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Abstract 
 
 
 
A new theoretical solution to the Behrens-Fisher (BF) problem is developed using the maximum 
empirical likelihood method. The sampling properties of the empirical likelihood ratio (ELR) test for 
the BF problem are derived using Monte Carlo simulation for a wide range of situations. A 
comparison of the sizes and powers of the ELR test and the Welch-Aspin test is conducted for a 
special case of small sample sizes. The empirical results indicate that the ELR test for the BF 
problem has good power properties. 
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1 INTRODUCTION

Testing the equality of the means of two normal populations when the variances are

both unknown, and not known to be equal, is called the Behrens-Fisher (BF) problem. The

Behrens-Fisher problem has been well known since the early 1930’s. One reason for its fame

is that it can be proven that there is no exact solution satisfying the classical criteria for

good tests. That is, every invariant rejection region of fixed size for the problem must have

some unpleasant properties (Zaman, 1996, p. 246). First-best solutions that are uniformly

most powerful and invariant either do not exist or have strange properties. We need to look

for second-best solutions.

In the literature associated with the Behrens-Fisher problem, there have been quite a few

“solutions” proposed since the 1930’s. For example, Fisher (1935 and 1941), Welch (1947),

Aspin (1948), Cochran and Cox (1950), Qin (1991) and Jing (1995) have all suggested

different solutions. Lee and Gurland (1975) presented a detailed comparison of several

selected tests and proposed a refined solution to the BF problem. These various solutions

can be classified into two categories: approximate tests and asymptotic tests.

The purpose of this paper is as follows. First, we derive a new theoretical solution

to the Behrens-Fisher problem. The approach that we take is based on the relatively new

nonparametric technique, the maximum empirical likelihood (EL) method (Owen, 2001).

The way that we exploit the data and information in this paper is distinct from any previous

research in both the areas of EL and the BF problem. Our EL approach makes most efficient

use of the information available among the studies. Our EL approach ties together nicely the

estimation and testing procedures for the equality of two means and/or the distribution of

the underlying population. Second, we provide sampling properties for the ELR test using

Monte Carlo simulations. The size and the power of the ELR test in finite samples are

provided for a range of situations. The results indicate that the EL approach to the BF

problem is both efficient and easily applicable. Third, we conduct a power comparison of

the empirical likelihood ratio (ELR) test and the Welch-Aspin (WA) (1947) test for the BF

problem. The results are interesting, as the ELR test is an asymptotic test, while the WA

test is an approximate test in small samples.
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The EL method makes use of likelihood function and the moment conditions of the

data without assuming a specific parametric form for the underlying distribution. It has the

flexibility to incorporate various information about the data into the approach. This leads

to the efficiency of the method. Applying the EL method to the Behrens-Fisher problem

provides us with a new view of the EL method and it demonstrates that the EL method is

a useful tool for solving various statistical problems.

There have been two empirical likelihood type (EL-type) approaches to the BF problem

in the literature; that of Qin (1991) and that of Jing (1995). Details of these two approaches

are provided in Section 2.2. The EL approach of this paper is quite distinct from those of

Qin and Jing in two respects. First, our way of using the data is different. Based on the

knowledge that two samples are independently drawn from two different distributions that

are in the same family, normal for the BF problem, we transform the first data set S1 into

a data set Sa that has the same theoretical distribution as the second data set S2. Then

we combine the transformed data set Sa and the second data set S2 into a full data set S

such that the data have a unique distribution. Second, we exploit the data information in

an more efficient way. Based on the knowledge that the first five moments of the data exist,

we use these five moment equations as constraints to set up the EL method. Then, we apply

the usual EL approach to the full data set S. The ELR test for the BF problem is then

constructed. Details of this are provided in Section 2.3.

The outline of this paper is as follows. Section 2 provides a brief review of the conven-

tional solutions to the BF problem in the literature. The Welch-Aspin (WA) test and the

approaches of Qin (1991) and Jing (1995) are discussed in this section. Section 3 discusses

the design of the new EL approach to the BF problem. It provides the ELR test and the

EL-type Wald test for the BF problem. Section 4 presents some Monte Carlo experiments

and the associated results for the new EL approach. The sizes and the power of the ELR test

in finite samples are analyzed in detail across a broad range of situations. The comparison

of the ELR test and the WA test is given in this section. Section 5 provides a summary and

some conclusions.
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2 SOLUTIONS TO THE BF PROBLEM

Suppose Si = {xi1, xi2, . . . , xini
}, i = 1, 2 are two sets of the observed values of two

random samples independently drawn from the normal populations N(µi, σ
2
i ), i = 1, 2,

respectively. Let

ρ2 =
σ2

2

σ2
1

, (1)

x̄i =
1

ni

ni∑
j=1

xij, (2)

s2
i =

1

ni − 1

ni∑
j=1

(xij − x̄i)
2, (3)

C0 =

σ2
1

n1

σ2
1

n1
+

σ2
2

n2

=
1

1 + ρ2 n1

n2

(4)

denote the variance-ratio, sample means, sample variances, and the conventional parameter

used in the literature. The problem in hand is to construct a test of the null hypothesis,

H0 : µ1 = µ2, against the alternative hypothesis, Ha : µ1 6= µ2. Various tests have been

developed by Fisher (1935), Welch and Aspin (1947), Cochran and Cox (1950) and others.

The critical regions corresponding to each of these conventional tests have the general form

of:

|v| > V (Ĉ), (5)

where v = (x̄1 − x̄2)(
s2
1

n1
+

s2
2

n2
)−1, Ĉ = (

s2
1

n1
)(

s2
1

n1
+

s2
2

n2
)−1. V (Ĉ) is a function of Ĉ and the

preassigned nominal significance level α. The distribution of v is no longer Student-t when

the two variances are not known to be equal. The critical regions depend on the variance

parameters σ2
i , i = 1, 2 and sample sizes (n1, n2). These conventional solutions to the BF

problem involve utilizing various means to approximate the distribution of the variable v and

to control for the size distortion of the tests. The formulars and methods of approximation

are too complex to repeat here. Further details and discussion can be found in Lee and

Gurland (1975). We have chosen Welch-Aspin test as an example for a brief review.

2.1 Welch-Aspin Test

Welch (1947) and Aspin (1948) independently developed a higher order approximation,

Vwa(Ĉ), to the distribution of V (Ĉ) in the terms of up to f−2
i and f−4

i , where fi = ni − 1
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and i = 1, 2. Their approach is referred to as the Welch-Aspin (WA) test. The WA test

is a highly efficient solution to the BF problem (Weerahandi, 1987). The actual sizes of

the Welch-Aspin test in small samples are very close to the nominal significance levels. For

example, at a nominal level of 5%, the size of the WA test lies between 4.98% and 5.02%

for (n1, n2) = (7, 7). However, the functional form of Vwa(Ĉ) is lengthy, involving infinite

series, and it is difficult to work with (Lee and Gurland, 1975).

Lee and Gurland (1975) provided detailed comparisons of various tests that were pro-

posed by Fisher (1935), Cochran and Cox (1950), Welch (1937), Welch-Aspin (1947) and

others. At the last stage of their comparison, all of the tests were eliminated from their

tables, except the Welch-Aspin test because the WA test has very accurate size and good

power properties. In addition to this, Lee and Gurland proposed a refined test, which we call

the LG test, using two techniques: (i) a simple functional form to approximate the V (C)

function; and (ii) a T-transform to accelerate the convergence of the size and the power

functions. The method in their research involves solving a minimization problem of the

squared difference between the size function of the test and the preassigned nominal level,

and the T-transform is not trivial. Lee and Gurland provided refined results that were very

close to the results of the WA test. For the reasons mentioned above, we have chosen the

WA test and to cite the results of the WA test from Lee and Gurland for our comparison

with the ELR test for the case of (n1, n2) = (7, 7) at α = 5%. Of course, we also consider

other sample sizes and nominal significance levels when considering the ELR test. A detailed

discussion is given in Section 3.

2.2 Approaches of Qin and Jing

Jing (1995) proposed a nonparametric version of the EL approach to the two-sample problem.

In his paper, he showed that the nonparametric version of Wilks’ theorem holds in the two-

sample problem and that the solution is Bartlett correctable. The empirical likelihood ratio

statistic has a limiting chi-squared distribution with an error of order O(n−1) and with the

Bartlett correction, the error is reduced to the order of O(n−2), where n is the smaller

one of the two sample sizes. A special case of his approach is a particular solution to the

Behrens-Fisher problem.

The focus of Jing (1995) was primarily on the coverage accuracy and the Bartlett cor-
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rection of the test. The approach he used works only when the null hypothesis is true. This

means that the restriction that two means are equal must be binding, and the Lagrangian

multiplier for the constraint must not equal zero. If the restriction is not binding, the solu-

tion of his approach reduces to a situation where the probability parameter pi = 1/n, and

the estimated empirical mean of the data is just the sample mean. His approach does not

appear to offer the potential for dealing with issues relating to power in the context of an

ELR test.

Qin (1991) generalized Owen’s empirical likelihood to a two-sample problem in which

one sample is assumed to come from a distribution that is unknown and the other sample

is assumed to come from a known distribution specified upto a parameter, gθ(x2). Qin’s ap-

proach is a semi-parametric one by combining the EL method and the parametric likelihood

method to the two-sample problem. Consider the following assumptions:

• µ2 = µ(θ) is differentiable and µ′(θ) 6= 0

• the known density function gθ(x2) is differentiable three times with respect to θ

•
∫

gθ(x2)dx2 is twice differentiable

• The Fisher information matrix, I(θ) = E[∂ log gθ

∂θ
]2, satisfies 0 < I(θ) < ∞

• | ∂3

∂θ3 log gθ(x2) | is bounded.

Under these assumptions, there exists an EL estimator θ̂ of the mean µ1 that is more efficient

than the sample mean x̄1. Qin proved that the empirical likelihood ratio has a limiting

distribution of χ2
(1) under the null hypothesis µ1 = µ2 = µ(θ). The coverage accuracy is of

the order Op(n
− 1

2 ). The connection between the two data sets is brought in only through

the single restriction that the two means are equal.

The EL approach developed in this paper provides a new theoretical solution to the BF

problem and hopefully it can overcome some of the shortcomings mentioned above. The focus

of the following sections is on deriving the ELR test for the BF problem and simulation of the

sampling properties for the ELR test in the context of solving the Behrens-Fisher problem.
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3 THE EL APPROACH

3.1 ELR Test

Suppose Si = {xi1, xi2, . . . , xini
}, i = 1, 2, are the two data sets we have. They are

independently drawn from two normal populations N(µi, σ2
i ), i = 1, 2. The parameters

(µ1, µ2, σ2
1, σ2

2) are unknown. ni’s are the sample sizes of the data sets. Without losing

generality, we assume that n1 ≥ n2. Solving the BF problem involves constructing a test for

the hypothesis that the two population means equal when the two variances are not known

to be equal. The steps of our approach are as follows.

First, we transform the data set S1, into a data set that has the same theoretical distri-

bution as the data set S2. The transformation has the following form:

tj = (x1j − µ1)(ρ
2)

1
2 + µ2, (6)

where x1j ∈ S1 and ρ2 = σ2
2/σ

2
1. Thus, tj ∼ N(µ2, σ2

2), j = 1, 2, . . . , n1.

The second data set S2 remains unchanged. We denote: tn1+j = x2j, where x2j ∈ S2, for

j = 1, 2, . . . , n2. Let n = n1 + n2. Then, the full data set S = {t1, t2, . . . , tn} is of size n

and has a distribution of N(µ2, σ2
2).

The parameter C0 = 1/(1 +
σ2
2

σ2
1

n1

n2
) is the one that is used in the literature of the BF

problem, (e.g., Welch (1947), Lee and Gurland (1975)), where the σ2
i ’s are the population

variance parameters, i = 1, 2. Obviously, C0 ∈ (0, 1), and it is a smooth function of the

variance ratio parameter, ρ2, and the ratio of the sample sizes, n1/n2. In our study, we keep

the ratio of the sample sizes constant and allow the variance ratio to vary such that the

corresponding values of C0 cover well the range of (0, 1).

The next step is to apply the EL approach to the full data set S. A probability parameter

pj is assigned to each data point tj. The empirical likelihood function for the full data set

is formed as
∏n

j=1 pj. The approach of the empirical maximum likelihood method is to

maximize the empirical likelihood function subject to the probability constraints, 0 < pj < 1

and
∑n

j=1 pj = 1, and some information constraints.

The information that we have is that the data are independent and are normally dis-
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tributed with a mean µ2 and a variance σ2
2. We choose to use the ratio of the variances as one

of the parameters, so the parameter vector becomes θ = (µ1, µ2, ρ2, σ2
2)
′. In addition, we

choose to use the first five unbiased raw moment equations as the information constraints,

i.e. m = 5, so that the number of the moment equations, m, is greater than the number

of the parameters, p. As we know, if m < p, the system is under-identified; and if m = p,

the EL solution becomes exactly the solution from the method of moments. Therefore, five

moment equations are necessary and sufficient for the EL method to be effective. We denote

the information constraints as Eph(tj, θ) = 0, which have the following form:

n∑
j=1

pjtj − µ2 = 0 (7)

n∑
j=1

pjt
2
j − (µ2

2 + σ2
2) = 0 (8)

n∑
j=1

pjt
3
j − (µ3

2 + 3σ2
2µ2) = 0 (9)

n∑
j=1

pjt
4
j − (µ4

2 + 6σ2
2µ

2
2 + 3σ4

2) = 0 (10)

n∑
j=1

pjt
5
j − (µ5

2 + 10σ2
2µ

3
2 + 15σ4

2µ2) = 0. (11)

The corresponding Lagrangian function is:

G = n−1
n∑

j=1

log pj − η(
n∑

j=1

pj − 1)− λ′
n∑

j=1

pjh(tj, θ), (12)

where λ is a m× 1 vector, which together with the scalar η are the Lagrangian multipliers.

The optimization problem is to maximize the Lagrangian function with respect to pj’s,

λ, and θ. Keeping λ and θ fixed, applying the first order condition with respect to and the

probability parameter constraints on pj’s, we find that η takes the value of unity and the

pj’s can be expressed as functions of λ and θ:

pj = n−1(1 + λ′h(tj, θ))
−1, j = 1, 2, . . . , n (13)

Substituting this information back into the Lagrangian function, we get a optimization prob-

lem over a reduced number of unknowns, λ and θ.
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Deriving the first order conditions of the Lagrangian function with respect to the pa-

rameter vector θ requires some special attention. We note that the values in the first portion

of the data are functions of the unknown parameters. The first derivative of the data with

respect to the parameters involves the following terms:

∂tj
∂θ

= (−ρ, 1, (x1j − µ1)
1

2
(ρ2)−1/2, 0)′, j = 1, 2, . . . , n1, (14)

where x1j ∈ S1. Taking into account this information, the actual first order conditions for

the Lagrangian function with respect to the four unknown parameters (µ1, µ2, ρ2, σ2
2)
′ can

be represented as follows:

n1∑
j=1

pj(λ1 + 2λ2tj + 3λ3t
2
j + 4λ4t

3
j + 5λ5t

4
j)(ρ

2)1/2 = 0

n1∑
j=1

pj(λ1 + 2λ2tj + 3λ3t
2
j + 4λ4t

3
j + 5λ5t

4
j)

−
n∑

j=1

pj(λ1 + 2λ2µ2 + 3λ3(σ
2
2 + µ2

2) + 4λ4(3σ
2
2µ2 + µ3

2) + 5λ5(3σ
4
2 + 6σ2

2µ
2
2 + µ4

2)) = 0

n1∑
j=1

pj(λ1 + 2λ2tj + 3λ3t
2
j + 4λ4t

3
j + 5λ5t

4
j)(tj − µ1)

1

2
(ρ2)−1/2 = 0

n∑
j=1

pj(λ2 + 3λ3µ2 + 6λ4(σ
2
2 + µ2

2) + 10λ5(3σ
2
2µ2 + µ3

2)) = 0.

Putting these four first order conditions and the five moment equations together, we get a

system of nine nonlinear equations. We solve this system using the nonlinear equation solver

“Eqsolve” in the Gauss package (Aptech Systems, 2002).

We denote λ̂ and θ̂ as the EL estimators, the solution from the system, for the La-

grangian multiplier vector and parameter vector. Then, we obtain the EL estimators for the

probability parameters p̂j’s using the formula (13). The estimated maximum value of the

likelihood function is obtained as L(F̂ u) =
∏n

j=1 p̂u
j , where u stands for the unconstrained

model.

In order to construct an ELR test for the BF problem, we also need to have the solutions

to the constrained case. With the null hypothesis: H0 : µ1 = µ2, we simply substitute the

restriction µ1 = µ2 into the unconstrained case to get the constrained case, where the

parameter vector becomes θ = (µ, ρ2, σ2
2)
′ which is of dimension three, with µ = µ1 = µ2.
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The five moment equations, Eph
c(tj, θ), are:

n∑
j=1

pjtj − µ = 0 (15)

n∑
j=1

pjt
2
j − (µ2 + σ2

2) = 0 (16)

n∑
j=1

pjt
3
j − (µ3 + 3σ2

2µ) = 0 (17)

n∑
j=1

pjt
4
j − (µ4 + 6σ2

2µ
2 + 3σ4

2) = 0 (18)

n∑
j=1

pjt
5
j − (µ5 + 10σ2

2µ
3 + 15σ4

2µ) = 0. (19)

where c stands for constrained. Similarly, we have:

pc
j = n−1(1 + λ′hc(tj, θ))

−1, j = 1, 2, . . . , n (20)

The first derivative of the first portion of the data with respect to the parameters has the

following form:

∂tj
∂θ

= (−(ρ2)1/2 + 1, (x1j − µ)
1

2
(ρ2)−1/2, 0)′, j = 1, 2, . . . , n1, (21)

where x1j ∈ S1. The first order conditions of the Lagrangian function with respect to the

three parameters are:

n1∑
j=1

pj(λ1 + 2λ2tj + 3λ3t
2
j + 4λ4t

3
j + 5λ5t

4
j)((ρ

2)1/2 − 1)

−
n∑

j=1

pj(λ1 + 2λ2µ + 3λ3(σ
2
2 + µ2) + 4λ4(3σ

2
2µ + µ3) + 5λ5(3σ

4
2 + 6σ2

2µ
2 + µ4)) = 0

n1∑
j=1

pj(λ1 + 2λ2tj + 3λ3t
2
j + 4λ4t

3
j + 5λ5t

4
j)(tj − µ)

1

2
(ρ2)−1/2 = 0

n∑
j=1

pj(λ2 + 3λ3µ + 6λ4(σ
2
2 + µ2) + 10λ5(3σ

2
2µ + µ3)) = 0.

Solving the system of the nonlinear equations of the five moment equations and the three

first order conditions, we get λ̂c and θ̂c as the EL estimates, and then, the p̂c
j’s using the
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formula (20). The estimated maximum value of the empirical likelihood function under the

constraint is formed as L(F̂ c) =
∏n

j=1 p̂c
j.

The log likelihood ratio statistic has the form:

−2 log R(F ) = −2 log
L(F̂ c)

L(F̂ u)

= 2
n∑

j=1

(log(1 + λ̂c
′
hc(tj, θ̂c))− log(1 + λ̂u

′
h(tj, θ̂u)))

and it has a limiting distribution of χ2
(1) under H0.

3.2 EL-type Wald Test

The EL estimator θ̂EL of the parameter vector θ is asymptotically efficient, and it has a

limiting distribution of the following form:

√
n(θ̂EL − θ0)

d→ N(0, Σ),

where

Σ = [E[
∂h(y, θ)

∂θ
|θ0 ]E[h(y, θ)h(y, θ)′ |θ0 ]

−1E[
∂h(y, θ)

∂θ′
|θ0 ]]

−1, (22)

and θ0 is the true value of θ. A consistent estimator of the asymptotic covariance matrix Σ

can be obtained using the EL estimator θ̂EL:

Σ̂ = [E[
∂h(y, θ)

∂θ
|θ̂EL

]E[h(y, θ)h(y, θ)′ |θ̂EL
]−1E[

∂h(y, θ)

∂θ′
|θ̂EL

]]−1. (23)

The estimated covariance matrix Σ̂ is a 4 × 4 symmetric matrix. With this, we can

easily obtain an EL-type Wald test for any linear restrictions of the parameters. Suppose

cθ̂ − r = 0 is a set of j linear restrictions. The EL-type Wald test has the form:

W = (cθ̂ − r)′[cΣ̂c′]−1(cθ̂ − r), (24)

and it has an asymptotic distribution of χ2
(j), if the restrictions are valid.

For the BF problem, the restriction is simply µ1 = µ2, i.e., c = {1, −1, 0, 0}, then, the
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EL-type Wald test has the form of:

w = (µ1 − µ2)
2(a11 + a22 − 2a12)

−1, (25)

where aij, i, j = 1, 2 are the elements of the Σ̂ matrix. The EL-type Wald test statistic w

has an asymptotic distribution of χ2
(1) under the null hypothesis.

We have explored the EL-type Wald test for the BF problem using Monte Carlo sim-

ulations. Intuitively, the Wald test should be computationally easier than the ELR test

since the Wald test involves solving the unconstrained case only. However, our study finds

that both the computing time and computational difficulty associated with the Wald test

are greater than that associated with the ELR test. One possible reason for this is that the

Wald test involves computing the consistently estimated covariance matrix for the parameter

estimators, and this involves three matrix inversions. For an ill behaved problem, such as

the Behrens-Fisher problem, these matrix inversions may cause some difficulties. The results

for the Wald test are not as good as those for the ELR test in the BF context. Therefore,

we choose to present only the results of the ELR test in this study (The details of the Wald

test results are available on request.)

3.3 Testing For Normality

Solving the Behrens-Fisher problem and testing for normality have close connections when

using the EL method as described in the previous sections. By definition, the BF problem

is the case of testing the equality of two means when two data sets are independently drawn

from two normal distributions with general and unknown variances. It was categorized by

Tukey (1954) as the fourth level problem of normal sequences of growth in consideration in

the area of comparing the typical values of two populations with the aid of a sample drawn

from each (Tukey, 1954, p. 713).

The EL approach that we described in Section 3.1 provided a new solution to the

Behrens-Fisher problem. Further more, suppose these two samples were drawn from two

different distributions that are from the same family, and we have interest in making sure

that this distribution family is normal. Then, our approach is perfectly suitable for us to

conduct an ELR test for normality of the underlying distributions of the two data sets.
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As described in Dong and Giles (2004), testing for the validity of the moment conditions

provides a way of testing for the underlying distribution, normality in this case.

Consider two data sets Si = {xi1, xi2, . . . , xini
}, i = 1, 2. Suppose they are drawn

independently from two populations F (µi, σ2
i ) of the same family, where F is not known

and is not necessarily normal. As described in section 3.1, we apply the EL approach to the

full data set S. If the underlying distribution is normal, then the five moment equations

constraints hold true, and the maximized likelihood function is L(F̂ c) =
∏n

j=1 p̂j. If the

hypothesis is not true, then the maximum value of the likelihood function is L(F u) = n−n.

The log empirical likelihood ratio statistic for testing for normality is of the form:

−2
∑

log np̂j = 2 log(1 + λ̂′h(tj, θ̂)). (26)

It has a limiting null distribution of χ2
(1), where the number of degrees of freedom equals the

number of moment equation, five, less the number of parameters, four.

Usually, we may be interested in using this technique to test for normality of the two

underlying populations of the same distribution family. If we are satisfied with the results

and accept the null hypothesis that the underlying populations are normal, then, we can

continue the process to solve the Behrens-Fisher problem. However, the first step of testing

for normality introduces a pre-testing situation that the size and power of the subsequent

test in the procedure may be altered, as described by Giles and Giles (1993). It is well

known that sequential testing strategies can result in size and power distortions if the tests

in question are not independent of each other. This issue is not explored further in this

study.

Alternatively, we can avoid the pre-testing issue by conducting an ELR test for nor-

mality and an EL-type Wald test for the Behrens-Fisher problem simultaneously. Using the

unrestricted model and applying the EL approach described in Section 3.1, we obtain the

EL estimate of the parameter vector, θ̂, and the estimates of the probability parameter, p̂i’s.

With the p̂i’s, we can implement the ELR test for normality for the underlying distribution

as we described in Dong and Giles (2004). In the meantime, without being influenced by

the testing for normality, we can compute the consistent estimate of the covariance matrix

of θ̂ to perform the EL-type Wald test for the Behrens-Fisher problem as we described at

the beginning of this section. If we accept the null hypothesis of the first test that the un-

derlying distribution of the two populations is normal, then the Wald test is well-founded.
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This alternative approach seems to be able to effectively avoid the pre-testing issue, and it

may provide better results. We will explore this alternative in future research.

3.4 Advantages of the EL Approach

The empirical likelihood approach to the BF problem described in this paper utilizes more

information from the data sets than do the approaches suggested by other authors. In

particular, we exploit the obvious relationship between the two data sets that they both are

drawn from normal distributions. We make use of the first five unbiased moment equations

of the data sets. In addition, we utilize the empirical likelihood functions. These techniques

allow the EL approach of our design to reach a higher asymptotic efficiency for estimation

and higher testing power for the new solution to the BF problem. If the ELR test had a well

controlled size and good power, then we would say that the ELR test is a good solution to the

BF problem and the EL approach is valuable. Monte Carlo simulations that are described

in the following section provide an extensive analysis of the sampling properties of the new

ELR test.

4 MONTE CARLO EXPERIMENTS

For the Behrens-Fisher problem, the Monte Carlo experimental design is to apply the

empirical likelihood method to test for the equality of two means without the knowledge of

the variances of the underlying populations.

Two random samples are generated independently from two normal distributions: N(µ1, σ
2
1)

and N(µ2, σ
2
2) with the true values of the parameters (µ1, µ1, σ2

1, σ2
1)
′ = (1, 1, 1, σ2

2)
′, where

σ2
2 varies with the variance ratio parameter ρ2 = σ2

2/σ
2
1. The true value of the parameter

ρ2 changes according to the values of {0.1, 0.5, 1, 2, 10}. When ρ2 = 1, the two variances

equal; when ρ2 is farther apart from one, the two variances are further different from each

other where the BF problem becomes severe. The sample size pair ranges from (20, 10) to

(250, 125). The ratio of the sample sizes of the two data sets is kept constant, n1/n2 = 2,

for simplicity. These settings lead to the corresponding values of the parameter used in the
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literature C0 = 1/(1+
σ2
2

σ2
1

n1

n2
), to vary in accordance of {0.83, 0.5, .33, 0.2, 0.048} which has

a good coverage of the region (0, 1). Therefore, our experiments have a good coverage of

the parameter space. The number of replications is set to be 5, 000.

In conducting the power comparisons, the non-centrality parameter is defined as:

δ =
µ1 − µ2

(σ2
1 + σ2

2)
1
2

. (27)

The null hypothesis is true when δ = 0. The alternative hypothesis is when δ 6= 0. We have

considered are the cases of δ varies according to the values of {1, 1.5, 2, 2.5, 3, 4}.

One note we should bear in mind is that, in contrast to the non-centrality parameter

used in Lee and Gurland (1975), the parameter δ in our design does not depend on the

sample size pair (n1, n2). Therefore, we are able to disentangle the effect upon the power of

the ELR test that is arising from the non-centrality parameter δ, or that from sample size

pair changes. The log empirical likelihood ratio statistic depends on the parameter ρ2 and

the sample size ratio n1/n2. Thus, the size and the power of the ELR test are also functions

of these parameters. However, the asymptotic distribution of the ELR test statistic does not

depend on these nuisance parameters. The ELR test statistic has an asymptotic distribution

of χ2
(1) under the null hypothesis.

5 EMPIRICAL RESULTS

5.1 Sampling properties

Table 1 in the Appendix presents the computed sizes and the size-adjusted critical values

for the ELR test in solving the Behrens-Fisher problem at four nominal significance levels:

α = {10%, 5%, 2%, 1%}. These four levels are used so as to have a close look at the

behavior of the ELR test at the tail.

• The actual size of the ELR test is relatively large comparing to the nominal significance

level. The size has an appropriate trend to converge to the correct nominal significance
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level when the sample sizes increase, given a value of ρ2. For example, the size changes

from 12.14% to 10.66% when the sample pair varies from (20, 10) to (250, 125) at the

nominal significance level of 5% when ρ2 = 0.1. We stopped at n = (250, 125) due to

computing difficulty. It would be worthwhile to provide further empirical evidence to

illustrate the size convergence as the sample size increases in future research.

• The size of the ELR test is not very sensitive to the changes in the sample size pair at

the nominal significance level of 10%.

• The size distortion of the test declines as the value of the parameter ρ2 decreases,

holding other factors fixed. For instance, the size changes from 27.36% to 12.14%

when ρ2 moves from 10 to 0.1 for small sample sizes (n1, n2) = (20, 10) at α = 5%.

The size distortion is the worst when ρ2 = 10 however it is still within the range of our

expectations for the ELR test, based on our computational experience.

Tables 2 to 4 provide the full analysis of the power of the ELR test across a range of values

for the non-centrality parameter δ, the parameter ρ2, and the sample size pair (n1, n2). The

size-adjusted critical values are used to compute the powers of the test in every cases. These

values allow us to evaluate the power of the ELR test at the actual significance levels. The

findings are as follows.

• First, the power increases as the parameter δ increases, given the values of ρ2, α, and

(n1, n2). That is the power of the test if higher when the hypothesis is further away

from the truth. For example, the power increases from 25.20% to 95.46% when the

parameter δ varies from 1 to 4 at ρ2 = 0.1 and α = 5% for the sample size pair as

small as (n1, n2) = (20, 10). These are very encouraging results. They show that the

ELR test has good power properties for quite small samples.

• Second, the power of the test increases with the sample sizes. That is, the test is more

powerful when we have more information in hand. For instance, the power increases

from 49.26% to 99.94% when the sample size pair increases from (20, 10) to (250, 125)

at ρ2 = 0.1, α = 5%, and δ = 1.5.

• Third, the power is higher when the value of ρ2 is farther away from unity, given the

values of the parameters of (n1, n2), α, and δ. For example, the power changes from

30.16% to 90.28% when ρ2 changes from 1 to 0.1; the power increases to 66.30% when
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the parameter ρ2 moves from 1 to 10, holding α = 5%, δ = 2.5, and (n1, n2) = (20, 10)

fixed. The rationale behind this result is as follows. (i) When ρ2 = 1, the variances of

the two populations are unknown but equal, where the BF problem vanishes. The test

for H0 : µ1 = µ2 reduces to the usual t test. (ii) When ρ2 deviates from unity, the sign

of the Behrens-Fisher problem shows up, the farther away ρ2 is from unity, the severe

the BF problem becomes; in this case, the ELR test becomes more powerful. In another

words, under the alternative hypotheses, when the variances of the two populations

are unknown and unequal, the ELR test has high power. The result tells us that the

ELR test is able to capture the specific information that the samples were drawn from

two populations with different variances that are unknown in the BF problem.

Overall, the power results are quite acceptable and the ELR test is recommended to be

applied to the BF problem.

5.2 Comparison of the WA and the EL Tests

The WA test is designed for small samples. As discussed in Section 2.1, the solution provided

by the Welch-Aspin test results from directly solving the size function equation

P (|v| > V (Ĉ)) = α (28)

and approximating V (Ĉ) function in the terms of, and up to, f−4
i , where fi = ni − 1 is the

number of degrees of freedom left for each data set, and i = 1, 2. We cite the experimental

results of the WA test from Lee and Gurland (1975). The results were specifically for the

case of (n1, n2) = (7, 7), α = 5%, and C0 = {0.1, 0.2, 0.3, 0.4, 0.5}. The sample size is

very small (n1, n2) = (7, 7), but the test has well controlled size and good power.

In this section, we conduct a comparison of the sampling properties between the ELR

test and the WA test for this small sample size case and results are provided in Table 5 in

the appendix.

To make it comparable, the parameter ρ2 in the ELR test takes the values of {9, 4, 2.33, 1.5, 1}
in corresponding to the values of the parameter C0 used by Lee and Gurland (1975). The non-

centrality parameter δ takes the values of {0.378, 0.7559, 1.1339, 1.5119} in corresponding to
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the non-centrality parameters of the WA test which changes values according to {1, 2, 3, 4}.
The two non-centrality parameters have the following relationship: δ = δ0/

√
7.

From the table, we see that the ELR test, unfortunately, performs poorly for this very

small-sample situation. We wish to make more comparisons of these two tests for different

samples. However, to our knowledge, there is no other published information available to

allow a comparison between the ELR and the WA test for sample size that is greater than

seven.

For the sample size pair as small as (n1, n2) = (7, 7), the actual size of the ELR test

obviously exceeds the nominal significance level but it is still within the usual size range of

the ELR test. The size distortion of a test is the difference between the actual size of the test

and the nominal significance level. Therefore, the size distortion of the ELR test is large.

We compute the power of the ELR test at its actual size level of 5% by using the

simulated size-adjusted critical values. The power comparison is made at the same actual

size level 5%. The result shows that the power of the ELR test for such a small sample size

is low and it is inferior to that of the WA test. It is unfortunate that the ELR test is not

able to show its merits for this extremely small sample size pair.

The ELR test for the Behrens-Fisher problem is an asymptotic test. The power per-

formance is acceptably good when the sample size pair is as small as (n1, n2) = (20, 10).

However, we would not expect it to perform very well when the sample size pair is extremely

small, such as (n1, n2) = (7, 7). The power results from Monte Carlo experiment for this

specific case (but with various significance levels) are presented in Table 6.

Although this particular comparison between the ELR test and the WA test is rather

disappointing, it must be kept in perspective. First, we are comparing our asymptotic test

with one which is explicitly designed for small samples. Second, this comparison involves a

particularly small sample size.

The full experimental results for the ELR test solving the Behrens-Fisher problem that

are presented in Tables 2 to 5 show that the EL method is able to solve the BF problem,

and that the ELR test has good power properties over a wide range of realistic situations.
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6 COMPUTATIONAL ISSUES

The computing work associated with our EL approach in solving the BF problem is

challenging. As Owen (2001) stated, it is computationally challenging to optimize a likelihood

function of either parametric or empirical type over some nuisance parameters with other

parameters held fixed at test values.

The BF problem is well known to be very difficult to solve. This type of difficulty in

optimizing empirical likelihood functions is especially clear. (i) The BF problem involves

two nuisance parameters; (ii) Along the boundary of the parameter ρ2, empirical likelihood

function is ill-behaved according to our experiment.

There are two possible reasons for this difficulty. One reason is historical. Any solution

to the Behrens-Fisher problem must have some unpleasant properties (Zaman, 1996, p. 246).

The ELR test, like other tests, must have some unfavorable features over certain areas in

the parameter space. Our work proves this is true.

The second possible reason comes from the design of the empirical likelihood approach.

The nature of the EL method is that, in the neighborhood of the solution, the gradient

matrix associated with the moment constraints will approach an ill-behaved state of being

less than full rank (Mittelhammer et al., 2003). This occurs by design because the basic

rationale of the EL method is to modify the sample weights such that the over-identified m

empirical moment equations can be satisfied in order to solve for the unique solutions of the p

unknowns, where m > p. This creates instability in gradient-based constrained optimization

algorithms regarding the representation of the feasible spaces and feasible directions for such

problems.

Mittelhammer et al. (2003) used a ”concentrating-out” technique that utilized a non-

linear system procedure (NLSYS) and the Nelder-Mead (1965) method to achieve their

computational purpose. These techniques worked well for their project. We have explored

the possibility of using these techniques in solving the Behrens-Fisher problem. However,

the Nelder-Mead method did not work well in our situation.

The approach we used in this paper is so-called “direct solve” method. We directly solve

the non-linear system of the moment equations and the first order conditions with respect to

the parameters. The non-linear equation solving procedure, Eqsolve, in the Gauss package
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is employed. The numerical solutions are acceptably good.

In the process of the Monte Carlo simulations, there are a few samples drawn from the

underlying distributions that can not solve the nonlinear system in computing the power of

the ELR test. This reflects a typical example of the potential infeasibility that happens in

implementing the EL method, in practise.

When this happens, we reuse the sample that did not work for the Eqsolve procedure

by altering the initial values of the parameters and then implementing the procedure again

until the solution is found. In finding a new vector of initial values for the parameters, we

apply the essential idea of the Differential Evolution method.

Suppose θ̂0 is the vector of unsuccessfully estimated values of θ. The random search

direction is formed of the difference between two random vectors θ1 − θ2. The new initial

value for the parameter vector is then in the form: θa = θ̂0 + s(θ1 − θ2), where s is a step

size taking values of {0.4, 1, 2}. This new initial vector of parameter values is then feeded

to the Eqsolve procedure to search for the global maximum.

These techniques worked very well in keeping the samples that we have generated. By

doing so we effectively avoid throwing away data sets casually and we have practically avoided

the problem of selection bias. Therefore, we can claim that we have approximated the exact

distribution for the ELR test statistic in finite samples.

As a result, the empirical size distortion of the ELR test is effectively improved using this

data reuse technique comparing to the ones when we did not use this data recycle technique.

However, any gain comes with certain trade off. The computing time is lengthened and it

is significantly longer than the EL approach in the testing for normality in Dong and Giles

(2004).

To give an indication of the extent of the difficulty it involved in solving the BF problem

using the ELR method, we provide some examples of the computing times that it took in

the Monte Carlo experiments.

The computing time is longer when the parameter ρ2 is away from unity. It takes about

10 hours to compute the empirical size for the ELR test when ρ2 = 2, (n1, n2) = (20, 10),

and the number of replications is 5,000 using a Pentium 4, 2.4 GHZ PC. It is also very

difficult in computation when the null hypothesis is not true, e.g. when the non-centrality
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parameter δ 6= 0. For example, in computing the power of the ELR test, it takes the same

machine around 27 hours for the case of (n1, n2) = (20, 10), ρ2 = 0.5, δ = 1, the number of

replications is 5,000.

In conclusion, although it is difficult in computing the exact size and power of the ELR

test for the BF problem, our EL approach using the Eqsolve algorithm works well for the

BF problem. The empirical results are sound.

7 SUMMARY AND CONCLUSIONS

We have developed an new theoretical approach using the EL method to solve the

Behrens-Fisher problem in this paper. The fact that the EL method is able to solve the BF

problem is important. It shows the flexibility of the EL method in solving various problems

in statistics and econometrics.

A full range of Monte Carlo experiments are conducted to provide the analysis of the

sampling properties of the ELR test. The actual sizes and the size-adjusted critical values

in finite samples are simulated. The size-adjusted critical values are used to conduct the

analysis of the power properties of the ELR test. The empirical results provide the evidence

that the ELR test has good sampling properties across different parameter dimensions: the

variance ratio parameter, the sample size pair, and the non-centrality parameter.

Generally, the size-adjusted critical values that we have presented in Table 1 are ready

to be used by researchers provided that the values of the parameter ρ2 and the sample size

pair are conformable with the ones in our study.

We have noted that the computing time in solving the BF problem is significantly long.

The size of the ELR test statistic, in general, is still larger than the significance levels we

consider. In the future study, it would be fruitful to explore some techniques that could

reduce both of the computational difficulties and the size distortion and could still maintain

the good power properties of the ELR test.
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Appendix: Monte Carlo Results

Table 1: Size and Size-adjusted Critical Values of the ELR Test

(n1, n2) : (20, 10) (60, 30) (100, 50) (250, 125) (20, 10) (60, 30) (100, 50) (250, 125)

ρ2 = 0.1 ρ2 = 0.5

10% 0.1838 0.1868 0.1832 0.1878 0.2202 0.2202 0.2266 0.1964
5% 0.1214 0.1124 0.1084 0.1066 0.1482 0.1468 0.1448 0.1218
2% 0.0712 0.0636 0.0580 0.0554 0.0924 0.0852 0.0896 0.0668
1% 0.0488 0.0428 0.0404 0.0342 0.0686 0.0584 0.0626 0.0424

Size-adjusted Critical Values:
10% 4.3067 4.1787 4.0088 3.9780 5.1494 4.8877 4.9112 4.3564
5% 6.5523 6.1960 5.8025 5.6186 7.7853 7.1960 7.4334 6.1392
2% 10.7818 10.1350 9.0218 8.2500 12.4479 10.4005 11.1566 9.3809
1% 14.2266 13.2669 12.8602 10.3353 16.5913 13.6268 14.1973 11.9212

ρ2 = 1 ρ2 = 2

10% 0.2424 0.2538 0.2536 0.2332 0.2926 0.3014 0.2780 0.2448
5% 0.1698 0.1788 0.1748 0.1466 0.2136 0.2110 0.1966 0.1592
2% 0.1100 0.1126 0.1068 0.0828 0.1404 0.1422 0.1298 0.0888
1% 0.0814 0.0776 0.0710 0.0530 0.1046 0.1044 0.0966 0.0570

Size-adjusted Critical Values:
10% 5.7988 5.8435 5.5645 4.7971 6.8276 6.7529 6.4580 5.1142
5% 8.9674 7.9674 7.5631 6.7822 10.8456 9.3973 9.3711 7.1188
2% 14.3630 11.8099 10.5112 9.8197 17.7402 13.1147 13.3604 10.0495
1% 18.6082 14.3278 13.6295 12.0383 22.9714 15.9200 16.7853 12.1949

ρ2 = 10

10% 0.3564 0.3306 0.2872 0.2376
5% 0.2736 0.2574 0.2066 0.1576
2% 0.1892 0.1826 0.1384 0.0948
1% 0.1516 0.1428 0.1044 0.0636

Size-adjusted Critical Values:
10% 9.25930 8.4782 6.7945 5.2401
5% 15.0960 12.3244 10.4183 7.4935
2% 23.8243 18.3507 16.2891 11.1926
1% 31.6749 21.8045 21.2274 14.8243

Notes to table:
The number of replications is 5,000.
The sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .
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Table 2: Power of the ELR Test for the Behrens-Fisher Problem

(n1, n2)
ρ2 = 0.1 ρ2 = 0.5

δ: 1 1.5 2 2.5 3 4 1 1.5 2 2.5 3 4

(20, 10)

10% 0.3826 0.6786 0.9032 0.9684 0.9750 0.9768 0.1688 0.2945 0.4942 0.7038 0.8408 0.9508
5% 0.2520 0.4926 0.7764 0.9028 0.9388 0.9546 0.0994 0.1816 0.3101 0.4562 0.608 0.8166
2% 0.1396 0.2262 0.4122 0.5364 0.5910 0.6896 0.0542 0.1028 0.1674 0.2344 0.3078 0.5022
1% 0.0906 0.1226 0.2122 0.2836 0.3298 0.4316 0.0371 0.0743 0.1226 0.1562 0.2104 0.3314

(60, 30)

10% 0.6086 0.9314 0.9926 0.9924 0.2870 0.5748 0.9148 0.9832 0.9906
5% 0.4800 0.8748 0.9870 0.9846 0.1800 0.4256 0.8350 0.9692 0.9848
2% 0.2934 0.7292 0.9724 0.9764 0.1034 0.2710 0.6926 0.9376 0.9798
1% 0.2088 0.5964 0.9530 0.9740 0.0682 0.1812 0.5422 0.8764 0.9688

(100, 50)

10% 0.6976 0.9812 0.9978 0.3180 0.7362 0.9768 0.9962
5% 0.5992 0.9608 0.9970 0.1956 0.5988 0.9494 0.9924
2% 0.4452 0.9074 0.9930 0.0950 0.3978 0.8850 0.9840
1% 0.2972 0.8092 0.9848 0.0584 0.2792 0.8032 0.9742

(250, 125)

10% 0.8254 0.9996 0.4216 0.9450 0.9992
5% 0.7512 0.9994 0.3130 0.9052 0.9986
2% 0.6308 0.9972 0.1828 0.8040 0.9962
1% 0.5474 0.9952 0.1112 0.7026 0.9928

Notes to table:
The number of replications is 5,000.
The sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 .

δ is the non-centrality parameter.

23



Table 3: Power of the ELR Test for the Behrens-Fisher Problem

(n1, n2)
ρ2 = 1 ρ2 = 2

δ: 1 1.5 2 2.5 3 4 1 1.5 2 2.5 3 4

(20, 10)

10% 0.1564 0.2170 0.3456 0.5116 0.6886 0.9050 0.1593 0.1956 0.2672 0.4400 0.6366 0.8352
5% 0.0972 0.1306 0.2078 0.3016 0.4634 0.7318 0.1044 0.1303 0.1750 0.3016 0.4612 0.6564
2% 0.0606 0.0898 0.1342 0.1872 0.2806 0.4624 0.0658 0.0950 0.1378 0.2354 0.3731 0.5456
1% 0.0420 0.0700 0.1112 0.1584 0.2312 0.3878 0.0440 0.0800 0.1240 0.2188 0.3522 0.5272

(60, 30)

10% 0.2076 0.4050 0.7574 0.9458 0.9846 0.9941 0.1926 0.289 0.6084 0.8770 0.9772 0.9968*
5% 0.1440 0.2878 0.6310 0.8962 0.9748 0.9914 0.1342 0.1804 0.4504 0.7666 0.9462 0.9942
2% 0.0870 0.1584 0.4192 0.7648 0.9374 0.9850 0.0869 0.0995 0.2876 0.6190 0.8794 0.9871
1% 0.0664 0.1144 0.3082 0.6614 0.8930 0.9798 0.0648 0.0716 0.2170 0.5232 0.8082 0.9683

(100, 50)

10% 0.2364 0.5486 0.9086 0.9918 0.1988 0.4190 0.8054 0.9774 0.9970
5% 0.1572 0.4284 0.8452 0.9828 0.1303 0.2693 0.6634 0.9472 0.9950
2% 0.0980 0.2770 0.7322 0.9612 0.0814 0.1380 0.4756 0.8756 0.9886
1% 0.0698 0.1766 0.5894 0.9290 0.0620 0.0808 0.3459 0.7996 0.9776

(250, 125)

10% 0.3104 0.8450 0.9964 0.2744 0.7362 0.9878 0.9996
5% 0.2082 0.7514 0.9914 0.1844 0.6116 0.9746 0.9988
2% 0.1152 0.6086 0.9738 0.1024 0.4572 0.9432 0.9982
1% 0.0776 0.5048 0.9572 0.0682 0.3624 0.9084 0.9976

Notes to table:
The number of replications is 5,000.
The sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 . δ is the non-centrality parameter.

Results with a star (*) are the ones that the number of replications is less than 5,000 due to computing difficulties.
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Table 4: Power of the ELR tTest for the Behrens-Fisher Problem

(n1, n2)
ρ2 = 10

δ: 1 1.5 2 2.5 3 4

(20, 10)

10% 0.2056 0.2586 0.4852 0.7378 0.8340 0.8556
5% 0.1512 0.2084 0.4182 0.6630 0.7815 0.8088
2% 0.1046 0.1782 0.3714 0.6250 0.7482 0.7864
1% 0.0764 0.1572 0.3422 0.5928 0.7240 0.7712

(60, 30)

10% 0.1900 0.2572 0.7734 0.9894 0.9970 0.9945*
5% 0.1386 0.2060 0.7144 0.9762 0.9856 0.9872
2% 0.0798 0.1594 0.6150 0.8982 0.9277 0.9287
1% 0.0600 0.1270 0.5270 0.8072 0.8543 0.8793

(100, 50)

10% 0.1522 0.3674 0.9114 0.9995* 0.9997* 1.0000*
5% 0.0812 0.2214 0.8544 0.9987 0.9995 1.0000
2% 0.0516 0.1446 0.7945 0.9960 0.9973 1.0000
1% 0.0450 0.1296 0.7734 0.9922 0.9940 0.9968

(250, 125)

10% 0.2388 0.6006 0.9977*
5% 0.1276 0.4794 0.9931
2% 0.0544 0.3242 0.9851
1% 0.0300 0.2248 0.9747

Notes to table:
The number of replications is 5,000.
The sample sizes are the pair (n1, n2). ρ2 = σ2

2/σ2
1 . δ is the non-centrality parameter.

Results with a star (*) are the ones that the number of replications is less than 5,000
due to computing difficulties.
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Table 5: Size and Power Comparison of the Welch-Aspin and the ELR Tests for (n1, n2) = (7, 7), α = .05

δ0 0 1 2 3 4

C0 Vwa EL Vwa EL Vwa EL Vwa EL Vwa EL
0.1 0.0501 0.2846 0.2301 0.0522 0.5628 0.0494 0.8521 0.0594 0.9729 0.0660
0.2 0.0500 0.2306 0.2349 0.0554 0.5753 0.0582 0.8631 0.0604 0.9767 0.0874
0.3 0.0500 0.1864 0.2385 0.0640 0.5855 0.0764 0.8722 0.0886 0.9799 0.1164
0.4 0.0498 0.1608 0.2406 0.0608 0.5920 0.0794 0.8782 0.1008 0.9819 0.1486
0.5 0.0498 0.1510 0.2413 0.0762 0.5942 0.1048 0.8803 0.1380 0.9826 0.2000

Notes to table:
The number of replications is 5,000.

C0 = (
σ2
1

n1
)(

σ2
1

n1
+

σ2
2

n2
)−1, C0 = {.1, .2, .3, .4, .5} corresponds to ρ2 = {9, 4, 2.33, 1.5, 1}.

δ0 = (µ1 − µ2)(
σ2
1

n1
+

σ2
2

n2
)−1 = δ

√
7. δ0 = {1, 2, 3, 4}, which is equivalent to δ = {.378, .7559, 1.1339, 1.5119}.
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Table 6: Size and Power of the ELR Test for n1 = n2 = 7

ρ2 α δ = 0 δ = 0.3780 δ = 0.7559 δ = 1.1334 δ = 1.5119

1 10% 0.2014 0.1030 0.0992 0.1266 0.1612
5% 0.1510 0.0522 0.0494 0.0594 0.0660
2% 0.1072 0.0184 0.0194 0.0210 0.0218
1% 0.0850 0.0082 0.0098 0.0082 0.0070

1.5 10% 0.2062 0.1134 0.1232 0.1274 0.1770
5% 0.1608 0.0554 0.0582 0.0604 0.0874
2% 0.1182 0.0204 0.0224 0.0208 0.0332
1% 0.0966 0.0106 0.0112 0.0088 0.0102

2.33 10% 0.2338 0.1184 0.1398 0.1562 0.2058
5% 0.1864 0.0640 0.0764 0.0886 0.1164
2% 0.1400 0.0206 0.0282 0.0276 0.0374
1% 0.1110 0.0094 0.0158 0.0106 0.0150

4 10% 0.2838 0.1216 0.1500 0.1756 0.2672
5% 0.2306 0.0608 0.0794 0.1008 0.1486
2% 0.1686 0.0278 0.0370 0.0434 0.0566
1% 0.1366 0.0110 0.0168 0.0172 0.0244

9 10% 0.3384 0.1438 0.1974 0.2652 0.3754
5% 0.2846 0.0762 0.1048 0.1380 0.2000
2% 0.2140 0.0242 0.0386 0.0362 0.0508
1% 0.1760 0.0126 0.0174 0.0180 0.0240

Notes to table:
The number of replications is 5,000.
C0 = {.1, .2, .3, .4, .5} corresponds to ρ2 = {9, 4, 2.33, 1.5, 1}.
δ0 = δ

√
7. δ0 = {1, 2, 3, 4}, which is equivalent to δ = {.378, .7559, 1.1339, 1.5119}
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