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Abstract 
 
In this paper we derive an empirical likelihood type Wald (ELW)test for the problem testing for 
structural change in a linear regression model when the variance of error term is not known to be 
equal across regimes. The sampling properties of the ELW test are analyzed using Monte Carlo 
simulation. Comparisons of these properties of the ELW test and of three other commonly used tests 
(Jayatissa, Weerahandi, and Wald) are conducted. The finding is that the ELW test has very good 
power properties. 
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1 Introduction

There has been a great deal of interest in testing for the equality of regression coefficients (i.e.,

the absence of structural change) in two linear regressions when the disturbance variances

are unequal. Suppose these two linear regression models satisfy the classical assumptions

such as normality, homoscedasticity, and serial independence for the error terms, and the two

error terms are also independent of each other. The usual Chow test (Chow, 1960) is mostly

often used by researchers to test for the problem of structural change. However, the Chow

test assumes equal disturbance variances for the models. Toyoda (1974) showed that the

usual Chow test of the coefficients of two regression models is misleading if the two variances

are unequal and the sample sizes are small. The Behrens-Fisher problem is just the case

when there is only one regressor, the constant term, in each of the regression models.

The first constructive test, in the literature, for the problem of structural change in the

linear regression model when the error variance may also change was developed by Jayatissa

(1977). We refer to it as the J test. The J test is an exact test whose test statistic has an

exact F distribution if the null hypothesis is true. Watt (1979) and Honda (1982) proposed

a Wald test for this problem and provided evidence that the Wald test is preferred to the

J test when the number of regressors is greater than one. The Wald test is an asymptotic

test, of course.

Weerahandi (1987) developed another exact test which makes use of the empirical sig-

nificance level, the p-value. We refer to this test here as the WEE test. Zaman (1996) highly

recommended the WEE test and discussed the test in detail because Weerahandi’s approach

introduced a new idea to the econometrics testing literature.

The main objective of this study is to develop a new solution to the problem of testing

for structural change in a linear regression model when the variance of the error term is

not necessarily constant. The approach that we take is the maximum empirical likelihood

method (EL). The EL method is a non-parametric technique that was developed recently

by Owen (1988, 1990, 1991). The EL method has obvious merits. It utilizes the likelihood

function without specifically assuming the form of the underlying data distribution. It utilizes

side information, through moment equations, which maximizes the efficiency of the method.

Using the EL approach, one is able to effectively avoid possible mis-specification problems

that one often faces in parametric approaches and the problem of lack of efficiency in other
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non-parametric approaches.

The test we propose in this study is a empirical likelihood type Wald (ELW ) test. The

empirical likelihood (EL) approach allows us to make the best use of the information in hand.

It also provides a way to tie the estimation and testing issues together nicely. In addition,

the empirical likelihood approach provides us with a practical tool to conduct a test for

the problem of structural change and for normality of the underlying data distributions

simultaneously. We provide a detailed analysis of the sampling properties for the ELW test.

We also conduct a power comparison for the ELW test and the conventional tests that we

have mentioned above. Monte Carlo simulation is employed to compute the empirical size

and the size-adjusted critical values in finite samples. The empirical powers of the tests

are computed using these size-adjusted critical values to ensure that every test is being

considered at the same actual significance level.

The outline of the rest of the paper is as follows. Section 2 provides a brief introduction

of the existing tests that we have mentioned. Section 3 presents the set-up of the EL

approach that we use. Section 4 presents the Monte Carlo experiment. Section 5 discusses

the associated results. A summary and our conclusions are provided in Section 6.

2 Tests for structural change

under heteroscedasticity

Suppose there are two classical linear regressions. We wish to test for the equality of the

two coefficient vectors when the disturbance variances are not known to be equal.

Yi = Xiβi + εi, εi ∼ N(0, σ2
i Ini

), i = 1, 2 (1)

where Yi and Xi are ni × 1 and ni × k observation matrices, βi are k × 1 coefficient vectors,

and εi are ni × 1 error vectors. We assume that E(ε1ε
′
2) = 0 and that each of the regressor

matrices is non-random and of full column rank.

The least squares estimators of βi are:

β̂i = (X ′
iXi)

−1X ′
iYi, i = 1, 2. (2)
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The least squares residual vectors are

ε̂i = MiYi, (3)

where Mi = Ini
−Xi(X

′
iXi)

−1X ′
i; i = 1, 2. The matrix Mi can be decomposed into ZiZ

′
i,

where Zi is the ni× (ni− k) eigenvector matrix of Mi and has the properties: Z ′
iXi = 0 and

Z ′
iZi = Ini−k; i = 1, 2.

A type of BLUS residual vector (Theil, 1965 and 1968) can be formed using the Zi

matrix:

ε∗i = Z ′
iε̂i; i = 1, 2. (4)

The BLUS residual vectors ε∗i are distributed as: ε∗i ∼ N(0, σ2
i Ini−k). These residuals are

independent and identically distributed if the error terms are from normal distributions.

The difference of the two least squares estimators of the βi vectors is distributed as

follows:

β̂1 − β̂2 ∼ N(δ, Σ), (5)

where δ = β1−β2, and Σ = σ2
1(X

′
1X1)

−1 +σ2
2(X

′
2X2)

−1. A solution to the problem of testing

for structural change is just a test of the hypothesis that H0 : β1 − β2 = 0 based on the

estimated covariance matrices.

There are two types of solutions to this problem of testing for structural change: the

exact and asymptotic tests. The Jayatissa and the Weerahandi tests are exact tests in which

the exact distributions of the test statistics are known under the null hypothesis. The Wald

test and the empirical likelihood type test are asymptotic ones, where the asymptotic null

distributions are known but the actual null distributions in finite samples are unknown.

We have chosen the Jayatissa test, the Weerahandi test, and the Wald test for comparison

purposes. The reason that these tests are chosen is that they are the most commonly used

tests in the econometrics literature associated with testing for this type of structural change.
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2.1 Jayatissa test (J)

Jayatissa (1977) proposed the J test in which the test statistic has an exact central F

distribution under the null hypothesis of no structural change. The J test has been the

corner stone and benchmark in the literature on testing regression vector equality in the

presence of heteroscedasticity. The virtue of this test is that the probability of an incorrect

rejection of the null hypothesis does not depend on the values of the nuisance parameters,

the variances σ2
i , i = 1, 2.

The J test makes use of the transformed regression residual vectors, ε∗i , i = 1, 2, as

in (5), and the decomposition of the matrices (X ′
iXi)

−1 = Q′
iQi where the Qi are k × k

matrices. However, if the numbers of observations from the two regressions are not equal

suppose (n1 > n2), then the vector ε∗1 is truncated to have a length of n2. If n2/k is not

an integer, then the two residual vectors are truncated again in order to form the J test

statistic.

The criticisms arise from the fact that the J test does not use all of the data efficiently.

It involves throwing away some of the information by truncating the residual vectors. It

also lacks uniqueness, for there are different methods that could be used to decompose the

matrices (X ′
iXi)

−1. In addition to this, the J test requires the minimum sample size, i.e.,

min((n1− k)/k, (n2− k)/k) > 1. Watt (1979) and Honda (1982) have discussed these issues

in more detail.

2.2 Weerahandi test (WEE)

Weerahandi (1987) introduced a new approach to testing for structural change. The WEE

test yields a particular type of exact solution to the problem. It is an exact test based on

the observed level of significance, the p-value.

The test is to reject the null hypothesis of no structural change if the p-value is too

small, for instance, smaller than a preassigned significance level. The computational work

associated with the construction of the WEE test is moderate. It requires only a one-

dimensional numerical integration over the quantity R =
ε̂′
1ε̂1

σ2
1

/(
ε̂′
1ε̂1

σ2
1

+
ε̂′
2ε̂2

σ2
2

), which is dis-

tributed as Beta((n1−k)/2, (n2−k)/2) under the null hypothesis. The observed significance
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level is obtained from the formula:

p = 1− ER(Fk,T (V )) (6)

where Fk,T is the cumulative F -distribution with degrees of freedom (k, T ),

V =
T

k
δ̂′(

SSR1

R
(X ′

1X1)
−1 +

SSR2

1−R
(X ′

2X2)
−1)−1δ̂, (7)

T = n1 + n2 − 2k, δ̂ = β̂1 − β̂2, and SSRi are the sums of squared residuals, i = 1, 2.

The WEE test performs well for small samples. The two parameters of the Beta distri-

bution that are involved in computing the WEE test statistic depend on the sample sizes

(n1, n2). When the sample sizes are large, these two parameters become large; the integra-

tion over the space for R, which is (0, 1), yields a result very close to zero; and then the

calculated p-value becomes close to one. Thus, the WEE test fails to reject any hypothesis

when the sample sizes are large.

The p-value approach is useful for some problems with nuisance parameters, such as

the problem of structural change with the σ2
i as nuisance parameters. The probability of

an incorrect rejection of the null hypothesis depends on the observations and the nuisance

parameters. It is not fixed in advance. To make testing on the basis of the p-value comparable

to the fixed level testing, we can choose to reject the null hypothesis whenever the p-value is

less than the preassigned nominal significance levels. Weerahandi’s p-value approach often

yields a useful and clear solution while the fixed level testing does not (Zaman, 1996, p.

247).

2.3 Wald test

Watt (1979) and Honda (1982) proposed a Wald test under the inequality of the two vari-

ances. The test statistic has the form:

w = (β̂1 − β̂2)
′(σ̂2

1(X
′
1X1)

−1 + σ̂2
2(X

′
2X2)

−1)−1(β̂1 − β̂2) (8)

where σ̂2
i =

ε̂′
iε̂i

ni−k
, i = 1, 2 are the usual unbiased least squares estimators of the variances of

the error terms. The Wald test is obviously easy to compute and the test statistic has an
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asymptotic distribution of χ2
(k).

Watt (1979) and Honda (1982) provided comparisons of the size and the power of the

Wald test and the J test. They pointed out that only when the number of regressors is one,

k = 1, is the J test preferred to the Wald test. For k > 1, the Wald test always outperforms

the J test in terms of higher power. The limitation of these two studies are essentially

two-fold. First, when the power of the Wald test was calculated, the number of rejections

was counted with reference to the asymptotic distribution of the test rather than the actual

distribution of the test in finite samples. Second, Watt(1979) and Honda (1982) considered

an “ad hoc W2” test, this being the Wald test applied at the 2.5% significance level, but

used in this case to approximate a 5% level test.

3 Empirical likelihood approach

3.1 Empirical likelihood method in a regression model

The theory associated with applying the EL method to a regression model for the estimation

of the coefficient vector β was established by Owen (1990 and 1991). As illustrated in

Mittelhammer et al. (2000, p. 306), the unbiased moment equations used in the EL approach

in the context of regression are of the form:

E(h(Y, β)) = E(X ′(Y −Xβ) = 0. (9)

This is the case when the number of moment equations equals the number of the parameters.

The solution from the equation system solves the maximization problem of the empirical

likelihood with the weights pj = n−1, where j denotes the jth observation, and the likelihood

function achieves its maximum, L(Fn) = n−n. The EL estimator of the coefficient vector

β is precisely the same as the least squares estimator, since the moment equations coincide

with those equations used in the least squares estimation method.

The EL estimator βEL is more efficient than the least square estimator βLS when het-

eroscedasticity presents. In the context of the classical linear regression model with the

assumptions of homoscedasticity and a multivariate normal distribution for the error term,

β̂LS is unbiased and most efficient. When the homoscedasticity assumption is dropped, β̂LS
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is still unbiased but it is inefficient. The variance of β̂LS is no longer consistently estimated

by (X ′X)−1σ̂2. However, the asymptotic covariance matrix estimator using the EL approach

is still asymptotically efficient even under heteroscedasticity.

The EL estimated covariance matrix Σ̂ of the EL estimator β̂ has the form:

Σ̂ = [n−1(X ′X)−1(
n∑

j=1

p̂j(yj − x′jβ̂)2x′jxj)(X
′X)−1]−1. (10)

There is a close analogy between Σ̂−1 and White’s (1980) heteroscedasticity-robust estimate

of the covariance matrix of β̂LS. So the EL method is able to capture the information

associated with the possible presence of heteroscedasticity.

When the regressor matrix X is non-stochastic, the EL approach to the regression model

actually becomes more complicated than when random regressors are allowed. The set of

moment equations for each observation has the form:

h(yj, β) = x′j(yj − xjβ), for j = 1, . . . , n. (11)

It is unbiased, E(h(yj, β)) = 0, but the covariance matrix of h(yj, β) varies with each

observation:

cov(h(yj, β)) = σ2x′jxj; j = 1, . . . , n. (12)

That is, the h(yj, β) are not identically distributed for all j.

Theorem 2 in Owen (1991) provides a solution to this situation when the data are not

identically distributed. We denote: cov(h(yj, β)) = Φj, and Vn = n−1 ∑n
j=1 Φj. ξS and ξL

are the smallest and largest eigenvalues of Vn. The following assumptions are made:

1. limn→∞ P (0 ∈ ch{h(y1, β), . . . , h(yn, β)}) = 1, where ch{} denotes the convex hull

of the data;

2. n−2 ∑n
j=1 E ‖h(yj ,β)‖4

ξL2 → 0, as n →∞;

3. ξS

ξL ≥ c > 0, ∀n ≥ k;

Under these assumptions, minus two times the log empirical likelihood ratio function,

−2 log R(β) = −2(log L(β̂c)− log L(β̂)u), (13)
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has a limiting distribution of χ2
(d), where d is the number of restrictions.

This theorem enable us to relax the assumption that the data are i.i.d. in the standard

EL approach. This theorem is essential for us to handle the regression models with non-

random regressors. The Lindeberg-Levy central limit theorem is replaced by the Lindeberg-

Feller central limit theorem to deal with the asymptotics in this non-i.i.d. case. The largest

eigenvalue of Vn is used to scale the problem. With this theory, we are able to set up the EL

approach for the problem of testing for structural change in a regression model.

3.2 The ELW test

For the two linear regression models in the problem of structural change, the EL estimators,

β̂i, i = 1, 2, of the coefficient vectors are the same as the least squares estimators. From the

regression model using the β̂i’s, we obtain two least squares residual vectors: ε̂i = Yi−Xiβ̂i,

and these residual vectors are distributed as: ε̂i ∼ N(0, Miσ
2
i ).

The objective of this section is to develop a ELW test for the equality of the two coefficient

vectors. The null hypothesis is:

H0 : β1 = β2.

We know that the distribution of δ̂ = β̂1− β̂2 is N(0, σ2
1(X

′
1X1)

−1 + σ2
2(X

′
2X2)

−1) under the

null hypothesis and under the classical assumptions for each of the two regression models.

Suppose the Xi matrices are non-stochastic. Then the possible efficiency gain of the EL

approach comes from the EL estimators of σ2
i ’s. We hope that the EL estimators of the

σ2
i ’s would be more efficient than the least squares estimators given the fact that the EL

approach utilizes both the likelihood functions and the information available in terms of the

data distribution and the equality of two coefficient vectors.

The data that we have are the two sets of least squares residuals ε̂i, i = 1, 2. As the OLS

residuals are not independently distributed, we first transform the OLS residuals ε̂i into a

type of BLUS residuals, ε∗i ∼ N(0, σ2
i Ini−k), as in equation (5). The Zi are the ni× (ni− k)

eigenvector matrices of Mi matrices corresponding to the unit roots. The BLUS residual

vectors ε∗i = Z ′
iε̂i have the distribution N(0, σ2

i Ini−k), for i = 1, 2.

The data transformation technique that was described in Dong (2004) is applied here

to the two sets of the residuals. We transform the residual vector ε∗1 to a vector V1 that has
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the same distribution as ε∗2; we combine the two sets of the residuals V1 and ε∗2 to form a full

set of residuals that are i.i.d.; then we apply the EL approach to the full set of residuals.

The EL approach that we develop here allows us to achieve three objectives sequentially.

(i) Obtain the EL estimators of the two variance parameters that are more efficient; (ii)

Construct an ELW test for the structural change problem; (iii) Conduct an ELR test for the

normality of the disturbance terms in the presence of possible heteroscedasticity.

The steps associated with implementing the EL approach to the problem of testing for

structural change are as follows.

Step 1. Transform the residual vector ε∗1 to have the same distribution as of the residual

vector ε∗2 using the formula:

V1 = ε∗1(ρ
2)

1
2 (14)

where ρ2 = σ2
2/σ

2
1. Then, V1 ∼ N(0, σ2

2In1−k). Let

V2 = ε∗2. (15)

Stacking the two vectors, V1 and V2 on top of each other, we get the full set of the residuals

V = {v1, v2, . . . , vT}′, where T = n1 + n2 − 2k. The residual vector V has a distribution

N(0, σ2
2IT ).

Assign a probability parameter pj to vj, the jth element of the residual vector V . The

empirical likelihood function that is supported on the data is formed by
∏T

j=1 pj. Maximiz-

ing the empirical likelihood function
∏T

j=1 pj subject to the probability constraints and the

moment constraints is the conventional EL method. The Lagrangian function of the log

empirical likelihood function has the form:

G = T−1
T∑

j=1

log pj − η(
T∑

j=1

pj − 1)− λ′
T∑

j=1

pjh(vj, θ) (16)

where E[h(vj, θ)] = 0 is the set of the first four unbiased moment equations for the residual

vector V . The empirical version of E[h(vj, θ)] = 0 has the form:
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T∑
j=1

pjvj = 0 (17)

T∑
j=1

pjv
2
j − σ2

2 = 0 (18)

T∑
j=1

pjv
3
j = 0 (19)

T∑
j=1

pjv
4
j − 3σ4

2 = 0. (20)

The parameter vector is θ = (ρ2, σ2
2)
′. The optimal value of the Lagrangian multiplier

η is unity. The pj’s have the expression:

pj = T−1(1 + λ′h(vj, θ))
−1, j = 1, 2, . . . , T. (21)

Note that the elements in the first portion of the vector V are functions of the parameters;

the first order derivative of these elements with respect to the parameter has the form:

∂vj

∂θ
= (ε∗1j(ρ

2)−0.50.5, 0)′, (22)

for j = 1, 2, . . . , n1− k. The first order conditions of the Lagrangian function with respect

to the parameters have the form:

n1−k∑
j=1

pj(λ1 + 2λ2ε
∗
1j + 3λ3ε

∗2
1j + 4λ4ε

∗3
1j)(ρ

2)−0.50.5 = 0 (23)

T∑
j=1

pj(λ2 + 6λ4σ
2
2) = 0. (24)

Solving the equation system of the four moment equations and the two first order condi-

tions, we get the EL estimators σ̃2
2, ρ̂2, and λ̂. Then we obtain the probability parameter

estimators, the p̂j’s, using the formula of the pj’s, for j = 1, 2, . . . , T . The estimator of the

parameter σ2
1 can be recovered from: σ̃2

1 = σ̃2
2/ρ̂

2.
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Step 2. With the EL estimators of the variance parameter in hand, we can conduct an

ELW test for the problem of structural change. The ELW test statistic has the form:

ELW = (β̂1 − β̂2)
′(σ̃2

1(X
′
1X1)

−1 + σ̃2
2(X

′
2X2)

−1)−1(β̂1 − β̂2) (25)

where σ̃2
i are the EL estimators of σ2

i , i = 1, 2. The test statistic has an asymptotic

distribution of χ2
(k) under the null hypothesis.

Step 3. Testing for normality

With the estimators of the probability parameters, p̂j’s, we can easily set up an empirical

likelihood ratio test for normality in the error terms. The log empirical likelihood ratio

statistic has the form:

−2 log R(θ̂) = −2
T∑

j=1

log T p̂j, (26)

and it has a limiting distribution of χ2
(2). This is a ELR test for normality in the context of

the problem of structural change. That is, the EL approach we described above can be used

to test for normality in a regression model in the presence of heteroscedasticity.

In a general situation, we may be interested in using the technique that is described here

to test for normality of the two underlying populations. If we are satisfied with the results

and accept the null hypothesis that the underlying populations are normal, then, we can

continue to test for the problem of structural change in regression. While it is recognized

that this can give rise to “preliminary test” distortions (Giles and Giles, 1993), this is an

issue that we do not pursue further here. Alternatively, the settings here are similar to that

in Dong (2004), we can conduct the two tests, testing for normality and structural change,

simultaneously so as to avoid the pretesting issue.

4 Monte Carlo experiments

The design of our Monte Carlo experiments is based on the regression models:

Y1 = β11 + β12x1 + ε1 (27)

Y2 = β21 + β22x2 + ε2. (28)
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The disturbance vector εi has a distribution of N(0, σ2
i Ini

); ni is the number of observations

for the ith model, i = 1, 2. The error terms in the two regression models are independent

of each other and they are independent of the regressor variables xi. The variance ratio

parameter of the two error terms is ρ2 = σ2
2/σ

2
1. The true value of the parameter ρ2 changes

according the values {0.1, 0.5, 1, 2, 10}. The true value of the parameter σ2
1 equals unity,

the true value of the parameter σ2
2 varies with the parameter ρ2.

The number of replications is chosen to be 5, 000. The sample size pair (n1, n2) ranges

from (20, 10), (60, 30), (100, 50), to (250, 125). The ratio of the sample sizes is kept

constant at two.

The coefficient vector for the first regression model is β1 =

 β11

β12

 =

 1

1

. β2 = β21

β22

 is the coefficient vector of the second linear regression model in the problem. Under

the null hypothesis, we have β2 =

 1

1

. Otherwise, this vector is β2 =

 1

β22

, where β22

varies with the non-centrality parameter, δ.

In computing the power of the test, the non-centrality parameter is chosen to be:

δ = [(β1 − β2)
′(σ2

1(X
′
1X1)

−1 + σ2
2(X

′
2X2)

−1)−1(β1 − β2)]
1
2 . (29)

With only two regressors in our setting, this can be simplified to

δ = [(1− β22)
2d]

1
2 , (30)

where

d = (
σ2

1∑n1
t=1 x2

1t − (
∑n1

t=1 x1t)2
+

σ2
2∑n2

t=1 x2
2t − (

∑n2
t=1 x2t)2

). (31)

Thus, the parameter β22 = 1 − δ/d
1
2 . It changes with the non-centrality parameter. The

true value of δ is varied according to {1, 2, 3, 4}.
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4.1 Regressor matrix X

The regressor matrix has the form of X = {1, x} in our setting. It is kept fixed in each

replication. That is, X is non-stochastic. The x vector is designed to come from two different

generating processes. The first case is when the x vector is generated following a stationary

AR(1) process as follows:

xt = ρ1xt−1 + ut, t = 1, . . . , n (32)

where x0 = 0 and the ut are distributed i.i.d. N(0, 1− ρ2
1). The true value of the parameter

ρ1 equals 0.5. The results are invariant to this value. We first generate the x vector of size

n + 300, and then we discard the first 300 observations so as to eliminate the effect of x0.

We keep the remainder of the x vector fixed and partition it into the sample sizes (n1, n2)

as needed. We then join the x vector with a column of ones to form the regressor matrices.

The regressor matrices X1 and X2 are non-stochastic.

The second case is when the x vector is generated from a uniform distribution: U(0, 1).

Steps corresponding to those described above are taken to ensure that the matrices X1 and

X2 are non-stochastic. In this second setting, the true values of the elements of the βi’s are

chosen to be different from the first setting. The true values of the coefficient vectors are

βi =

 0

1

 under the null hypothesis. Under the alternative hypothesis, the true values of

the vector β2 is β2 =

 0

β22

, and β22 = 1− δ/d
1
2 varies with the non-centrality parameter

as was described in the first case.

5 Results

The tables in the Appendix provide complete comparisons of the sizes, the size-adjusted

critical values, and the powers for the four tests: the ELW test, the Wald test by Watt

(1979) and Honda (1982), the WEE test, and the J test, across a wide range of situations.

We have chosen to use the four nominal significance levels: 10%, 5%, 2%, 1% to provide

a broad picture of the sampling properties of the tests. As described in Section 6.3, the

parameter ρ2 varies according to the values of {0.1, 0.5, 1, 2, 10} and the sample size pair

increases following the pattern of (n1, n2) = {(20, 10), (60, 30), (100, 50), (250, 125)}.

13



In each replication, the same data set is used in the application of all of the four tests.

The J test is an exact test with a known distribution in finite samples, but we have simulated

the sizes and the size-adjusted critical values, and we use these critical values to compute

the powers for the J test to make them comparable with those for the other two asymptotic

tests. For the WEE test, only the sizes are provided as the WEE test is an exact test that

uses the observed significance level, the p-value, for inference purposes. The concept of the

size-adjusted critical value is not applicable for the WEE test. In computing the powers for

the WEE test, the observed significance levels, rather than the size-adjusted critical values,

under the alternative hypotheses are used.

The first group of tables, Tables 1 to 13, provides the results for the case when the

regressor x is generated following an AR(1) process, as described in the previous section.

Tables 1 to 3 present the sizes and the size-adjusted critical values for the three tests: the

ELW test, the Wald test, and the J test.

The sizes of the ELW test are slightly lower than the nominal significance levels. These

sizes converge to the correct nominal levels as the sample size pair (n1, n2) grows. For

example, the size changes from 3.74% to 4.72% when the sample pair grows from (20, 10) to

(250, 125) at the nominal significance level of 5%, with ρ2 = 0.1. The size distortion of a test

is the difference between the actual size of the test and the nominal significance level. The

size distortion of the ELW test is small and it changes with the value of the parameter ρ2;

it actually grows as the parameter ρ2 varies from 0.1 to 10. For instance, the size distortion

is −1.26% at ρ2 = 0.1 and it is 21.6% at ρ2 = 10 for the sample pair (n1, n2) = (20, 10)

and at α = 5%. The size distortion is the worst when ρ2 = 10. However, the size distortion

is within the range of our expectation for the EL-type tests and it tends to vanish as the

sample sizes grow.

The size of the Wald test has the same patterns as the ELW test. The size of the

test converges to the correct nominal level as the sample size pair grows. The size slightly

increases with the value of the ρ2 parameter. For the cases when ρ2 = 2 and ρ2 = 10, the

size distortion of the test is less severe than that of the ELW test. In another words, the size

of the Wald test is better for the cases when ρ2 = 2 and ρ2 = 10 than is that of the ELW

test.

The size-adjusted critical values of both the ELW and the Wald tests are associated with

the regressor matrices that we use. They are not universally applicable to the situation with
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a different regressor matrix X. To assist researchers in using the ELW test, we will provide

a small library in Gauss code that contains two procedures, in future work. One is used to

take in a general regressor matrix X and to compute the actual size and size-adjusted critical

values; another is used to take in the regressor matrix and size-adjusted critical values and

to calculate the power of the ELW test.

The sizes of the J test and the WEE test are very close to their nominal levels. In

addition, they are robust against changes in the value of ρ2 and changes in the sample size.

These outcomes result from the fact that both of the J test and the WEE test are exact tests.

The WEE test is not applicable for the sample pair (250, 125) for the reasons explained in

Section 2.2.

Tables 4 to 13 provide the power comparisons for the four selected tests. The powers

of the three tests, the ELW , the Wald, and the J test are computed using the respective

size-adjusted values. That is, we compare the powers of the tests at the same actual levels.

The power of the WEE test is computed using the observed significance level, the p-value.

We reject the null hypothesis when the p-value is smaller than the same actual levels used

for other tests.

The power of the ELW test grows as the non-centrality parameter δ increases, given

the sample size pair and the value of the parameter ρ2. For example, the power grows

from 16.44% to 56.82% as δ increases from 1 to 4, given ρ2 = 0.1 , the sample size pair

(n1, n2) = (20, 10), and at the actual size level of α = 5%.

The power of the ELW test increases as the sample size grows, given the the values of

δ and ρ2. For example, the power increases from 56.82% to 70.5% when (n1, n2) increases

from (20, 10) to (250, 125), given δ = 4, ρ2 = 0.1, and at the actual size level of α = 5%.

The power of the test changes very little as the parameter ρ2 varies, given the sample size

pair, the non-centrality parameter, and the actual size level.

The power performances of the four tests that we consider are very similar. For the case

when (n1, n2) = (20, 10) and ρ2 = 0.1, the power comparison in descending order is: the

Wald test, the WEE test, the ELW test, and the J test. For the case of larger sample size

pair (n1, n2) = (250, 125) with ρ2 = 0.1, the order is: the Wald test, the ELW test, and the J

test. The WEE test is not applicable in the cases whenever (n1, n2) = (250, 125). The order

of the power for the tests changes when the parameter ρ2 varies, but the difference among
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them is minor. All the four tests have good power properties in testing for the problem of

structural change in the regression model.

Table 14 to 17 provide the sizes and the size-adjusted critical values for the four tests

when the regressor x is obtained from a Uniform distribution and kept fixed in each replica-

tion. The values of the parameter ρ2 and the sample size pair (n1, n2) change in the same

way as described in the first case. Table 18 to 27 illustrate the power comparisons for the

tests of the cases when the non-centrality parameter δ varies. The comparison results are

similar to those in the first case.

6 Summary and conclusions

The problem of structural change in regressions has attracted considerable interest in the

literature. There have been several well known tests developed, such as Jayatissa test and

Weerahandi test. In this paper, we derived a empirical likelihood type Wald (ELW ) test by

applying the maximum empirical likelihood method to this problem of testing for the absence

of structural change in a regression model. The fact that the maximum empirical likelihood

method can be used to this problem demonstrates the flexibility of the EL method.

Using the Monte Carlo simulation technique, we have provided a detailed analysis for

the sampling properties of the ELW test, and we have conducted a comparison of these

sampling properties for the ELW test and other conventional tests. The comparisons are

made across the full dimensions of the parameter space, including different designs of the

regressor matrices. Our results indicate that the ELW test is as powerful as the other tests.

Overall, the EL approach provides efficient testing procedures and the ELW test has good

power properties.
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Appendix: Tables of structural change

Table 1: Size and Size Adjusted Critical Values, Case 1. regressor x ∼ AR(1)

ρ2 = 0.1 ρ2 = 0.5
(n1, n2) (20, 10) (60, 30) (100, 50) (250, 125) (20, 10) (60, 30) (100, 50) (250, 125)

EL-W test at nominal levels:
10% 0.0730 0.0730 0.0704 0.0840 0.0858 0.0980 0.0888 0.0972
5% 0.0374 0.0383 0.0371 0.0416 0.0462 0.0552 0.0448 0.0480
2% 0.0180 0.0160 0.0160 0.0154 0.0228 0.0240 0.0154 0.0208
1% 0.0110 0.0092 0.0090 0.0090 0.0128 0.0130 0.0080 0.0104

Size-Adjusted Critical Values:
10% 3.9241 4.0676 4.0206 4.3125 4.3119 4.5473 4.3753 4.5177
5% 5.4822 5.3601 5.3769 5.6873 5.7367 6.1951 5.7596 5.9109
2% 7.6182 7.2349 7.2311 7.3603 8.0932 8.2175 7.3601 7.9367
1% 9.3748 8.8698 8.7977 9.1190 10.185 10.005 8.6382 9.2574

Wald test :
10% 0.1280 0.1090 0.1032 0.1040 0.1283 0.1090 0.0995 0.0994
5% 0.0728 0.0620 0.0522 0.0526 0.0728 0.0584 0.0509 0.0490
2% 0.0370 0.0252 0.0231 0.0225 0.0342 0.0294 0.0194 0.0216
1% 0.0214 0.0124 0.0138 0.0126 0.0190 0.0180 0.0110 0.0100

Size-Adjusted Critical Values:
10% 5.2138 4.8003 4.6500 4.7040 5.2206 4.7854 4.5933 4.5964
5% 7.0280 6.4164 6.1223 6.0811 6.9428 6.4037 6.0578 5.9422
2% 9.3464 8.3834 8.3975 7.9536 9.0290 8.9807 7.7791 8.0267
1% 11.1943 10.0002 9.9763 9.7063 10.8544 10.451 9.3119 9.2080

J test :
10% 0.0982 0.1070 0.0985 0.1056 0.0984 0.1042 0.1010 0.0927
5% 0.0480 0.0488 0.0478 0.0522 0.0492 0.0562 0.0488 0.0466
2% 0.0200 0.0216 0.0218 0.0222 0.0194 0.0240 0.0180 0.0220
1% 0.0076 0.0092 0.0102 0.0118 0.0108 0.0150 0.0088 0.0112

Size-Adjusted Critical Values:
10% 5.3889 2.8113 2.5242 2.4551 5.3855 2.7956 2.5564 2.3237
5% 9.3401 3.7716 3.3628 3.1857 9.5194 4.0153 3.3741 3.1102
2% 18.475 5.4456 4.7514 4.319 18.4115 5.7280 4.5575 4.2390
1% 27.3093 6.4371 5.6666 5.1832 32.1514 7.3551 5.4789 5.0438

WEE test :
10% 0.0948 0.0992 0.0961 – 0.0859 0.0960 0.0930 –
5% 0.0463 0.0516 0.0488 – 0.0386 0.0496 0.0463 –
2% 0.0162 0.0200 0.0216 – 0.0122 0.0225 0.0162 –
1% 0.0072 0.0102 0.0112 – 0.0060 0.0124 0.0078 –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with larger sample sizes.
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Table 2: Size and Size-Adjusted Critical Values, Case 1. regressor x ∼ AR(1)

ρ2 = 1 ρ2 = 2
Sample size: (20, 10) (60, 30) (100, 50) (250, 125) (20, 10) (60, 30) (100, 50) (250, 125)

EL-W test at nominal levels:
10% 0.1196 0.1240 0.1090 0.1168 0.1638 0.1584 0.1318 0.1308
5% 0.0651 0.0724 0.0598 0.0620 0.1108 0.0960 0.0796 0.0746
2% 0.0325 0.0352 0.0278 0.0276 0.0662 0.0462 0.0360 0.0398
1% 0.0200 0.0196 0.0160 0.0148 0.0446 0.0292 0.0188 0.0225

Size-Adjusted Critical Values:
10% 4.9605 5.1270 4.8045 4.9273 6.3331 5.8789 5.3248 5.3178
5% 6.7269 6.9166 6.4057 6.4209 8.7909 7.6497 7.1144 7.0886
2% 9.1073 9.1581 8.4132 8.6556 12.1633 10.4332 9.1453 9.5255
1% 11.360 10.9984 10.5341 10.1076 14.7807 12.5284 10.4337 11.0906

Wald test :
10% 0.1258 0.1114 0.1022 0.1044 0.1368 0.1206 0.1086 0.1072
5% 0.0734 0.0606 0.0566 0.0538 0.0834 0.0644 0.0578 0.0592
2% 0.0364 0.0284 0.0242 0.0231 0.0448 0.0292 0.0228 0.0282
1% 0.0208 0.0152 0.0148 0.0118 0.0298 0.0172 0.0102 0.0132

Size-Adjusted Critical Values:
10% 5.1752 4.8401 4.6440 4.6913 5.4119 5.0095 4.7581 4.7812
5% 7.0252 6.4137 6.2856 6.1137 7.5290 6.5304 6.2902 6.4230
2% 9.2898 8.5605 8.3555 8.0896 10.4506 8.9098 8.0356 8.4791
1% 11.0669 10.0879 10.0416 9.6211 13.3108 10.7222 9.2518 10.0419

J test:
10% 0.1014 0.1096 0.1000 0.1052 0.0964 0.1036 0.1000 0.1046
5% 0.0458 0.0550 0.0526 0.0540 0.0500 0.0548 0.0518 0.0584
2% 0.0191 0.0224 0.0222 0.0228 0.0202 0.0222 0.0218 0.0256
1% 0.0084 0.0106 0.0095 0.0106 0.0118 0.0108 0.0094 0.0138

Size-Adjusted Critical Values:
10% 5.5241 2.8717 2.5468 2.4589 5.2738 2.8077 2.5473 2.4564
5% 9.0994 3.9826 3.5018 3.2342 9.5241 3.9280 3.4469 3.2940
2% 18.0297 5.5664 4.7575 4.3470 19.0044 5.5976 4.7747 4.3624
1% 26.4114 6.8010 5.6176 5.0388 35.5952 6.8281 5.5962 5.2980

WEE test :
10% 0.0806 0.0972 0.0960 – 0.0878 0.1028 0.0985 –
5% 0.0386 0.0496 0.0504 – 0.0422 0.0504 0.0504 –
2% 0.0126 0.0202 0.0208 – 0.0156 0.0224 0.0172 –
1% 0.0056 0.0094 0.0110 – 0.0082 0.0108 0.0080 –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with larger sample sizes.
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Table 3: Size and Size-Adjusted Critical Values, Case 1. regressor x ∼ AR(1)

ρ2 = 10
Sample size: (20, 10) (60, 30) (100, 50) (250, 125)

EL-W test at nominal levels:
10% 0.2960 0.2046 0.1754 0.1544
5% 0.2174 0.1330 0.1092 0.0890
2% 0.1442 0.0822 0.0598 0.0454
1% 0.1070 0.0546 0.0378 0.0254

Size-Adjusted Critical Values:
10% 9.5921 7.0449 6.2411 5.7256
5% 14.1282 9.5328 8.4754 7.4453
2% 20.9046 13.7238 11.4052 9.9942
1% 26.0257 16.1886 13.7603 11.8519

Wald test :
10% 0.1542 0.1172 0.1074 0.1086
5% 0.0952 0.0670 0.0558 0.0572
2% 0.0562 0.0324 0.0272 0.0216
1% 0.0396 0.0196 0.0152 0.0098

Size-Adjusted Critical Values:
10% 5.8456 4.9903 4.7658 4.8786
5% 8.2013 6.7091 6.2682 6.2549
2% 11.5971 9.1366 8.6370 8.0732
1% 14.5764 10.845 9.8575 9.1729

J test:
10% 0.0948 0.1026 0.1000 0.1060
5% 0.0488 0.0508 0.0482 0.0532
2% 0.0191 0.0222 0.0176 0.0222
1% 0.0094 0.0126 0.0078 0.0088

Size-Adjusted Critical Values:
10% 5.2953 2.7676 2.5447 2.4775
5% 9.3683 3.8351 3.3853 3.2253
2% 18.1224 5.5513 4.5569 4.3196
1% 29.8879 7.2861 5.2979 4.8404

WEE test :
10% 0.0938 0.1006 0.0978 –
5% 0.0466 0.0512 0.0488 –
2% 0.0170 0.0218 0.0228 –
1% 0.0086 0.0102 0.0088 –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with larger sample sizes.
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Table 4: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 0.1
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2528 0.4384 0.5802 0.6984 0.3154 0.5114 0.6682 0.7808
5% 0.1644 0.3006 0.4372 0.5682 0.2092 0.3788 0.5352 0.6792
2% 0.0948 0.1780 0.3008 0.4074 0.1180 0.2410 0.3664 0.523
1% 0.0616 0.1222 0.2198 0.3074 0.0688 0.1608 0.2664 0.3978

Wald test :
10% 0.2890 0.5016 0.6438 0.7688 0.3184 0.5266 0.6924 0.8004
5% 0.1812 0.3602 0.5062 0.6480 0.2124 0.3880 0.5522 0.6954
2% 0.0966 0.2322 0.3660 0.5074 0.1262 0.2662 0.3992 0.5562
1% 0.0674 0.1702 0.2756 0.4060 0.0792 0.1852 0.3000 0.4474

J test :
10% 0.2150 0.3217 0.4218 0.5224 0.2940 0.4758 0.6200 0.7382
5% 0.1146 0.1952 0.2524 0.3234 0.1932 0.3486 0.4818 0.6162
2% 0.0458 0.0910 0.1170 0.1646 0.0976 0.1974 0.3036 0.4348
1% 0.0286 0.0522 0.0702 0.1019 0.0678 0.1456 0.2298 0.3396

WEE test :
10% 0.3022 0.4940 0.6478 0.7516 0.3096 0.5168 0.6954 0.7976
5% 0.1942 0.3526 0.5092 0.6310 0.2034 0.3852 0.5646 0.6932
2% 0.1034 0.2164 0.3370 0.4704 0.1130 0.2592 0.4140 0.5498
1% 0.0640 0.1434 0.2508 0.3534 0.0709 0.1834 0.3166 0.4412

Notes to table:

Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2
2/σ2

1 .

The true values of βi, i = 1, 2:

H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 5: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 0.1
(n1, n2) (100, 50) (250, 150)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3366 0.5145 0.6778 0.7986 0.3258 0.5322 0.6824 0.8014
5% 0.2166 0.3822 0.5452 0.6898 0.2114 0.3938 0.5578 0.7050
2% 0.1134 0.2454 0.3836 0.5394 0.1278 0.2676 0.4182 0.5716
1% 0.0672 0.1620 0.2878 0.4138 0.0708 0.1810 0.3026 0.4408

Wald test :
10% 0.3466 0.5302 0.6956 0.8136 0.3232 0.5397 0.6904 0.8070
5% 0.2272 0.4016 0.5732 0.7072 0.2188 0.4082 0.5696 0.7148
2% 0.1156 0.2472 0.4024 0.5506 0.1298 0.2764 0.4302 0.5832
1% 0.0678 0.1714 0.3002 0.4438 0.0796 0.1862 0.3222 0.4600

J test:
10% 0.3286 0.4994 0.6574 0.7808 0.3104 0.5192 0.6742 0.7916
5% 0.2142 0.3684 0.5288 0.6646 0.2148 0.3960 0.5510 0.6929
2% 0.1090 0.2178 0.3492 0.4852 0.1130 0.2452 0.3926 0.5334
1% 0.0704 0.1540 0.2674 0.3796 0.0720 0.1674 0.2965 0.4274

WEE test :
10% 0.3192 0.5430 0.6856 0.8058 – – – –
5% 0.2146 0.4134 0.5740 0.7082 – – – –
2% 0.1198 0.2723 0.4194 0.5679 – – – –
1% 0.0758 0.1932 0.3217 0.4700 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 6: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 0.5
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2918 0.4362 0.5921 0.7054 0.3230 0.5135 0.6848 0.8016
5% 0.1988 0.3182 0.4584 0.5814 0.2064 0.3640 0.5402 0.6866
2% 0.1016 0.1876 0.3020 0.4168 0.1130 0.2368 0.3884 0.5326
1% 0.0604 0.1206 0.2084 0.3044 0.0662 0.1544 0.2808 0.4128

Wald test :
10% 0.3192 0.4842 0.6542 0.7622 0.3248 0.5175 0.6894 0.8058
5% 0.2022 0.3478 0.5158 0.6444 0.2116 0.3794 0.5530 0.7018
2% 0.1180 0.2348 0.3708 0.5102 0.1056 0.2164 0.3736 0.5224
1% 0.0728 0.1642 0.2826 0.4088 0.0660 0.1554 0.2846 0.4214

J test:
10% 0.2326 0.3226 0.4292 0.5130 0.3000 0.4672 0.6298 0.7510
5% 0.1224 0.1770 0.2516 0.3196 0.1772 0.3084 0.4616 0.5896
2% 0.0516 0.0834 0.1214 0.1572 0.0878 0.1696 0.2738 0.4028
1% 0.0210 0.0370 0.0606 0.0782 0.0500 0.0994 0.1794 0.2752

WEE test :
10% 0.2700 0.4812 0.6212 0.7392 0.3222 0.5185 0.6770 0.8018
5% 0.1660 0.3390 0.4756 0.6018 0.2120 0.3850 0.5457 0.6888
2% 0.0792 0.1900 0.3118 0.4324 0.1144 0.2534 0.3872 0.5340
1% 0.0428 0.1254 0.2132 0.3236 0.0732 0.1758 0.2910 0.4272

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 7: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 0.5
(n1, n2) (100, 50) (250, 125)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3230 0.5290 0.6924 0.7956 0.3406 0.5368 0.6952 0.8234
5% 0.2156 0.4064 0.5674 0.6944 0.2340 0.4102 0.5726 0.7310
2% 0.1312 0.2770 0.4304 0.5662 0.1254 0.2602 0.4162 0.5816
1% 0.0882 0.1966 0.3412 0.4726 0.0866 0.1958 0.3292 0.4848

Wald test :
10% 0.3322 0.5407 0.7042 0.8098 0.3430 0.5400 0.6954 0.8266
5% 0.2238 0.4154 0.5848 0.7094 0.2384 0.4158 0.5812 0.7348
2% 0.1358 0.2868 0.4436 0.5788 0.1258 0.2642 0.4214 0.5878
1% 0.0866 0.1960 0.3442 0.4782 0.0903 0.2072 0.3428 0.5030

J test:
10% 0.3056 0.4996 0.6566 0.7680 0.3410 0.5387 0.6939 0.8238
5% 0.2058 0.3796 0.5286 0.6614 0.2264 0.4006 0.5584 0.7138
2% 0.1130 0.2410 0.3738 0.5082 0.1192 0.2532 0.3936 0.5496
1% 0.0736 0.1692 0.2864 0.4082 0.0767 0.1776 0.3026 0.4440

WEE test :
10% 0.3368 0.5336 0.6896 0.8020 – – – –
5% 0.2260 0.3996 0.5698 0.6996 – – – –
2% 0.1300 0.2662 0.4188 0.5604 – – – –
1% 0.0806 0.1874 0.3217 0.4626 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.

24



Table 8: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 1
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2914 0.4582 0.6004 0.7154 0.3197 0.5158 0.6802 0.7796
5% 0.1876 0.3230 0.4616 0.5762 0.1981 0.3724 0.5374 0.6667
2% 0.1044 0.1991 0.3120 0.4216 0.1080 0.2374 0.3886 0.5228
1% 0.0596 0.1318 0.2090 0.3050 0.0626 0.1578 0.2868 0.4136

Wald test :
10% 0.3170 0.5018 0.6652 0.7675 0.3270 0.5264 0.6852 0.7884
5% 0.2058 0.3595 0.5244 0.6400 0.2120 0.3904 0.5552 0.6818
2% 0.1228 0.2366 0.3731 0.4966 0.1114 0.2428 0.3982 0.5312
1% 0.0808 0.1708 0.2824 0.3978 0.0716 0.1728 0.3044 0.4382

J test:
10% 0.2178 0.3134 0.4306 0.5038 0.2800 0.4726 0.6153 0.7250
5% 0.1324 0.1845 0.2768 0.3368 0.1719 0.3156 0.4594 0.5814
2% 0.0562 0.0792 0.1292 0.1668 0.0906 0.1864 0.2985 0.4018
1% 0.0366 0.0484 0.0842 0.1094 0.0560 0.1224 0.2098 0.2962

WEE test :
10% 0.2708 0.4652 0.6213 0.7326 0.3138 0.5076 0.6818 0.7886
5% 0.1690 0.3207 0.4766 0.5852 0.2054 0.3778 0.5467 0.6854
2% 0.0842 0.1844 0.3076 0.4180 0.1206 0.2484 0.3872 0.5380
1% 0.0494 0.1144 0.2046 0.3034 0.0728 0.1724 0.2868 0.4340

Notes to the table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 9: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 1
(n1, n2) (100, 50) (250, 125)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3380 0.5394 0.6850 0.7907 0.3178 0.5185 0.6942 0.7950
5% 0.2196 0.3996 0.5554 0.6770 0.2088 0.3934 0.5754 0.6998
2% 0.1268 0.2600 0.4078 0.5306 0.1080 0.2534 0.4006 0.5437
1% 0.0696 0.1535 0.2854 0.3963 0.0738 0.1820 0.3078 0.4464

Wald test :
10% 0.3502 0.5544 0.6986 0.8074 0.3250 0.5264 0.7052 0.8020
5% 0.2248 0.4110 0.5674 0.6908 0.2124 0.4006 0.5874 0.7072
2% 0.1312 0.2660 0.4160 0.5400 0.1156 0.2660 0.4220 0.5570
1% 0.0766 0.1732 0.3158 0.4300 0.0746 0.1865 0.3206 0.4566

J test:
10% 0.3268 0.5215 0.6632 0.7658 0.3081 0.5090 0.6802 0.7854
5% 0.2064 0.3718 0.5248 0.6350 0.2008 0.3758 0.5492 0.6814
2% 0.1116 0.2306 0.3605 0.4756 0.1012 0.2486 0.3956 0.5225
1% 0.0728 0.1634 0.2744 0.3744 0.0728 0.1806 0.3110 0.4318

WEE test :
10% 0.3252 0.5180 0.6818 0.8054 – – – –
5% 0.2252 0.3886 0.5584 0.7028 – – – –
2% 0.1280 0.2530 0.4192 0.5629 – – – –
1% 0.0835 0.1766 0.3120 0.4578 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 10: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 2
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2630 0.4188 0.5500 0.6788 0.3000 0.4960 0.6344 0.7712
5% 0.1590 0.2778 0.3966 0.5292 0.1991 0.3741 0.5162 0.6656
2% 0.0754 0.1580 0.2406 0.3524 0.1080 0.2376 0.3654 0.5080
1% 0.0460 0.0990 0.1610 0.2504 0.0674 0.1584 0.2723 0.4069

Wald test :
10% 0.3138 0.4916 0.6375 0.7622 0.3090 0.5132 0.6518 0.7870
5% 0.1872 0.3348 0.4756 0.6156 0.2060 0.3844 0.5334 0.6766
2% 0.0938 0.1996 0.3042 0.4430 0.1076 0.2370 0.3706 0.5162
1% 0.0482 0.1120 0.1922 0.3062 0.0638 0.1596 0.2688 0.4058

J test:
10% 0.2260 0.3396 0.4290 0.5308 0.2914 0.4726 0.6098 0.7392
5% 0.1130 0.1872 0.2436 0.3206 0.1780 0.3260 0.4516 0.5921
2% 0.0478 0.0774 0.1106 0.1526 0.0910 0.1865 0.2814 0.4122
1% 0.0218 0.0344 0.0526 0.0694 0.0528 0.1290 0.2006 0.3090

WEE test :
10% 0.2728 0.4596 0.6072 0.7332 0.3258 0.5178 0.6812 0.7910
5% 0.1592 0.3154 0.4568 0.5914 0.2218 0.3834 0.5542 0.6796
2% 0.0812 0.1752 0.2944 0.4114 0.1222 0.2396 0.3970 0.5264
1% 0.0468 0.1070 0.1956 0.2965 0.0734 0.1666 0.3094 0.4196

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 11: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 2
(n1, n2) (100, 50) (250, 125)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3120 0.5128 0.6724 0.7947 0.3086 0.5110 0.6844 0.7802
5% 0.1988 0.3714 0.5400 0.6792 0.1928 0.3756 0.5406 0.6647
2% 0.1244 0.2488 0.3962 0.5464 0.0956 0.2372 0.3766 0.5072
1% 0.0886 0.1892 0.3207 0.4676 0.0634 0.1652 0.2926 0.4198

Wald test :
10% 0.3272 0.5340 0.6934 0.8108 0.3187 0.5195 0.6934 0.7902
5% 0.2148 0.3898 0.5668 0.7060 0.1946 0.3806 0.5524 0.6774
2% 0.1342 0.2718 0.4300 0.5834 0.1038 0.2444 0.3943 0.5298
1% 0.0970 0.2110 0.3449 0.4960 0.0622 0.1676 0.3018 0.4286

J test:
10% 0.3120 0.5088 0.6640 0.7828 0.3106 0.5108 0.6808 0.7804
5% 0.2008 0.3696 0.5188 0.6610 0.1948 0.3736 0.5376 0.6596
2% 0.1058 0.2268 0.3536 0.4868 0.1036 0.2346 0.3906 0.5164
1% 0.0748 0.1628 0.2760 0.4022 0.0624 0.1534 0.2800 0.4036

WEE test :
10% 0.3246 0.5098 0.6872 0.7924 – – – –
5% 0.2140 0.3776 0.5628 0.6874 – – – –
2% 0.1168 0.2520 0.4136 0.5484 – – – –
1% 0.0720 0.1810 0.3144 0.4452 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 12: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 10
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2698 0.4334 0.5852 0.6822 0.3066 0.5002 0.6350 0.7432
5% 0.1578 0.2788 0.4026 0.5074 0.2002 0.3750 0.5008 0.6203
2% 0.0709 0.1496 0.2312 0.3187 0.0980 0.2210 0.3248 0.4314
1% 0.0386 0.0926 0.1506 0.2198 0.0596 0.1548 0.2452 0.3434

Wald test :
10% 0.2910 0.4588 0.6236 0.7348 0.3236 0.5292 0.6692 0.7868
5% 0.1830 0.3250 0.4634 0.5748 0.2116 0.3920 0.5346 0.6690
2% 0.0984 0.1968 0.3026 0.4060 0.1084 0.2442 0.3720 0.4994
1% 0.0556 0.1276 0.2026 0.2954 0.0654 0.1702 0.2770 0.4008

J test:
10% 0.2206 0.3330 0.4366 0.5222 0.3032 0.4910 0.6336 0.7403
5% 0.1162 0.1920 0.2662 0.3164 0.1954 0.3502 0.4784 0.5986
2% 0.0482 0.0900 0.1283 0.1528 0.0893 0.1950 0.2942 0.4002
1% 0.0254 0.0462 0.0664 0.0826 0.0476 0.1086 0.1874 0.2652

WEE test :
10% 0.2670 0.4568 0.5846 0.7034 0.3126 0.5038 0.6686 0.7866
5% 0.1613 0.3020 0.4346 0.5588 0.2082 0.3642 0.5380 0.6762
2% 0.0774 0.1706 0.2684 0.3662 0.1150 0.2304 0.3832 0.5198
1% 0.0468 0.1070 0.1780 0.2484 0.0748 0.1612 0.2838 0.4114

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 13: Power Comparison, Case 1. regressor x ∼ AR(1)

ρ2 = 10
(n1, n2) (100, 50) (250, 125)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3110 0.4950 0.6604 0.7710 0.3120 0.5148 0.6664 0.7776
5% 0.1976 0.3584 0.5188 0.6524 0.2114 0.4004 0.5514 0.6746
2% 0.1064 0.2300 0.3574 0.4944 0.1224 0.2610 0.3956 0.5188
1% 0.0634 0.1572 0.2728 0.3850 0.0806 0.1896 0.3060 0.4222

Wald test :
10% 0.3282 0.5238 0.6948 0.8034 0.3140 0.5185 0.6776 0.7922
5% 0.2180 0.3918 0.5704 0.6969 0.2116 0.4069 0.5672 0.6934
2% 0.1104 0.2474 0.3980 0.5330 0.1302 0.2842 0.4298 0.5560
1% 0.0806 0.1892 0.3237 0.4538 0.0912 0.2240 0.3570 0.4840

J test:
10% 0.3134 0.4940 0.6684 0.7762 0.3172 0.5188 0.6744 0.7856
5% 0.2034 0.3646 0.5312 0.6637 0.2084 0.3948 0.5500 0.6744
2% 0.1136 0.2384 0.3872 0.5058 0.1160 0.2617 0.4042 0.5152
1% 0.0772 0.1776 0.3114 0.4252 0.0872 0.2068 0.3340 0.4566

WEE test :
10% 0.3282 0.5258 0.6864 0.8042 – – – –
5% 0.2212 0.3916 0.5544 0.6994 – – – –
2% 0.1258 0.2610 0.4008 0.5508 – – – –
1% 0.0804 0.1850 0.2970 0.4422 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 14: Size and Size-Adjusted Critical Values, Case 2. regressor x ∼ U(0, 1)

ρ2 = 0.1 ρ2 = 0.5
(n1, n2) (20, 10) (60, 30) (100, 50) (250, 125) (20, 10) (60, 30) (100, 50) (250, 125)

EL-W test at nominal levels:
10% 0.0660 0.0718 0.0782 0.0916 0.1102 0.0902 0.0978 0.1014
5% 0.0374 0.0354 0.0383 0.0472 0.0648 0.0420 0.0470 0.0480
2% 0.0180 0.0120 0.0150 0.0196 0.0308 0.0172 0.0214 0.0196
1% 0.0122 0.0047 0.0060 0.0088 0.0190 0.0090 0.0106 0.0108

Size-Adjusted Critical Values:
10% 3.7750 3.8969 4.1094 4.4349 4.8774 4.4135 4.5564 4.6314
5% 5.2994 5.3515 5.4618 5.8975 6.6703 5.6767 5.8985 5.9091
2% 7.4650 6.9453 7.1417 7.7820 8.9708 7.4310 7.9519 7.7614
1% 9.7809 7.9671 8.4766 8.9547 10.9034 8.9247 9.2294 9.3805

Wald test :
10% 0.1198 0.1080 0.1062 0.1104 0.1180 0.1036 0.1038 0.1019
5% 0.0674 0.0564 0.0542 0.0594 0.0672 0.0534 0.0520 0.0480
2% 0.0316 0.0231 0.0212 0.0246 0.0342 0.0208 0.0216 0.0206
1% 0.0196 0.0122 0.0114 0.0138 0.0196 0.0108 0.0106 0.0102

Size-Adjusted Critical Values:
10% 4.9596 4.7238 4.6984 4.8243 4.9918 4.6876 4.6647 4.6487
5% 6.7220 6.2828 6.1744 6.3649 6.7224 6.1036 6.0306 5.9311
2% 9.1258 8.0539 8.0013 8.2947 9.1083 7.9028 8.1867 7.8829
1% 10.7119 9.6299 9.4989 9.8070 10.8487 9.2949 9.3284 9.2365

J test:
10% 0.0978 0.0998 0.0984 0.1116 0.0970 0.0992 0.1036 0.0984
5% 0.0504 0.0488 0.0497 0.0602 0.0516 0.0450 0.0490 0.0484
2% 0.0176 0.0196 0.0185 0.0242 0.0182 0.0158 0.0182 0.0198
1% 0.0094 0.0086 0.0098 0.0132 0.0090 0.0074 0.0076 0.0100

Size-Adjusted Critical Values:
10% 5.3412 2.7328 2.5295 2.5358 5.2671 2.7255 2.5849 2.3612
5% 9.6550 3.7804 3.3983 3.3486 9.6543 3.7144 3.3958 3.1068
2% 17.3237 5.2890 4.5679 4.3895 17.2202 4.8989 4.5007 4.1591
1% 29.0342 6.4562 5.5921 5.2787 28.3156 6.1546 5.4440 4.9743

WEE test :
10% 0.0842 0.0950 0.0988 – 0.0764 0.0916 0.0958 –
5% 0.0383 0.0488 0.0494 – 0.0346 0.0429 0.0462 –
2% 0.0134 0.0170 0.0188 – 0.0115 0.0144 0.0200 –
1% 0.0068 0.0092 0.0090 – 0.0050 0.0076 0.0082 –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 15: Size and Size-Adjusted Critical Values, Case 2. regressor x ∼ U(0, 1)

ρ2 = 1 ρ2 = 2
(n1, n2) (20, 10) (60, 30) (100, 50) (250, 125) (20, 10) (60, 30) (100, 50) (250, 125)

EL-W test at nominal levels:
10% 0.1686 0.1250 0.1208 0.1140 0.2184 0.1468 0.1424 0.1296
5% 0.1056 0.0662 0.0634 0.0596 0.1486 0.0859 0.0859 0.0714
2% 0.0630 0.0278 0.0298 0.0258 0.0940 0.0438 0.0404 0.0325
1% 0.0429 0.0144 0.0156 0.0138 0.0686 0.0256 0.0254 0.0176

Size-Adjusted Critical Values:
10% 6.1735 5.0768 4.9858 4.8674 7.5273 5.5747 5.5483 5.2841
5% 8.6057 6.5641 6.5777 6.4220 10.7483 7.5126 7.2799 6.7662
2% 12.4093 8.3297 8.6862 8.4486 14.9988 10.0055 9.8494 8.8505
1% 14.8839 9.8460 10.4269 10.1336 17.6106 11.7867 11.382 10.6668

Wald test :
10% 0.1354 0.1162 0.1072 0.0964 0.1436 0.1140 0.1100 0.1062
5% 0.0792 0.0602 0.0522 0.0520 0.0884 0.0578 0.0578 0.0520
2% 0.0414 0.0228 0.0238 0.0204 0.0512 0.0274 0.0252 0.0185
1% 0.0260 0.0128 0.0114 0.0104 0.0320 0.0146 0.0136 0.0100

Size-Adjusted Critical Values:
10% 5.42350 4.9473 4.7550 4.5587 5.6213 4.8503 4.8098 4.7030
5% 7.40080 6.3320 6.1357 6.0367 7.8950 6.3658 6.3470 6.0525
2% 10.1167 8.1745 8.1948 7.8897 10.3846 8.5207 8.2424 7.7123
1% 12.7445 9.7742 9.5291 9.2376 13.3478 9.9669 9.7975 9.2089

J test :
10% 0.1022 0.1076 0.0995 0.0954 0.0982 0.106 0.1032 0.0976
5% 0.0522 0.0524 0.0484 0.0476 0.0466 0.0509 0.0524 0.0488
2% 0.0216 0.0188 0.0198 0.0188 0.0176 0.0216 0.0230 0.0194
1% 0.0092 0.0104 0.0094 0.0100 0.0102 0.0092 0.0126 0.0092

Size-Adjusted Critical Values:
10% 5.5808 2.8581 2.5453 2.3395 5.4016 2.8224 2.5889 2.3602
5% 9.8341 3.893 3.3770 3.0961 9.0499 3.8455 3.4679 3.1198
2% 20.0004 5.2806 4.6482 4.0770 17.0544 5.5745 4.8583 4.0907
1% 30.1025 6.7266 5.6375 4.9625 30.9161 6.5544 6.0671 4.8730

WEE test :
10% 0.0846 0.1014 0.0980 – 0.0900 0.0966 0.1008 –
5% 0.0383 0.0476 0.0468 – 0.0446 0.0470 0.0514 –
2% 0.0150 0.0166 0.0190 – 0.0132 0.0184 0.0188 –
1% 0.0078 0.0086 0.0090 – 0.0078 0.0094 0.0098 –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 16: Size and Size-Adjusted Critical Values, Case 2. regressor x ∼ U(0, 1)

ρ2 = 10
(n1, n2) (20, 10) (60, 30) (100, 50) (250, 125)

EL-W test at nominal levels:
10% 0.3336 0.2074 0.1802 0.1446
5% 0.2606 0.1332 0.1116 0.0844
2% 0.1922 0.0762 0.0606 0.0408
1% 0.1486 0.0526 0.0388 0.0225

Size-Adjusted Critical Values:
10% 11.9227 7.0128 6.2510 5.6206
5% 17.1694 9.4087 8.4526 7.3271
2% 25.1885 12.9078 11.2381 9.7585
1% 32.9852 15.8220 13.4227 11.9317

Wald test :
10% 0.1618 0.1180 0.1104 0.1002
5% 0.1084 0.0622 0.0596 0.0496
2% 0.0634 0.0304 0.0258 0.0200
1% 0.0440 0.0176 0.0130 0.0098

Size-Adjusted Critical Values:
10% 6.2595 4.9847 4.7794 4.6069
5% 8.7252 6.5938 6.4056 5.9851
2% 12.9218 8.9203 8.3061 7.7744
1% 16.0356 10.5972 10.1592 9.0934

J test:
10% 0.1046 0.1000 0.1019 0.0982
5% 0.0568 0.0442 0.0484 0.0450
2% 0.0228 0.0160 0.0191 0.0182
1% 0.0126 0.0082 0.0100 0.0080

Size-Adjusted Critical Values:
10% 5.6697 2.7335 2.5698 2.3715
5% 10.4569 3.6688 3.3904 3.0405
2% 21.2871 5.1100 4.6080 4.0787
1% 36.7252 6.3380 5.6577 4.8048

WEE test :
10% 0.1042 0.0998 0.0982 –
5% 0.0500 0.0488 0.0509 –
2% 0.0198 0.0198 0.0188 –
1% 0.0092 0.0095 0.0106 –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 17: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 0.1
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3006 0.4820 0.6150 0.7148 0.3323 0.5274 0.6697 0.7902
5% 0.1886 0.3292 0.4754 0.5832 0.2084 0.3850 0.5276 0.6590
2% 0.1024 0.2039 0.3170 0.4178 0.1200 0.2556 0.3910 0.5278
1% 0.0526 0.1194 0.2004 0.2934 0.0868 0.1984 0.3176 0.4510

Wald test :
10% 0.3166 0.5264 0.6782 0.7764 0.3380 0.5368 0.6806 0.8016
5% 0.2012 0.3822 0.5392 0.6606 0.2202 0.4074 0.5558 0.6914
2% 0.1100 0.2334 0.3736 0.5106 0.1310 0.2856 0.4176 0.5679
1% 0.0738 0.1748 0.2936 0.4204 0.0858 0.1978 0.3184 0.4612

J test :
10% 0.2148 0.3286 0.4332 0.5294 0.3128 0.4926 0.6316 0.7460
5% 0.1044 0.1766 0.2466 0.3288 0.1998 0.3439 0.4806 0.6040
2% 0.0472 0.0876 0.1174 0.1786 0.1070 0.2128 0.3230 0.4324
1% 0.0220 0.0468 0.063 0.0964 0.0698 0.1444 0.2368 0.3284

WEE test :
10% 0.2754 0.4840 0.6340 0.7512 0.3190 0.528 0.6854 0.7964
5% 0.1660 0.3464 0.4954 0.6200 0.2144 0.3966 0.5654 0.6906
2% 0.0880 0.2120 0.3340 0.4518 0.1200 0.2572 0.4158 0.5510
1% 0.0524 0.1398 0.2390 0.3404 0.0740 0.1816 0.3232 0.4460

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 18: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 0.1
(n1, n2) (100, 50) (250, 150)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3152 0.5302 0.6889 0.7970 0.3197 0.5218 0.6806 0.7892
5% 0.2076 0.3996 0.5628 0.6929 0.2039 0.3840 0.5440 0.6788
2% 0.1266 0.2644 0.4170 0.5506 0.1120 0.2518 0.3996 0.5308
1% 0.0874 0.1896 0.3192 0.4466 0.0782 0.1894 0.3071 0.4448

Wald test :
10% 0.3190 0.5360 0.6939 0.8070 0.3197 0.5286 0.6840 0.7927
5% 0.2124 0.4076 0.5668 0.7016 0.2066 0.3906 0.5530 0.6836
2% 0.1312 0.2774 0.4296 0.5622 0.1196 0.2610 0.4132 0.5492
1% 0.0890 0.1994 0.3276 0.4650 0.0750 0.1848 0.3076 0.4480

J test:
10% 0.3094 0.5000 0.6664 0.7774 0.3038 0.5054 0.6622 0.7794
5% 0.2052 0.3764 0.5358 0.6496 0.1988 0.3746 0.5312 0.6618
2% 0.1180 0.2422 0.3734 0.5030 0.1124 0.2410 0.3824 0.5110
1% 0.0724 0.1664 0.2710 0.3894 0.0704 0.1656 0.2822 0.4068

WEE test :
10% 0.3262 0.5320 0.7008 0.7988 – – – –
5% 0.2186 0.4036 0.5718 0.7004 – – – –
2% 0.1298 0.2678 0.4292 0.5692 – – – –
1% 0.0820 0.1864 0.3306 0.4674 – – – –

Notes to table:

Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2
2/σ2

1 .

The true values of βi, i = 1, 2:

H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 19: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 0.5
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2954 0.4742 0.6160 0.7422 0.3316 0.5410 0.6834 0.8114
5% 0.1858 0.3396 0.4700 0.6054 0.2344 0.4160 0.5742 0.7191
2% 0.1090 0.2176 0.3312 0.4656 0.1408 0.2846 0.4370 0.5910
1% 0.0722 0.1530 0.2446 0.3554 0.0876 0.2058 0.3398 0.4886

Wald test :
10% 0.3240 0.5240 0.6770 0.7966 0.3323 0.5414 0.6852 0.8154
5% 0.2110 0.3872 0.5336 0.6732 0.2248 0.4124 0.5702 0.7158
2% 0.1176 0.2552 0.3800 0.5190 0.1364 0.2874 0.4366 0.5896
1% 0.0777 0.1822 0.2898 0.4222 0.0892 0.2138 0.3482 0.4962

J test:
10% 0.2128 0.3348 0.4346 0.5374 0.3034 0.4834 0.6256 0.7604
5% 0.1132 0.1824 0.2556 0.3322 0.1948 0.3494 0.4952 0.6240
2% 0.0570 0.0872 0.1356 0.1855 0.1174 0.2336 0.3660 0.4812
1% 0.0282 0.0482 0.0724 0.1060 0.0728 0.1524 0.2592 0.3622

WEE test :
10% 0.2662 0.4518 0.6250 0.7398 0.3068 0.5125 0.6774 0.7914
5% 0.1608 0.3128 0.4778 0.5974 0.1988 0.3754 0.5516 0.6852
2% 0.0800 0.1796 0.2996 0.4104 0.1096 0.2476 0.4020 0.5242
1% 0.0448 0.1106 0.1928 0.2890 0.0696 0.1678 0.3054 0.4252

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 20: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 0.5
(n1, n2) (100, 50) (250, 125)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3353 0.5356 0.7078 0.8038 0.3372 0.5410 0.6979 0.8178
5% 0.2302 0.4218 0.5996 0.7098 0.2304 0.4220 0.5920 0.7284
2% 0.1258 0.2784 0.4360 0.5688 0.1368 0.2834 0.4502 0.5910
1% 0.0882 0.2076 0.3464 0.4764 0.0835 0.1874 0.3352 0.4778

Wald test :
10% 0.3292 0.5316 0.7050 0.8024 0.3392 0.5402 0.7006 0.8206
5% 0.2248 0.4138 0.5890 0.7036 0.2286 0.4232 0.5914 0.7296
2% 0.1202 0.2612 0.4180 0.5512 0.1340 0.2782 0.4440 0.5876
1% 0.0852 0.1988 0.3482 0.4698 0.0884 0.1998 0.3469 0.4898

J test:
10% 0.3074 0.4982 0.6656 0.7644 0.3388 0.5387 0.6924 0.8129
5% 0.1990 0.3662 0.5336 0.6528 0.2236 0.4102 0.5699 0.7086
2% 0.1148 0.2382 0.3874 0.5078 0.1252 0.2552 0.4152 0.5648
1% 0.0722 0.1648 0.2829 0.3986 0.0786 0.1774 0.3142 0.4502

WEE test :
10% 0.3210 0.5264 0.6830 0.8036 – – – –
5% 0.2150 0.3992 0.5586 0.7054 – – – –
2% 0.1208 0.2693 0.4176 0.5774 – – – –
1% 0.0736 0.1952 0.3242 0.4678 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 21: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 1
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2774 0.4536 0.6024 0.7160 0.3278 0.5250 0.6726 0.7934
5% 0.1676 0.3066 0.4416 0.5574 0.2262 0.3996 0.5588 0.6954
2% 0.0828 0.1638 0.2636 0.3756 0.1442 0.2834 0.4452 0.5856
1% 0.0522 0.1124 0.1930 0.2890 0.1002 0.2026 0.3540 0.4920

Wald test :
10% 0.2974 0.4806 0.6464 0.7576 0.3202 0.5182 0.6717 0.7906
5% 0.1858 0.3414 0.4940 0.6250 0.2252 0.3934 0.5642 0.6962
2% 0.1032 0.2046 0.3328 0.4606 0.1332 0.2710 0.4372 0.5734
1% 0.0556 0.1336 0.2326 0.3352 0.0910 0.1826 0.3343 0.4694

J test:
10% 0.1981 0.3098 0.4152 0.5030 0.2950 0.4644 0.6124 0.7432
5% 0.1054 0.1708 0.2428 0.3126 0.1888 0.3204 0.4832 0.6098
2% 0.0432 0.0675 0.1014 0.1400 0.1104 0.2026 0.3268 0.4448
1% 0.0242 0.0376 0.0614 0.0816 0.0651 0.1232 0.2194 0.3206

WEE test :
10% 0.2664 0.4402 0.5956 0.7221 0.3232 0.5070 0.6652 0.7848
5% 0.1606 0.3002 0.4472 0.5748 0.2120 0.3721 0.5427 0.6756
2% 0.0842 0.1712 0.2832 0.3970 0.1190 0.2424 0.3867 0.5284
1% 0.0420 0.1076 0.1910 0.2824 0.0730 0.1676 0.2926 0.4252

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 22: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 1
(n1, n2) (100, 50) (250, 125)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3362 0.5350 0.6844 0.7967 0.3390 0.5416 0.6878 0.8080
5% 0.2248 0.4140 0.5620 0.6962 0.2274 0.4062 0.5629 0.6996
2% 0.1318 0.2800 0.4192 0.5639 0.1228 0.2668 0.4198 0.5564
1% 0.0854 0.2050 0.3180 0.4626 0.0762 0.1870 0.3176 0.4416

Wald test :
10% 0.3280 0.5294 0.6780 0.7917 0.3492 0.5494 0.6959 0.8149
5% 0.2248 0.4122 0.5620 0.6956 0.2310 0.4118 0.5689 0.7066
2% 0.1266 0.2706 0.4040 0.5540 0.1258 0.2770 0.4308 0.5706
1% 0.0884 0.2008 0.3252 0.4686 0.0834 0.2052 0.3412 0.4744

J test:
10% 0.3196 0.5130 0.6494 0.7688 0.3416 0.5374 0.6899 0.8012
5% 0.2088 0.3744 0.5185 0.6538 0.2254 0.4048 0.5598 0.6954
2% 0.1112 0.2332 0.3585 0.4878 0.1232 0.2716 0.4194 0.5466
1% 0.0684 0.1586 0.2630 0.3786 0.0792 0.1816 0.3111 0.4346

WEE test :
10% 0.3234 0.5118 0.6996 0.8076 – – – –
5% 0.2104 0.3830 0.5788 0.7040 – – – –
2% 0.1252 0.2518 0.4238 0.5618 – – – –
1% 0.0792 0.1738 0.3302 0.4546 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 23: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 2
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2942 0.4540 0.5961 0.7151 0.3286 0.5182 0.6778 0.7992
5% 0.1736 0.3020 0.4350 0.5644 0.2136 0.3780 0.5450 0.6876
2% 0.0908 0.1794 0.2806 0.3968 0.1204 0.2532 0.3990 0.5386
1% 0.0630 0.1293 0.2154 0.3190 0.0840 0.1816 0.3108 0.4402

Wald test :
10% 0.3046 0.4760 0.6246 0.7410 0.3276 0.5128 0.6802 0.8014
5% 0.1868 0.3226 0.4688 0.5970 0.2210 0.3836 0.5586 0.7024
2% 0.1138 0.2186 0.3358 0.4616 0.1230 0.2498 0.4062 0.5442
1% 0.0651 0.1364 0.2304 0.3276 0.0850 0.1858 0.3168 0.4576

J test:
10% 0.2226 0.3376 0.4258 0.5205 0.2896 0.4624 0.6268 0.7428
5% 0.1266 0.2008 0.2650 0.3390 0.1855 0.3246 0.4774 0.6056
2% 0.0538 0.0946 0.1303 0.1748 0.0932 0.1784 0.2964 0.4120
1% 0.0228 0.0484 0.0572 0.0872 0.0651 0.1282 0.2226 0.3318

WEE test :
10% 0.2816 0.4462 0.5946 0.7168 0.3328 0.5192 0.6727 0.7836
5% 0.1648 0.3114 0.4346 0.5688 0.2200 0.3834 0.5416 0.6690
2% 0.0859 0.1778 0.2744 0.3792 0.1178 0.2450 0.3782 0.5150
1% 0.0496 0.1062 0.1772 0.2716 0.0750 0.1754 0.2798 0.4136

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 24: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 2
(n1, n2) (100, 50) (250, 125)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3232 0.5174 0.6882 0.7906 0.3256 0.5292 0.6796 0.7952
5% 0.2200 0.3932 0.5610 0.6936 0.2292 0.4082 0.5672 0.6946
2% 0.1196 0.2514 0.4056 0.5520 0.1300 0.2832 0.4156 0.5564
1% 0.0832 0.1962 0.3320 0.4634 0.0790 0.1956 0.3136 0.4390

Wald test :
10% 0.3170 0.5242 0.6899 0.8004 0.3353 0.5426 0.6954 0.8026
5% 0.2144 0.3900 0.5659 0.6982 0.2314 0.4226 0.5824 0.7032
2% 0.1220 0.2644 0.4172 0.5686 0.1408 0.2984 0.4432 0.5828
1% 0.0776 0.1902 0.3252 0.4616 0.0910 0.2132 0.3432 0.4730

J test:
10% 0.3088 0.4950 0.6632 0.7682 0.3392 0.5440 0.6896 0.8006
5% 0.1962 0.3595 0.5302 0.6530 0.2258 0.4138 0.5669 0.6912
2% 0.0958 0.2178 0.3454 0.4836 0.1290 0.2778 0.4230 0.5480
1% 0.0508 0.1336 0.2340 0.3605 0.0848 0.1986 0.3217 0.4468

WEE test :
10% 0.3300 0.5410 0.6750 0.7940 – – – –
5% 0.2146 0.4170 0.5436 0.6909 – – – –
2% 0.1252 0.2738 0.4012 0.5486 – – – –
1% 0.0801 0.1896 0.3030 0.4434 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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Table 25: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 10
(n1, n2) (20, 10) (60, 30)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.2662 0.4030 0.5446 0.6450 0.2996 0.4938 0.6254 0.7478
5% 0.1628 0.2732 0.3982 0.4970 0.1986 0.3604 0.5002 0.6260
2% 0.0800 0.1570 0.2436 0.3298 0.1058 0.2180 0.3536 0.4708
1% 0.0429 0.0952 0.1544 0.2242 0.0650 0.1474 0.2640 0.3646

Wald test :
10% 0.2808 0.4270 0.5820 0.6939 0.3114 0.5100 0.6622 0.7810
5% 0.1734 0.2970 0.4390 0.5500 0.2048 0.3731 0.5332 0.6700
2% 0.0784 0.1678 0.2640 0.3605 0.1088 0.2372 0.3832 0.5130
1% 0.0502 0.1086 0.1824 0.2634 0.0680 0.1668 0.2920 0.4058

J test:
10% 0.2154 0.3050 0.4062 0.4874 0.2985 0.4812 0.6238 0.7506
5% 0.1112 0.1671 0.2344 0.2908 0.1950 0.3546 0.5006 0.6258
2% 0.0412 0.0694 0.1014 0.1290 0.1030 0.2204 0.3434 0.4480
1% 0.0206 0.0364 0.0514 0.0644 0.0641 0.1426 0.2486 0.3366

WEE test :
10% 0.2842 0.4556 0.5846 0.7018 0.3227 0.5220 0.6674 0.7832
5% 0.1702 0.3071 0.4296 0.5450 0.2158 0.3830 0.5460 0.6654
2% 0.0842 0.1698 0.2610 0.3634 0.1138 0.2438 0.3942 0.5195
1% 0.0492 0.1092 0.1676 0.2474 0.0730 0.1654 0.2945 0.4076

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
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Table 26: Power Comparison, Case 2. regressor x ∼ U(0, 1)

ρ2 = 10
(n1, n2) (100, 50) (250, 125)

δ: 1 2 3 4 1 2 3 4

EL-W test at actual size levels:
10% 0.3200 0.5172 0.6608 0.7760 0.3187 0.5220 0.6812 0.7966
5% 0.2128 0.3842 0.5250 0.6566 0.2158 0.3980 0.5636 0.6918
2% 0.1264 0.2466 0.3878 0.5210 0.1206 0.2604 0.4134 0.5360
1% 0.0818 0.1762 0.2992 0.4222 0.0712 0.1776 0.3002 0.4242

Wald test :
10% 0.3266 0.5328 0.6782 0.7966 0.3318 0.5452 0.7070 0.8169
5% 0.2142 0.3956 0.5464 0.6842 0.2260 0.4206 0.5996 0.7158
2% 0.1346 0.2634 0.4124 0.5528 0.1378 0.2862 0.4528 0.5870
1% 0.0766 0.1774 0.3006 0.4316 0.0908 0.2112 0.3544 0.4956

J test:
10% 0.3071 0.5098 0.6538 0.7732 0.3248 0.5342 0.6948 0.8044
5% 0.2092 0.3782 0.5235 0.6578 0.2260 0.4188 0.5866 0.7044
2% 0.1176 0.2366 0.3654 0.4954 0.1258 0.2678 0.4306 0.5634
1% 0.0706 0.1544 0.2693 0.3776 0.0810 0.1912 0.3342 0.4670

WEE test :
10% 0.3094 0.5195 0.6826 0.8064 – – – –
5% 0.2044 0.3864 0.5534 0.6959 – – – –
2% 0.1120 0.2506 0.4000 0.5488 – – – –
1% 0.0718 0.1848 0.3004 0.4432 – – – –

Notes to table:
Number of replications is 5,000. Sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

The true values of βi, i = 1, 2:
H0: β1 = β2 = (1, 1)′, Ha: β2 = (1, β22)′, where β22 varies according to δ = {1, 2, 3, 4}.
The WEE test is not applicable with large sample sizes.
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