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Abstract 
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regression model is derived in this paper. The sampling properties of the ELR test and four other 
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1 Introduction

The goal of this paper is to develop an empirical likelihood approach to the problem of testing

for normality in a regression model. The maximum empirical likelihood (EL) method is a

relatively new nonparametric technique (Owen, 1988, 2001; Qin and Lawless, 1994, 1995;

and Mittelhammer et al., 2000) for conducting estimation and hypothesis testing. It is a

distribution-free method that still incorporates the notion of the likelihood function. It has

several merits. First, it is able to avoid mis-specification problems that can be associated

with parametric methods. Second, using the empirical likelihood method enables us to fully

use the information available from the data in an asymptotically efficient way.

In this paper, as well as developing an empirical likelihood ratio (ELR) test for normality

in a linear regression model, we analyze its sampling properties by undertaking a detailed

power comparison of the ELR test and four other commonly used tests through Monte Carlo

experiments. The framework of this paper parallels that of Dong and Giles (2004) with

respect to the experimental design.

In the classical regression model:

y = Xβ + ε, (1)

we usually assume that the error term is normally distributed, ε ∼ N(0, σ2I), and is not

correlated with the regressors x. The regressor matrix X is non-stochastic and of full rank.

Under these assumptions, the OLS estimator is the best unbiased estimator. It is also the

maximum likelihood estimator. Thus, we can apply the usual t test and the F test, for linear

restrictions on the parameters and we can make other useful inferences. The importance of

testing for the normality of the error term is well understood.

As the error term of the regression model, ε, is unobservable, we usually use the OLS

residual vector ε̂ from the linear regression model to replace the random error term for testing

purposes. The main purpose of this paper is to construct a new test for the normality of the

error terms in an ordinary multiple linear regression model. This new test is an ELR test.

The literature on testing for normality in this context is vast. For example, see D’Agostino

(1971 and 1972), Bera and Jarque (1980 and 1981), White and MacDonald (1980), and Huang

and Bolch (1974). These papers contain details of alternative tests, further references to the
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literature, and Monte Carlo evidence regarding the relative performances of the tests. We

have chosen four of these existing tests to conduct a power comparison in this paper. These

tests are the Jarque-Bera (JB) test, D’Agostino’s D test, Pearson’s χ2 goodness of fit test,

and the χ2∗ test which is the adjusted χ2 test, as detailed below.

The outline of this paper is as follows. Section 2 sets up the model and derives the

ELR test. The differences between the BLUS residuals and the OLS residuals are discussed.

Section 3 provides the Monte Carlo simulations for the five tests. Random data sets for the

error terms under the null hypothesis and under the alternative distributions are generated

using the Gauss package (Aptec Systems, 2002). The empirical results are also presented

and discussed in this section. Section 4 provides a summary and some conclusions.

2 The model

The classical linear regression model has the form:

y = Xβ + ε, (2)

where y is a n×1 vector of observed values of the random dependent variable, X is a known

n × k regressor matrix of rank k, β is the k × 1 vector of unknown parameters, and the

error term ε is a vector of unobservable stochastic disturbances, assumed to be normally

distributed with mean zero and a scalar covariance matrix. That is, ε ∼ N(0, σ2I).

The independent variables in the linear regression model are assumed to be “fixed in

repeated samples”. In the Monte Carlo experiment described in section 3, we achieve this

by drawing observations for these variables independently from a uniform distribution and

holding the regressor matrix X constant for each replication of the experiment based upon

a given sample size.
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2.1 OLS and BLUS residuals

The residual vector from the regression model (OLS) is a linear transformation of the error

vector. It has the form:

ε̂ = Mε, (3)

and has a distribution ε̂ ∼ N(0, σ2M), where M = I −X(X ′X)−1X ′ is a n× n idempotent

symmetric matrix with a rank of n − k. The coefficient vector β does not appear in this

expression. Therefore, we have no need to consider the true or estimated values of the

coefficients in the context of testing for normality. The covariance matrix of the residual

vector is σ2M , which is not a diagonal matrix and is singular. Therefore, the elements of

the residual vector are not independently distributed.

Some researchers (e.g.,Huang and Bolch, 1974) prefer to use Theil’s (1965, 1968) Best

Linear Unbiased Scalar (BLUS) residuals to test for normality in the regression model. The

BLUS residual vector is a linear transformation of the OLS residual vector. The BLUS

residual vector, ε∗, is obtained from:

ε∗ = A′ε, (4)

where A is a n×(n−k) matrix and it is in the null space of X, i.e. X ′A = 0, and A′A = In−k.

We note that:

E(ε∗) = 0 and V ar(ε∗) = σ2In−k. (5)

The covariance matrix of the BLUS residual vector is diagonal and is of full rank. The

BLUS residual vector is distributed N(0, σ2In−k) when the error term is from a normal

distribution.

Huang and Bolch (1974) proved that theoretically both the BLUS and the OLS residuals

suffer from the common problem of lack of independence under the alternative hypothesis of

non-normal disturbances. The BLUS residuals are independent if and only if the error term

is independent and normally distributed. Comparing the OLS and the BLUS residuals from

the viewpoint of testing for normality, the OLS residuals are at least as good as the BLUS

residuals when the underlying distribution is not normally distributed. This is relevant with

regard to power considerations. Huang and Bolch (1974) report on Monte Carlo studies

where the least squares residual vector ε̂ led to a more powerful test than that obtained by

using the BLUS residual vector ε∗. Thus, we focus on the least squares residuals in this

study.

3



An additional problem in testing for normality in a regression model is that the prob-

ability distribution of the OLS residuals is always closer to the normal form than is the

probability distribution of the disturbance, if the disturbances are not normal. White and

McDonald (1980) show that the skewness (positive or negative) and the kurtosis of the OLS

residuals will never exceed the skewness and kurtosis of the disturbance term. The residuals

for small samples appear more normal than would the unobserved values of the error term,

ε. This is called super-normality. Any test for normality using the residuals is more likely to

fail in rejecting the null hypothesis when the null is false, than would be the case by using

the error term itself (if this were in fact possible) in the construction of the test.

2.2 ELR test

Consider the least squares residual vector ε̂ derived from the regression model y = Xβ + ε,

where the disturbance term ε has an unknown distribution with mean zero. Our interest

is in testing for normality of the error term using the least squares residuals. The null

hypothesis is that the error term is normally distributed, H0 : ε′is ∼ iidN(0, σ2), where

i = 1, 2, . . . , n. The corresponding residuals, ε̂i’s are used in the construction of the test.

For each ε̂i, we assign a probability parameter pi. The empirical likelihood function

is naturally formed as
∏n

i=1 pi. The pi’s are subject to the usual probability constraints:

0 < pi < 1 and
∑n

i=1 pi = 1. The EL method is to maximize the empirical likelihood

function by choosing the pi’s subject to certain unbiased moment conditions. These moment

conditions are naturally derived from the problem in hand. We choose to use the first

four unbiased moment equations to match the sample and population moments under the

null hypothesis. In order to detect all of the possible departures from normality due to

skewness and/or kurtosis, we have taken into account the third and the fourth moments of

the residuals. The first four empirical unbiased moment equations have the following form:

n∑
i=1

piε̂i = 0 (6)

n∑
i=1

piε̂
2
i − σ2 = 0 (7)

n∑
i=1

piε̂
3
i = 0 (8)
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n∑
i=1

piε̂
4
i − 3σ4 = 0. (9)

As in Dong and Giles (2004), we denote these moment equations as Ep(h(ε̂, θ)) = 0.

The Lagrangian function of the log empirical likelihood is formed as

max
{pi, λ, θ}

n−1
n∑

i=1

log pi − η(
n∑

i=1

pi − 1)− λ′Eph(ε̂i, θ), (10)

where θ = σ2, and λ is the vector of the Lagrangian multipliers. The optimal value for η

is unity. The pi ’s can be solved as functions of λ and θ: pi = n−1(1 + λ′Ep(h(ε̂i, θ)))−1.

Substituting this information into the Lagrangian function, we get an optimization problem

involving only the vector of the Lagrangian multipliers λ and the parameter σ2. The first

order condition with respect to the parameter σ2 is:

n∑
i=1

pi(λ2 + 6σ2λ4) = 0. (11)

With the four moment equations and the first order condition, we have a system of five

equations to be solved for the five unknowns. The EL estimators are λ̂ and σ̂2. Substituting

these back into the formula for the pi’s, we get the p̂i’s. The empirical likelihood ratio

function is R(pc
i) = L(pc

i)/L(pu
i ), where pc

i = p̂i is the constrained value and pu
i = 1/n is the

unconstrained value. The ELR test statistic has the following form:

−2 log R(σ2) = 2 log(1 + λ̂′Ep̂h(ε̂i, σ̂
2)). (12)

The limiting distribution of the test statistic is χ2
(d) where the degrees of freedom, d, equals

the number of the moment constraints less the number of parameters, which implies that

d = 3. With these theoretical results, we are ready to conduct the Monte Carlo simulations

for the ELR test. One point is worth noting: the ELR test has the advantage that it can

be applied to problems of testing for any type of distribution provided that we adjust the

moment equations accordingly. This distinguishes the ELR test from the widely used JB

test for normality, for example.
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3 Monte Carlo simulation

3.1 Experimental design

The linear regression model used here, y = Xβ + ε, is the one we presented in Section 2

with four regressors, i.e., k = 4. The regressor matrix X is constructed by first obtaining

three 2, 000 × 1 vectors of uniformly distributed random variables. Then we transform the

vectors to have zero mean and theoretical unit variance. By adding a vector of ones, the

basic 2, 000 × 4 regressor matrix is formed. For those sample sizes where n is smaller than

2, 000, the regressor matrices are simply obtained by taking the first n rows of the basic

regressor X matrix. In the Monte Carlo simulations, for each sample size, the regressor

matrix is kept fixed. 10, 000 replications are made for the null and for each of the alternative

distributions to provide the sampling properties of the tests, given the various sample sizes

from 30 to 2, 000.

The vector of the random disturbance ε is drawn from the null distribution N(0, σ2I)

with the true value σ2 = 1. In computing the power of a test, the error vectors of the random

disturbances are drawn from the following four alternative distributions : Lognormal, χ2
(2),

Students t(5), and Double Exponential. In each case, the residual vector ε̂ is standardized

to have zero mean and unit variance. This particular transformation does not result in any

loss of generality. All of the tests that we have considered are invariant with respect to the

mean and the variance of the error term ε.

For each replication, five normality tests are applied to the OLS residuals. These five

tests are: the ELR test, the Jarque-Bera (1980) (JB) test, D’Agostino’s (1971) D test,

Pearson’s (1900) χ2 goodness of fit (χ2) test, and χ2∗ test which is the χ2 goodness of fit test

after adjusting for the expected frequencies in each category to be no less than five. The

ELR test and the two χ2 goodness of fit tests are appropriate and readily applicable to the

OLS residuals directly. The asymptotic distributions of these test statistics are chi-squared.

As for the D test, there is theoretical evidence that it is applicable to the residuals as well.

White and McDonald (1980) showed that the D test, and the skewness coefficient,
√

α3, and

the kurtosis coefficient, α4, can be applied to the residuals in testing for normality of the

disturbances in regressions. The JB test was proposed specifically for the problem of testing

for normality in a regression model.
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There are two issues that we should keep in mind. One is that the distribution of the

OLS residuals is always closer to normal than is the non-normal random error term itself.

Thus, we would expect that any test for normality using regression residuals is more likely

to fail in rejecting the null hypothesis when the null is false than would be the case if the test

were able to be constructed using the true random error term itself. Second, the distribution

of the OLS residual vector ε̂ depends on the distribution of the error term ε, the number of

regressors k and the elements of the regressor matrix X, and the sample size n. Thus, the

performance of any test for normality depends on these factors as well.

In the Monte Carlo experiments that are conducted here, we have simulated the size-

adjusted critical values for the tests that we consider. These critical values are specific to the

regressor matrices we have chosen; they are not applicable to other situations with a different

regressor matrix X. For those researchers who may be interested in using the ELR test for

normality in the context of regression, we will be providing, on the internet, a small library

that contains two procedures. One procedure will intake a general regressor matrix X and

will calculate the size and the correct size-adjusted critical values. The second procedure

will intake the X matrix and the associated size-adjusted critical values and will calculate

the actual powers of the ELR test.

3.2 Results

Tables 1 to 5 present the results of the Monte Carlo experiments. Table 1 presents the size

and the size-adjusted critical values for the ELR test, the JB test, and the two χ2 tests. The

size of a test is computed here as the empirical rejection rate when the null hypothesis is

true, given the nominal significance level. The size distortion is the difference between the

empirical size of the test and the nominal significance level. We choose to illustrate the size

at four nominal significance levels, 10%, 5%, 2%, 1%, in order to provide a broad picture of

the sampling properties of the tests. The null hypothesis is N(0, σ2) where the true value

of σ2 = 1. The size and the size-adjusted critical values for the D test are not provided in

this table because the percentile points of the D test are taken from D’Agostino (1971 and

1972). For each experimental replication the same data set is used for the construction of

all five tests to make the comparisons valid.

The size of the ELR test is larger than the nominal significance level, but it converges
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nicely to the nominal level as the sample size grows. For example, the size of the test

changes from 28.11% to 6.02% when the sample size varies from 30 to 2000, at the nominal

significance level of 5%.

From Tables 1 to 5 we see that the size of the JB test is lower than the nominal signif-

icance level; it converges to the nominal level as the sample size grows. For instance, the

size of the test increases from 2.78% to 4.88% when the sample size varies from 30 to 2000

at the nominal level of 5%. Comparing the actual sizes of the ELR test and the JB test, it

is clearly that the ELR test is always over-rejecting while the JB test is under-rejecting. In

the context of testing for normality in regression residuals, given the fact that the residuals

are closer to the normal than the error term itself, the situation seems to lend a certain

advantage to the ELR test. Suppose there is an alternative distribution for the error term

that is very close to normal, then the ELR test would have a higher possibility of rejecting

the null hypothesis than would the JB test.

The size of the basic χ2 test is closer to the nominal significance level than is the case for

the ELR test for small samples. For example, the size is 5.09% at n = 30, and with a nominal

significance level of 5%. However, it settles down to 9.1% when the sample size grows to

2000. The size distortion of the test does not vanish when n grows. This is avoidable if we

adjust the χ2 test to take into account the consideration that the expected frequencies in

each category should be no less than five. The actual size of the χ2∗ test is very close to

the nominal significance level at all sample sizes. The size distortion vanishes when n grows.

Comparing the four tests, the size of the χ2∗ test is the best in the sense it is the closest to

the nominal significance level. It exhibits the least size distortion, overall.

The power comparisons of the five selected tests are presented in Tables 2 to 5. The

simulated size-adjusted critical values are used in computing the power of each test. That

is, each test is now applied at the same actual significance level by using the critical values

that are appropriate for the particular value of n.

The power of the ELR test increases as the sample size grows, given any alternative

distribution. For example, the power increases from 69.39% to 100% when n grows from 30

to 100, given that the alternative distribution is the Lognormal, and at a true significance

level of 5%. All of other tests are also consistent while the power of the χ2 test converges

more slowly than others. The powers of the first three tests, the ELR test, the JB test, and

the D test, are close to each other for moderate samples. For instance, the powers of these
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tests are 97.91%, 99.14%, 93.37% at n = 50 and with a significance level of 5%. For the small

sample size n = 30, the JB test is the most powerful test, and the ELR test is the second

most powerful. The χ2 tests are not applicable for some of the smaller sample sizes that are

considered. Overall, all of the five tests have good power against the lognormal alternative

distribution.

When the alternative distribution is χ2
(2), the power of the ELR test is 55.29% at n = 30

and reaches 100% at n = 100 and at the nominal level of 5%. The power of the JB test is

slightly better than that of the ELR test. The power of the tests in descending order is: the

JB test, the ELR test, the D, the χ2 and the χ2∗ tests for all sample sizes.

Both the Lognormal and the χ2
(2) are asymmetric alternative distributions. It is, relative

to symmetric alternatives, easier for any of these tests to detect such a departure from the

normality. All of these tests have high power for medium and large samples.

The Student t(5) and the Double Exponential (DE) alternative distributions are both

symmetric with fatter tails than the normal distribution. It is difficult for any commonly

used tests to detect for the departure from normality in such cases. All of the tests have

lower power for small sample size n = 30 over these two alternatives than was the case with

asymmetric alternative distributions. The power of the ELR test is only 5.68% for the St(5)

and is 6.8% for the DE at n = 30. For the alternative St(5), the power of the D test overrides

the JB test when n > 150. For the alternative distribution DE, the D test is the most

powerful test among the five tests when n > 30. The power of the ELR test reaches 100%

at n = 1000.

4 Summary and conclusions

A new empirical likelihood ratio test for normality in a regression model is derived in this

paper. Monte Carlo experiments are employed to simulate the sampling properties of the

ELR test and other four commonly used tests in the context of regression. These properties

include the actual sizes and the size-adjusted critical values which are then used to conduct

power comparisons for all of the tests. The experiment results indicate that the actual size

of the ELR test is still large relative to the nominal significance level. However, using the

actual significance level, the ELR test has good power properties relative to other tests, and

9



is recommended for use in regression context. For future research, it would be worthwhile

to explore the techniques that can reduce the size distortion and maintain the good power

properties for the ELR test.
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Table 1: Size and Size-adjusted Critical Values for the Tests in the OLS Residuals

m 10,000 H0 : N(0, σ2) where σ2 = 1
n 30 50 70 100 150 200 250 500 1,000 2,000

ELR test at nominal levels:
10% 0.2638 0.2276 0.2063 0.1771 0.1615 0.1408 0.1344 0.1076 0.0776 0.0648
5% 0.1878 0.1584 0.1423 0.1241 0.1042 0.0924 0.0838 0.0640 0.0431 0.0345
2% 0.1185 0.0974 0.0885 0.0771 0.0633 0.0550 0.0492 0.0358 0.0202 0.0155
1% 0.0801 0.0674 0.0626 0.0520 0.0419 0.0368 0.0325 0.0238 0.0114 0.0089

Size-adjusted Critical Values:
10% 10.43 9.70 9.25 8.68 7.98 7.49 7.27 6.47 5.61 5.19
5% 12.95 12.59 12.21 11.45 10.65 10.17 9.74 8.61 7.47 6.83
2% 16.64 16.27 16.11 15.47 14.42 13.87 13.28 11.80 9.85 9.20
1% 19.29 18.81 18.58 18.05 17.32 16.60 16.07 14.36 11.77 10.95

JB test:
10% 0.0446 0.0552 0.0613 0.0671 0.0737 0.0748 0.0805 0.0881 0.0927 0.0963
5% 0.0284 0.0361 0.0382 0.0423 0.0438 0.0415 0.0463 0.0477 0.0515 0.0506
2% 0.0181 0.0240 0.0228 0.0252 0.0256 0.0240 0.0248 0.0223 0.0246 0.0231
1% 0.0126 0.0187 0.0161 0.0173 0.0179 0.0172 0.0174 0.0127 0.0146 0.0136

Size-adjusted Critical Values:
10% 2.72 3.12 3.46 3.65 3.89 4.06 4.12 4.32 4.43 4.53
5% 4.29 4.94 5.14 5.42 5.62 5.52 5.78 5.91 6.05 6.02
2% 7.28 8.81 8.23 8.83 8.81 8.49 8.58 8.00 8.29 8.17
1% 10.32 12.73 11.20 12.04 11.54 12.33 11.76 10.13 10.31 9.99

χ2 goodness of fit test:
10% 0.0593 0.0662 0.0743 0.0880 0.1006 0.1063 0.1134 0.1193 0.1214 0.1270
5% 0.0262 0.0351 0.0404 0.0528 0.0628 0.0675 0.0720 0.0758 0.0798 0.0782
2% 0.0110 0.0170 0.0220 0.0296 0.0379 0.0441 0.0463 0.0485 0.0490 0.0482
1% 0.0052 0.0110 0.0147 0.0216 0.0284 0.0329 0.0350 0.0356 0.0341 0.0363

Size-adjusted Critical Values:
10% 6.50 10.51 14.43 20.59 30.52 38.78 46.92 57.19 58.86 60.14
5% 8.11 12.73 16.99 23.96 34.98 44.23 52.68 63.90 65.47 66.54
2% 9.98 15.75 20.89 29.16 42.34 53.12 62.82 73.67 76.18 80.09
1% 11.79 18.46 24.99 36.86 51.78 67.35 79.34 85.79 90.22 97.87

χ2∗ goodness of fit test:
10% – 0.0812 0.0800 0.0818 0.0820 0.0835 0.0859 0.0826 0.0799 0.0830
5% – 0.0393 0.0400 0.0414 0.0415 0.0407 0.0406 0.0413 0.0395 0.0398
2% – 0.0157 0.0151 0.0154 0.0161 0.0162 0.0168 0.0155 0.0177 0.0155
1% – 0.0073 0.0079 0.0076 0.0082 0.0089 0.0095 0.0085 0.0087 0.0086

Size-adjusted Critical Values:
10% – 9.14 11.13 14.37 19.72 24.58 29.41 39.72 44.07 47.48
5% – 11.08 13.37 16.87 22.41 27.58 32.42 43.42 47.92 51.34
2% – 13.42 16.13 19.98 25.79 31.33 36.58 47.53 52.93 56.06
1% – 15.34 18.19 21.68 28.48 33.75 39.74 50.94 56.17 59.50

Note: m is the number of replications; n is the sample size. The ELR test uses the first four raw moment equations with one
parameter. The χ2 and χ2∗ tests may not be applicable with small samples.
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Table 2: Power of The Five Tests in the OLS Residuals

m 10,000 Ha : Lognormal
n 30 50 70 100 150 200 250

ELR test at actual levels:
10% 0.8637 0.9968 1 1 1 1 1
5% 0.7785 0.9874 0.9996 1 1 1 1
2% 0.6297 0.9647 0.9984 1 1 1 1
1% 0.5174 0.9355 0.9961 1 1 1 1

JB test:
10% 0.9339 0.9978 1 1 1 1 1
5% 0.8715 0.9895 0.9999 1 1 1 1
2% 0.7670 0.9627 0.9981 1 1 1 1
1% 0.6837 0.9255 0.9956 0.9997 1 1 1

D test:
10% 0.8262 0.9735 0.9970 0.9997 1 1 1
5% 0.7648 0.9585 0.9957 0.9994 1 1 1
2% 0.6898 0.9327 0.9915 0.9988 1 1 1
1% 0.6272 0.9095 0.9869 0.9986 1 1 1

χ2 goodness of fit test:
10% – – – 0.9819 0.9984 0.9991 0.9992
5% – – – 0.9696 0.997 0.9988 0.9991
2% – – – 0.9486 0.9932 0.9982 0.9989
1% – – – 0.9166 0.9879 0.9969 0.9984

χ2∗ goodness of fit test:
10% – – – – – 0.9999 1
5% – – – – – 0.9998 1
2% – – – – – 0.9992 1
1% – – – – – 0.9985 1

Note: m is the number of replications; n is the sample size. The ELR test uses the first four raw moment
equations with one parameter. The χ2 and χ2∗ tests may not be applicable with small samples.
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Table 3: Power of The Five Tests in the OLS Residuals

m 10,000 Ha : χ2
(2)

n 30 50 70 100 150 200 250 500 1,000 2,000

ELR test at actual levels:
10% 0.7548 0.9803 0.9988 0.9999 1 1 1
5% 0.6362 0.953 0.9963 0.9999 1 1 1
2% 0.4774 0.8938 0.9881 0.9997 1 1 1
1% 0.3674 0.8362 0.9782 0.9993 1 1 1

JB test:
10% 0.8217 0.9841 0.9991 0.9999 1 1 1
5% 0.6855 0.9328 0.9929 0.9998 1 1 1
2% 0.5103 0.8101 0.9616 0.9976 1 1 1
1% 0.4025 0.6974 0.9165 0.9901 1 1 1

D test:
10% 0.5986 0.8434 0.9403 0.9891 0.9996 0.9999 1
5% 0.5000 0.7854 0.9116 0.9801 0.9988 0.9999 1
2% 0.3911 0.7025 0.8653 0.9656 0.9973 0.9998 1
1% 0.3172 0.6352 0.8250 0.9498 0.9949 0.9997 1

χ2 goodness of fit test:
10% – 0.6409 0.8204 0.9546 0.9977 0.9997 1
5% – 0.5411 0.743 0.9256 0.9945 0.9993 1
2% – 0.4307 0.6343 0.865 0.9863 0.9983 0.9999
1% – 0.3519 0.5283 0.7523 0.9595 0.9935 0.9993

χ2∗ goodness of fit test:
10% – – – 0.9237 0.9960 0.9996 1
5% – – – 0.8729 0.9919 0.999 1
2% – – – 0.7976 0.9828 0.998 1
1% – – – 0.7481 0.9710 0.9967 0.9995

Note: m is the number of replications; n is the sample size. The ELR test uses the first four raw moment
equations with one parameter. The χ2 and χ2∗ tests may not be applicable with small samples.
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Table 4: Power of the Five Tests in the OLS Residuals

m 10,000 Ha : Student t(5)
n 30 50 70 100 150 200 250 500 1,000

ELR test at actual levels:
10% 0.1008 0.1290 0.1987 0.3414 0.5541 0.7255 0.8291 0.9886 1
5% 0.0568 0.0681 0.1063 0.2174 0.4175 0.5931 0.7330 0.9777 1
2% 0.0239 0.0262 0.0433 0.1054 0.2505 0.4216 0.5837 0.9497 1
1% 0.0130 0.0153 0.0248 0.0651 0.1636 0.3159 0.4693 0.9161 0.9998

JB test:
10% 0.3152 0.4632 0.5732 0.6962 0.8226 0.8975 0.9365 0.9963 1
5% 0.2332 0.3687 0.4933 0.6162 0.7654 0.8644 0.9121 0.9939 1
2% 0.1567 0.2693 0.3988 0.5120 0.6805 0.7975 0.8697 0.9896 1
1% 0.1171 0.2121 0.3375 0.4494 0.6221 0.7268 0.8224 0.9838 1

D test:
10% 0.2533 0.4036 0.5453 0.6771 0.8226 0.9090 0.9479 0.9987 1
5% 0.1700 0.3168 0.4526 0.5902 0.7625 0.8671 0.9192 0.9964 1
2% 0.1080 0.2337 0.3546 0.4941 0.6764 0.8045 0.8798 0.9932 1
1% 0.0791 0.1821 0.2892 0.4302 0.6149 0.7556 0.8448 0.9882 1

χ2 goodness of fit test:
10% – 0.2982 0.3660 0.4393 0.5349 0.6233 0.6810 0.9153 0.9979
5% – 0.2184 0.2841 0.3620 0.4610 0.5504 0.6201 0.8767 0.9956
2% – 0.1566 0.2146 0.2928 0.3911 0.4809 0.5522 0.8279 0.9884
1% – 0.1271 0.1776 0.2414 0.3439 0.4216 0.4873 0.7765 0.9729

χ2∗ goodness of fit test:
10% – – – 0.2221 0.2335 0.2404 0.2404 0.3603 0.8587
5% – – – 0.1323 0.1476 0.1534 0.1561 0.2500 0.7758
2% – – – 0.0675 0.0782 0.0822 0.0805 0.1540 0.6439
1% – – – 0.0439 0.0463 0.0545 0.0472 0.0998 0.5473

Note: m is the number of replications; n is the sample size. The ELR test uses the first four raw moment
equations with one parameter. The χ2 and χ2∗ tests may not be applicable with small samples.
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Table 5: Power of the Five Tests in the OLS Residuals

m 10,000 Ha : Double Exponential
n 30 50 70 100 150 200 250 500 1,000

ELR test at actual levels:
10% 0.1057 0.1695 0.3066 0.5374 0.8045 0.9299 0.9751 1 1
5% 0.0618 0.0893 0.1752 0.3750 0.6824 0.8606 0.9458 1 1
2% 0.0296 0.0397 0.0738 0.1978 0.4949 0.7389 0.8792 0.9995 1
1% 0.0170 0.0228 0.0442 0.1277 0.3648 0.6264 0.8084 0.9977 1

JB test:
10% 0.3919 0.5738 0.7044 0.8340 0.9380 0.9763 0.9916 1 1
5% 0.2925 0.4692 0.6161 0.7645 0.9003 0.9604 0.9828 1 1
2% 0.1951 0.3383 0.5073 0.6523 0.8244 0.9248 0.9676 0.9999 1
1% 0.1419 0.2640 0.4300 0.5682 0.7680 0.8712 0.9413 0.9999 1

D test:
10% 0.3453 0.5813 0.7514 0.8914 0.9713 0.9936 0.9988 1 1
5% 0.2409 0.4714 0.6611 0.8332 0.9489 0.9871 0.9963 1 1
2% 0.1530 0.3471 0.5396 0.7415 0.9115 0.9721 0.9902 1 1
1% 0.1083 0.2708 0.4577 0.6726 0.8725 0.9559 0.9844 1 1

χ2 goodness of fit test:
10% – 0.4301 0.5381 0.6545 0.7771 0.8667 0.9152 0.9980 1
5% – 0.3221 0.4310 0.5472 0.6848 0.7870 0.8588 0.9956 1
2% – 0.2238 0.3187 0.4230 0.5489 0.6611 0.7510 0.9855 1
1% – 0.1727 0.2483 0.3215 0.4381 0.5237 0.6165 0.9567 1

χ2 goodness of fit test:
10% – 0.2733 0.3389 0.4272 0.5649 0.6623 0.7296 0.9744 1
5% – 0.1827 0.2258 0.3013 0.4365 0.5387 0.6238 0.9489 1
2% – 0.1101 0.1319 0.1809 0.3029 0.3947 0.4840 0.9036 1
1% – 0.0707 0.0873 0.1351 0.2198 0.3124 0.3716 0.8508 1

Note: m is the number of replications; n is the sample size. The ELR test uses the first four raw moment
equations with one parameter. The χ2 and χ2∗ tests may not be applicable with small samples.
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