52% 
Case 2 79% 56% 100% 49% 76% 
Case 3 77% 57% 100% 47% 75% 

 

 

Figure 1. Distribution of average X-efficiency scores; A comparison between RTFA, 

SFA, and the “within” estimator for cases 1, 2, and 3. 
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Case 2: The inefficiency term is zero for efficient firms
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Case 3: Inefficiency is negatively related to capital intensity
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3.3.2 Cases 2 and 3 

The full sample average level of X-efficiency is considerably under-estimated by both SFA 

and the “within” estimator in the cases 2 and 3. For example, in Case 2, SFA and the 

“within” estimator find average scores of 56% and 49%, respectively, while the true score is 

76% (Table 2). By contrast, RTFA produces an average X-efficiency score that is close, 

though slightly above, the true average X-efficiency score in cases 2 and 3. 

In the previous subsection we showed that in cases 2 and 3 RTFA tends to classify slightly 

too many firms as efficient (Table 1). This result is also illustrated in Figure 1. In cases 2 and 

3 the RTFA estimated frequency of fully efficient firms slightly exceeds the true frequency 

of 50%. However, overall the distribution of X-efficiency scores produced by RTFA is 

relatively close to the distribution of true X-efficiency scores. This cannot be said for SFA 

and the “within” estimator. They fail to find that actually 50% of the firms are X-efficient 

and, as a consequence, their histograms of the X-efficiency scores look entirely different 

altogether. 

The simulation results clearly demonstrate that the bias in X-efficiency tends to be much 

larger than the bias in β . In Case 3, for example, SFA over-estimated β  by about 8.6% on 

average (Table 1), while X-efficiency is underestimated by 24% on average (Table 2; note 

that (57-75)/75=-24%). 

4. Conclusion 

In this paper we introduced an intuitive method for the estimation of thick frontier models: 

the Recursive Thick Frontier Approach (RTFA). The key assumptions behind this new 

technique are weak when compared to the assumptions on which traditional econometric 

techniques are based. A strength of RTFA is that it uses only observations associated with 

“efficient firms” to estimate the frontier parameters. “Inefficient firms” do not influence the 
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estimates of the production function, and, unlike with traditional thick frontier techniques, 

inefficiency need not be parameterised in the production model. 

We compare RTFA to OLS, the stochastic frontier approach (SFA) and the “within” panel 

data estimator through a number of Monte Carlo simulations. We find that, on the basis of 

the mean squared error of the parameter estimates over 10,000 trials, RTFA outperforms 

SFA, OLS and the within estimator for realistic parameterisations of the labour productivity 

model (i.e. cases 2 and 3). However, RTFA fails if in each period the set of efficient firms is 

different (Case 1). Our simulation results show that SFA is superior when its underlying 

distributional assumptions are met but SFA is not robust to small realistic departures from 

those assumptions. 
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