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This paper examines the very long-run relationship between income and emissions of enteric 

methane in New Zealand, over the period 1895 to 1996. Controlling the emissions of this 

particular greenhouse gas is of crucial importance if that country is to meet its obligations as a 

signatory to the Kyoto Protocol. We use standard parametric regression, nonparametric 

regression, and a new nonlinear regression estimator based on fuzzy clustering analysis, to 

estimate ‘environmental Kuznets’ curves’ for CH4 in New Zealand. Our results appear to be the 

first to support the existence of some form of ‘inverted-U’ curve for this pollutant, and the 

‘double-hump’ relationship that emerges from our fuzzy modeling is consistent with certain 

theoretical results. Methane pollution is maximized at a level of real per capita  GDP that is 

consistent with those reported for other pollutants in the literature. 
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1. Introduction 
 

Globally, methane (CH4) is an important greenhouse gas (GHG), estimated by the International 

Panel on Climate Control (IPCC) to account for 20% of the global radiative forcing due to 

increases in atmospheric concentrations of GHG’s since 1750. In current terms, it is the second 

most important GHG, after carbon dioxide. New Zealand is a ‘small player’ in the international 

pollution arena, producing less than 0.5% of the world’s CH4, but it has a unique GHG emissions 

profile among developed countries.1 Specifically, over 50% of New Zealand’s recent 

anthropogenic emissions are attributable to CH4, in terms of CO2-equivalent units. Moreover, in 

this country of 45.7 million sheep, 4.4 million dairy cattle, and 4.6 million beef cattle (and 3.7 

million people, 1999 figures) enteric CH4 accounts for 88% of all methane emissions, and 99% of 

CH4 emissions from just the agricultural sector.2 New Zealand’s economic history has been 

dominated by sheep since the establishment of the first sheep station in that country in 1844. 

While only recently of public concern, emissions of CH4 have existed, and have inhibited wool 

and meat production since then, and they warrant a long-term analysis. 

 

New Zealand is a signatory to the United Nations Framework Convention on Climate Change 

(FCCC), and to the Kyoto Protocol. Accordingly, it has a commitment to prepare accurate 

inventories of its sources and sinks for all GHG’s, and during the period 2008-2012 New Zealand 

is also committed to limiting its levels of GHG’s to their 1990 level.3 Not surprisingly, therefore, 

the role of enteric CH4 is crucial to these calculations and to the associated environmental policy 

debate in that country. Enteric methane production is the output of CH4 from ruminants – sheep, 

dairy cows, beef cattle and farmed deer and goats in the case of New Zealand.  It is essentially a 

by-product of the rumen fermentation process, and the methane is released into the atmosphere 

primarily when these animals engage in eructation (i.e., they belch excessively)! 

 

Recent agricultural research in New Zealand has focused on obtaining direct, ‘on the farm’ 

measurements of this interesting activity, and also on the role and relative importance of pasture 

type, climatic and seasonal factors. Consequently, several mitigation options have been isolated, 

these focusing on the manipulation of enteric bacteria by various means. The objective is not only 

to reduce total CH4 emissions, but also to improve animal productivity – enteric methane 

production requires energy that can otherwise be used by the animal to produce meat, wool or 

milk.4 
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The following developments are among those that are pertinent to the GHG problem in New 

Zealand. CO2 emissions have grown by about 20% since 1990, primarily in association with 

growth in the electricity generation and transportation sectors. By way of partial compensation, 

although the annual planting rate of forest sinks decreased during the 1990’s, it has now returned 

to about its 1990 rate. Sheep numbers declined steadily from a peak of 70.3 million in 1982 to 

approximately 57.9 million in 1990, and by 21% between 1990 and 1999. In contrast, however,  

dairy and beef cattle numbers have increased by 25%, and 1% respectively since 1990, and the 

number of farmed deer has risen by 72%. These significant changes in the both the numbers and 

the ‘mix’ of ruminants, coupled with their vastly different CH4 emission rates, complicate the task 

that New Zealand scientists and policy-makers face in order to meet their Kyoto Protocol 

obligations.5 

 

Our objective is to explore the very long-run relationship between income and enteric CH4 

emissions in New Zealand. Specifically, we ask, ‘Is there an environmental Kuznets’ curve’ for 

this particular GHG in New Zealand?’ Given the mixed international empirical evidence 

associated with environmental Kuznets’ curves, and the special role of methane in New Zealand, 

there is a strong case for analyzing this individual GHG, rather than considering a more general 

index of pollutants. It is estimated that the agricultural sector contributes approximately 17% of 

New Zealand’s GDP.6 In 1999 44.1% of that country’s export revenues were ‘pastoral based’ and 

hence dependent on ruminants.7 ‘Solving’ the GHG problem, and meeting the Kyoto Protocol 

targets simply by dramatically reducing the numbers of these animals is not a viable option from 

an economic perspective for reasons that we discuss in detail below. A better understanding of the 

trade-off between methane emissions and economic output is certainly helpful to the current 

environmental policy debate in New Zealand, and elsewhere. In the next section we summarize 

some of the relevant literature relating to research on environmental Kuznets’ curves. Section 3 

deals with data construction issues associated with our use of time-series spanning just over a 

century; and in section 4 we outline the modelling techniques that we use. The main empirical 

results, which include strong new evidence of an environmental Kuznets’ curve for enteric 

methane, are presented in section 5; and section 6 discusses the role of trade and some policy 

implications. The paper concludes with a section that summarizes our principal findings.  
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2. Environmental Kuznets’ Curves 

 

Kuznets (1955) proposed that there is an ‘inverted-U’ relationship between income inequality and 

a country’s level of output. The basis for this was that if income inequality between high 

productivity and low productivity sectors in the economy is higher than inequality within each 

sector, then income inequality should rise, at first, as people moved between sectors. Then it 

should fall as this flow of labour ended, or when returns to the factors of production were 

balanced across the sectors. He supported this hypothesis with the analysis of time-series data for 

the United Kingdom, the U.S.A. and Germany. Numerous studies have since explored Kuznets’ 

proposal, with rather mixed results. In particular, the empirical results that have been obtained 

have depended to some degree on the overall level of development of the countries in question, 

the type of data (namely, time-series or cross-country) that have been used, and the extent to 

which other factors have been taken into account. With the availability of larger and richer data-

sets, the more recent literature has generally discounted Kuznets’ hypothesis (e.g., Deininger and 

Squire, 1998).8 It should also be emphasized that even when a statistically robust Kuznets’ 

relationship can be established, it does not imply anything about causality from inequality to 

income, or vice versa. It simply suggests that rising income is associated with a worsening, and 

then an  improvement, in income inequality. 

 

There is now a well-established literature, dating back at least to the World Bank (1992) and 

Grossman and Krueger (1991, 1995), that explores the possibility of a so-called ‘environmental 

Kuznets curve’ (EKC) – that is, an ‘inverted-U’ shaped relationship between environmental 

pressure and per capita  income.9 There is a certain amount of theoretical support in favour of the 

existence of an EKC – that is, a worsening and then an improvement in pollution as income rises. 

For example, Andreoni and Levinson (1998) present a static model that shows that an EKC can 

be derived from the technological link between consumption of a desired good and the abatement 

of its undesirable by-product. Pfaff et al. (2001) provide a theoretical framework at the household 

level, and by focusing on the linkage between income and household choices that impact upon the 

environment, they show how household-level EKC’s can arise. Other theoretical contributions 

include those of Selden and Song (1995) and Stokey (1998). For example, the former authors 

note that among the factors that lead to an initial increase, and subsequent downturn in pollution 

as income grows are: (i) positive income elasticities for environmental quality; (ii) changes in the 

composition of production and consumption; (iii) increasing levels of education and awareness; 

(iv) more open political systems.10 On the other hand, Bousquet & Favard (2000) develop a 
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public good model of the provision of environmental quality with ‘bell-shaped’ income 

inequality, and they show that their model generates an ‘environmental camel curve’ – a curve 

with ‘two humps’. 

 

Interestingly, this last theoretical result is consistent with the recent empirical results of Taskin 

and Zaim (2000).  Using nonparametric production frontier methods and aggregate data for 52 

countries over 16 years, they estimate an EKC for CO2 emissions with a peak, followed by a 

trough, as real per capita  GDP increases. Their results are also quite compatible with those of 

Dijkgraaf and Vollebergh (2001). They use a panel of data for OECD countries between 1960 and 

1997, and for certain countries the CO2 data follow the pattern established by Taskin and Zaim, a 

point to which we will return below. As a result of their econometric analysis they conclude that 

it is unlikely that the overall income-emission relationship is of the ‘inverted-U’ type. The 

(relatively) early results of Selden and Song (1994) uncovered EKC’s for SO2, CO, oxides of 

nitrogen (NOx) and suspended particulate matter (SPM). Other early contributions include those 

of Shafik (1994), Shafik and Bandyopadhyay (1992) and Holtz-Eakin and Selden (1995), and 

Hilton and Levinson (1998) provide a tabular summary of the various results that favour the 

EKC. 

 

The EKC hypothesis has been widely criticized both on conceptual grounds and empirically (e.g., 

Ekins, 1997, and Stern et al., 1997). Although there appears to be some evidence of EKC’s for 

certain pollutants with short term effects and low abatement costs (e.g., SO2), the same is not true 

in general for pollutants with more global and longer-term effects, and higher abatement costs 

(e.g., CO2). In many studies where an EKC is apparently uncovered the levels of real per capita  

income, above which pollution begins to decline, are exceedingly high relative to actual current 

levels. In addition, the clarity of many EKC results diminishes once covariates other than real per 

capita income are taken into consideration. A further issue that has, to the best of our knowledge, 

been taken into account in the empirical EKC literature only by Egli (2001), is the fact that many 

of the studies have been based on time-series data that are undoubtedly non-stationary. As noted 

above, the research reported by Jacobsen and Giles (1998) clearly indicates the importance of 

taking account of unit roots and cointegration in the data when estimating Kuznets’ curves. 

 

Indeed, the more recent empirical evidence is not especially favourable towards ‘literal’ EKC 

relationships. Harbargh et al. (2000) re-examine the earlier World Bank and Grossman-Krueger 

data and find that the evidence that the latter authors presented in favour of EKC’s for SO2, 
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smoke and total suspended particulates are actually very sensitive to the sample period and to 

controlling for other factors. On balance, they reject the simple EKC for these emissions. Among 

the more positive recent results are those of Hilton and Levinson (1998), who examine emissions 

of lead as a result of gasoline consumption in 48 countries over a 20-year period. They consider 

various functional forms and find an EKC with a statistically significant peak at a real (1990) per 

capita income of around US$11,000, when only post-1983 data are used. The many other recent 

contributions to this literature include three that are of particular interest to us here - those of 

Roca et al. (2001) and Egli (2001), and Utt et al. (2001). The first two of these studies appear to 

be the only ones to date that attempt to estimate an EKC explicitly for methane. Roca et al. 

consider Spanish data for the emissions of six atmospheric pollutants – CO2 (for the period 1972 

to 1996) and SO2, N2O, CH4, NOx and non-methanic volatile organic  compounds (NMVOC) for 

the period 1980 to 1996. With the exception of SO2 they fail to find satisfactory econometric 

relationships to support EKC’s for any of these pollutants. Using German time-series data for the 

period 1966 to 1998, Egli considers emissions of eight pollutants – NOx, NH3, SO2, CH4, CO, 

CO2, NMVOC and SPM. He uncovers standard EKC relationships for the first two of these. 

When the non-stationarity of the data are taken into account and a modified error-correction 

model is estimated, there is mild evidence to support a long-run EKC for methane emissions. Utt 

et al. estimate an EKC for total per capita  equivalent-CO2 for the U.S.A., using data for 1922 to 

1996. Not only is the length of their sample much greater than is usual in such studies, and more 

in keeping with our own, but their calculation of equivalent-CO2 includes an allowance CH4 and 

other GHG’s.11 They use a quartic polynomial to estimate an EKC that has local maxima at 

US$8,000 and US$28,000, and a local minimum at about US$20,000.12 

 

3. Data Issues 

 

One of the distinguishing features of this study is its use of a very long-term set of data.13 

Moreover, we are fortunate to have access to data of very high quality. The data for enteric 

methane emissions have been constructed by multiplying animal numbers, as reported by the 

New Zealand Ministry of Agriculture and Forestry (2003), by the methane emission rates used by 

Clarke (1999) in the preparation of that country’s national GHG inventory.14 These rates are 

given in Table 1 for each type of ruminant farmed in New Zealand, with low (L) and high (H) 

estimates given for 1990 and 1999.15 The four emission rate estimates give rise to four series for 

total enteric CH4, which we denote CH490L, CH490H, CH499L and CH499H in Figure 1, for the 

period 1895 to 1996.16 This allows us to check the sensitivity of our results to assumptions about 
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methane emission rates per animal. The estimates of total enteric methane were then divided by 

1,000 and by official population estimates to yield data expressed in tonnes per capita  for the 

purposes of our regression analysis. 

 

Our real per capita  GDP index (base = 100 in 1990) is plotted in Figure 2 over the same time 

period. This index was constructed by splicing the series for the period 1866 to 1933 recently 

developed by Greasley and Oxley (2000), with Maddison’s (1995) data for New Zealand for the 

period 1933 to 1994). The index was then extended to 1996 by using real GDP data from 

Statistics New Zealand (1998) and the associated population figures. The plots in Figures 1 and 2 

strongly suggest that our data may be non-stationary, and we deal with this issue in detail in 

section 5 below. 

 

  

Table 1 

Estimated Enteric CH4 Emission Rates 

For New Zealand Farmed Ruminants  

(Kg./Animal per year) 
 

 

  1999    1990   

High*  Low**  High*  Low**  

  

Sheep   17.1  15.39  15.1  13.59  

Dairy Cows  79.0  75.05  76.8  72.96  

Beef Cattle   70.8  67.26  67.5  64.125  

Deer   22.6  21.47  22.6  21.47  

Goats   10.5  9.975  10.5  9.975  

 

*See Clark (2001), Table 1. These are based on an updated version of Baldwin’s estimation algorithm 

(Donovan and Baldwin, 1999).  

** See Clark (2001). These are derived using the reduction factors claimed to be needed as a result of over-

statements arising from Baldwin’s estimation algorithm.      

  



 8 

 

Figure 1 
Enteric Methane Emissions (1895 - 1996)
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Real Per Capita GDP Index (1990=100)

0

20

40

60

80

100

120

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year

G
D

P
 In

de
x

 

 



 9 

4. Modelling and Estimation Strategies 

 

Typically, attempts to establish the existence of an EKC have been based on regression models in 

which the level of the pollutant in question is ‘explained’ in terms of real income, or some simple 

polynomial of the latter. These models sometimes include additional regressors to control for 

other relevant factors, and some of them allow for dynamic effects through the inclusion of a 

lagged value of the dependent variable. EKC’s have been estimated from cross-country data, 

time-series data, or ‘pooled’ data Regrettably, many of the studies that use the latter two types of 

data do not allow for the possibility that these data are non-stationary, and this brings the 

relevance of their results into question in view of the fact that some are undoubtedly based on 

‘spurious regressions’.17 Among the few EKC studies that attempt to take at least some account of 

unit roots in the data are those of  Stern and Common (2001), Egli (2001), Roca et al. (2001), but 

none of these test for multivariate cointegration. 

 

Almost without exception, the models in these studies are parametric, and the use of an explicit 

functional form places crucial constraints on the results that can be obtained. As an obvious 

example of this, if the regressors include GDP and its squared value (but no higher powers of 

GDP), then the partial relationship between the amount of pollution and GDP simply has to be ‘U 

shaped’ or ‘inverted-U shaped’, depending on the signs of the estimated coefficients. It cannot 

have more than one turning point.18 In practice, estimated EKC’s have been found to be quite 

sensitive to the type of pollutant under study, to changes in the type and sample of data used, and 

to the specification of the model’s functional form.  

 

One obvious way to deal with this last type of sensitivity is to avoid placing any parametric 

constraints on the model at all, and to use nonparametric kernel regression. Somewhat 

surprisingly, it seems that this option has been pursued in only one previous EKC study. Taskin 

ad Zaim (2000) compare nonparametric regression with simple parametric polynomial 

specifications in the case of CO2 emissions for 52 countries over the period 1975 to 1990. Their 

nonparametric results suggest a relationship that is broadly similar in appearance to a cubic one. 

An alternative to nonparametric regression is to use splines (piecewise continuous, usually simple 

polynomial, functions). One application of this idea in the context of the EKC is the study by 

Schmalensee et al. (1998) who find a clear ‘inverted-U’ EKC for CO2 when simple spline 

analysis is used in conjunction with national-level panel data for the period 1950 to 1990.  

Similarly, Hilton and Levinson (1998) include some basic (linear) spline regression analysis in 
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their study and they also find a significant EKC, in their case for lead arising from the use of 

gasoline. 

 

In the present study not only do we consider the usual polynomial specifications that are common 

in the empirical EKC (and ‘regular’ Kuznet’s curve) literature, and nonparametric kernel 

regression, but we also use a new and very flexible regression modelling procedure that has been 

developed by Giles and Draeseke (2003).19 This ‘fuzzy regression’ approach involves using fuzzy 

clustering techniques (from the pattern recognition literature) to partition the data into sub-

samples over which separate parametric regressions are then fitted. A weighted average of the 

sub-sample results is then formed, using the ‘degrees of membership’ for each data point and 

each cluster as weights. As these weights vary continuously from one data point to another, we 

are able to capture complex non-linearities very successfully.20 In a range of different modelling 

applications, Giles and Draeseke (2003) demonstrate that this methodology out-performs 

nonparametric kernel regression, and standard parametric regression, often quite dramatically. As 

this fuzzy regression framework is not yet widely known, we present some details here.21 

 

Fuzzy set theory originated with Zadeh (1965).22 In conventional set theory, items either belong 

to some particular set or they do not. That is, the ‘degree of membership’ of an element with 

respect to any particular set is either unity or zero. The boundaries of the sets are ‘sharp’, or 

‘crisp’. In the case of fuzzy sets, the degree of membership may be any value between zero and 

unity, and every item is associated with all of the sets. Usually this association will involve 

different degrees of membership for each item (data point) with each of the fuzzy sets.  

 

In order to implement our fuzzy regression analysis we use the so-called ‘fuzzy c-means’ (FCM) 

algorithm that is widely used in the pattern recognition literature, together with some basic 

concepts from fuzzy logic.23 The FCM algorithm, which is described in the appendix, enables us 

to partition the data into a fixed number of clusters, based on the values of the regressor(s). These 

clusters have ‘fuzzy’ boundaries, in the sense that each data value belongs to every cluster to 

some degree or other. The FCM algorithm determines the cluster mid-points, the associated 

membership functions and degrees of membership for all of the data-points. Separate regressions 

are fitted over each of the clusters, and the degrees of membership provide the basis for 

combining the separate results into one prediction for the conditional mean of the dependent 

variable in the model. 
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5. A Long-Run EKC for Enteric CH4 in New Zealand  
 

The time-series data that we use in our modeling have first been tested for stationarity using both 

the ‘augmented’ Dickey-Fuller (ADF) tests and the tests proposed by Kwiatovsky et al. (KPSS) 

(1992).  For the ADF ‘t-tests’ (Dickey and Fuller, 1979, 1981; Dickey and Said, 1981) the null 

hypothesis is that the series has a unit root and the alternative hypothesis is that it is stationary. 

The null and alternative hypotheses are reversed for the KPSS tests. In the case of the ADF tests 

we have considered the usual three cases for the Dickey-Fuller regressions: including a drift 

(constant term) and a linear trend (DT); including a drift but no trend (DNT); and no drift or trend 

(NDNT).  The number of augmentation terms for the ADF tests was determined by using the 

Schwarz information criterion (Schwarz, 1978). In the case of the KPSS tests we consider the 

usual two variants of the null hypothesis, namely level stationarity and trend stationarity. Our 

results, obtained with the EViews (2002) econometrics package and based on the full time-period, 

1895 to 1996, appear in part (a) of Table 2. It is well known that these unit root tests lack power 

in finite samples, so in practice it is often wise to adopt a relatively conservative significance 

level such as 10%. Using the exact finite-sample critical values for the ADF test given by 

MacKinnon (1991), and those for the KPSS test given by Hornok and Larsson (2000), we find 

that all of our series have a unit root (i.e., they are I(1)).24 

 

Given the close similarity between the characteristics of each of the four enteric methane series, 

as evidenced in Figure 1 and Table 1, all of the following discussion and the results that are 

presented below are based only CH490L. This provides the most conservative estimates of 

methane emissions, and it uses animal emission rate estimates that are based on scientific data as 

far from the end-point(s) of our sample as are available.25  

 

In part (b) of Table 2 we present the results of testing for multivariate cointegration between 

CH490L, GDP, GDP2 and GDP3, using Johansen’s (1988, 1995) likelihood-based procedures. As 

data exhibit a trend, following the suggestion of Franses (2001) we include a drift and trend in the 

cointegrating equation, and a drift but no trend in the VAR models when applying Johansen's 

procedure. This corresponds to ‘case 4’ in the EViews (2002) econometrics package. The lag 

lengths for the VAR models were determined using the Schwarz information criterion and 

Akaike’s (1973) information criterion. As can be seen from Table 2, the results of both the trace 

tests and the max.-eigenvalue tests clearly  indicate the presence of cointegration (with at most 

one or two cointegrating vectors (CV’s)) between the variables in question. This is particularly 
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important as it determines the appropriate way to estimate the EKC. In fact, we have two 

legitimate choices – we can either model a short-run dynamic relationship by estimating an 

‘error-correction model’; or we can fit the model in terms of the levels (not the differences) of the 

data and determine the long-run equilibrating relationship. It is the latter that is relevant in the 

case of an EKC. Moreover, OLS estimation will yield ‘super-consistent’ estimates of the model’s 

parameters.26  

 

Table 3 presents the results obtained when we estimate some basic parametric EKC’s for enteric 

methane emission in New Zealand, using OLS estimation. These are based on both quadratic and 

cubic specifications, explaining per capita  methane in terms of real per capita  GDP.  Several 

summary statistics and diagnostic  test results are included in Table 3. The usual (asymptotic) 

Lagrange multiplier test statistic for serial independence of the errors (against the alternative 

hypothesis of a simple AR(i) or MA(i) process) is denoted LMi (i = 1, 2). The Jarque and Bera 

(1980) test for normality of the errors is denoted JB; and FREi (i = 1, 2, 3) denotes the ‘FRESET’ 

test for mis-specification of functional form and/or omitted regressors proposed by DeBenedictis 

and Giles (1998, 1999).27 

 

The significance of the estimated coefficients is quite apparent, and the t-value associated with 

GDP3 confirms that a cubic specification is preferred over the more restrictive quadratic 

relationship. However, in the two static models the tests for serial independence, and several of 

the FRESET test results, suggest that the formulation of the model requires further consideration. 

Estimating simple dynamic models that include a lagged value of the dependent variable yields 

more robust results. The estimated static and (long-run) dynamic relationships are shown in 

Figures 3(a) and (b) respectively.28 We see that classic ‘inverted U’ curves emerge when a 

quadratic relationship is fitted, with the location of the maximum essentially unaffected by 

allowing for dynamics in the specification of the EKC. The (preferred) cubic EKC’s attain a 

maximum at a higher level of GDP than do the quadratic ones, but again the general conclusions 

are insensitive to the dynamics of the model. Based on the cubic specification, these rather 

restrictive and conventional parametric regression results suggest that the EKC for enteric 

methane emissions in New Zealand peaked at a GDP level of approximately NZ$11,000 

(US$8,777) per capita , in real 1990 dollar terms. 
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Table 2 

Tests for Data Stationarity & Cointegration 

(1895 – 1996; T=102) 

      

(a) Unit Root Tests 

ADF*     KPSS 

NDNT  DNT  DT  Level  Trend 

      Stationary Stationary  

 

GDP  3.104 (0) 0.746 (0) -1.817(0)  1.177+  0.271+   

CH490L -0.897 (0) -1.704(1)  -0.941(0) 0.136  0.129# 

CH490H -0.947 (0) -1.697 (1) -1.584 (1) 0.125  0.123# 

CH499L  -0.979 (0) -1.687 (1) -1.601 (1) 0.116  0.119# 

CH499H -0.947 (0) -1.697 (1) -1.584 (1) 0.125  0.123# 

 

(b) Johansen Cointegration Tests** 

 

Quadratic    Cubic 

Null Hypothesis  Trace  Max-Eigenvalue  Trace   Max-Eigenvalue 

 

No C.V.’s  49.165+  34.398+   94.384+  39.345+ 

At Most 1 C.V.  17.767  9.451   55.038+  30.754+ 

At Most 2 C.V.s 5.317  5.317   24.285  18.287 

At Most 3 C.V.’s n.a.  n.a.   5.997  5.997 

 

* Number of augmentation terms (lags) given in parentheses. 

** Number of lags in the VAR models is 7.  

+ Significant at the 1% level. 

# Significant at the 10% level. 
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Table 3 

Parametric Regression Results*,+ 

 

   Static (OLS)    Dynamic (OLS) 

  Quadratic Cubic   Quadratic Cubic 

 
Constant 0.3299  0.5857   0.0223  0.1007  

  (18.03)  (12.34)   (1.19)  (2.52) 

GDP  0.3772*10-2 -0.0101   0.7064*10-3 -0.2363*10-2 

  (5.86)  (-4.05)   (1.99)  (-1.65) 

GDP2  -0.2879*10-4 0.1953*10-3  -0.5876*10-5 0.4528*10-4  

  (-5.90)  (4.96)   (-1.47)  (1.94) 

GDP3    -0.1112*10-5    -0.2601*10-6 

    (-5.72)     (-2.21) 

CH490L-1      0.9066  0.8531 

       (18.38)  (15.77) 

R2  0.260  0.445   0.838  0.846 

LM1  8.715 [0.00] 8.377 [0.00]  2.313 [0.01] 2.517 [0.01] 

LM2  7.035 [0.00] 6.002 [0.00]  0.395 [0.35] 0.266 [0.40] 

JB  2.013 [0.37] 1.547 [0.46]  0.152 [0.93] 0.093 [0.96] 

FRE1  2.729 [0.07] 0.267 [0.77]  0.580 [0.56] 0.945 [0.39]  

FRE2  9.440 [0.00] 2.050 [0.09]  0.299 [0.88] 0.623 [0.65] 

FRE3  6.698 [0.00] 1.680 [0.14]  0.295 [0.94] 0.505 [0.80] 

 

Max.  9.17  11.00   8.41  10.74 

(NZ$’000)  

Max.   6.79  8.77   6.80  7.65 

(US$’000)# 

Year  1958  1965   1950  1967 

 

*  t-ratios appear in parentheses.  

+ p-values appear in brackets. 

# Converted using the ratio (‘Y’) of real per capita GDP for New Zealand to that of the U.S.A., 

from the Penn World Table, 5.6  (Summers and Heston, 1995), for each year in question. 
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Figure 3(a)
Empirical Kuznets' Curves: Static Model, OLS 
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Figure 3(b)
Empirical Kuznets' Curves: Dynamic Model, OLS
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To avoid the unnecessary restrictiveness of these polynomial specifications we have also 

estimated our EKC for methane using both nonparametric kernel regression, and more 

particularly the fuzzy regression procedure outlined in section 4 and in the Appendix. In the 

former case we used a normal kernel with the optimal bandwidth chosen by the default method in 

the SHAZAM (2001) econometrics package, and the fitted model is depicted in Figure 4. In the 

fuzzy regression analysis we explored the use of two, three and four fuzzy clusters. The results 

based on c = 3 and c = 4 were very similar to each other, so only those based on c = 2 and c = 3 

appear in Figure 4. Figures 5(a) and 5(b) show the ‘membership functions’ associated with the 

data points in the fuzzy clustering analysis. This is the first application of fuzzy regression in the 

context of EKC’s.29 Some features of the ‘within-cluster’ regression estimates are given in Table 

4(a). It is important to note that because the GDP data are not strictly monotonic increasing, it is 

not the case that the first cluster regression when c = 2 is based on the first (temporal) 61 data 

values, for example. The locations of the (global) maxima of the estimated EKC’s are also shown 

in Table 4(a), in terms of real (1990) per capita  New Zealand and U.S. dollars, and the year of 

attainment.  

 

In part (b) of Table 4 we see that the fuzzy regression analysis, based on three fuzzy clusters, out-

performs the other estimation techniques on the basis of both root mean squared error and mean 

absolute error. Although there is virtually no difference between the fits of the fuzzy (c = 3) and 

nonparametric kernel EKC’s, or between the real per capita  GDP levels at which their global 

maxima are attained, the fuzzy regression based on three clusters reveals a ‘double -hump’ 

relationship that does not emerge with any of the other estimators.30 Interestingly, this is 

consistent with the theoretical EKC model proposed by Bousquet & Favard (2000), and discussed 

in section 2 above. 

 

6. Further Considerations  

 

As was noted in section 1, New Zealand is heavily dependent on agriculture and forestry for its 

revenue from exports, and in 1999 44.1% of that revenues was ‘pastoral based’ and hence 

dependent on the ruminants that are responsible for almost all of the country’s methane 

emissions. New Zealand is also an extremely ‘open’ economy. Using the ratio of total trade 

(exports plus imports) to GDP as the (usual) measure, in percentage terms the openness of the 

New Zealand economy peaked at 74% in 1919 (reflecting the resumption of trade after World  
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Figure 4
Empirical Kuznets' Curves: Fuzzy & Nonparametric Estimation
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War I) and at 71% in 1952 (reflecting the Korean War Boom).31 The median openness rate over 

the period 1918 to 1998 was 48%, and the figures for 1918, 1958 and 1998 were 58%, 48% and 

46% respectively. By way of comparison, the corresponding figures for the U.S.A. in these three 

years were only 12%, 7% and 18%; for the United Kingdom they were 38%, 39% and 41%; and 

for Australia they were 39%, 31% and 34%. For Canada, the openness figure ranged from 33% in 

1926 to 22% and 47% in 1958 and 1998 respectively.32 The New Zealand economy is heavily 

reliant on trade, and in particular it is (and always has been) heavily dependent on exports of such 

‘pastoral-based’ products as wool, lamb and mutton, live sheep, butter and cheese, skimmed milk 

powder, and more recently venison and deer antler ‘velvet’.33 Given the intimate connection 

between the production of these exports and the generation of enteric CH4 emissions, one obvious 

question that arises is whether or not the associated EKC is at least partially determined by the 

(relative) price of exports. Given the pivotal role of sheep in New Zealand, both in terms of 

exports and in terms of methane emissions, wool prices may be of special relevance. This is 

reinforced by New Zealand’s continued standing as a top international producer of this product – 

still the third largest in the world in 2000/2001.34 

 

We have experimented with various versions of our EKC models by including values of the wool 

price index (deflated either by the consumer price index, or by the export price index for New 

Zealand). To take account of the time delay likely to be associated with reductions (increases) in 

sheep stocks as farmers respond to rises (falls) in the relative price of wool, we also considered 

lagged values of the deflated wool price index in the models. However, we were unable to find 

any specifications with a significant and positive price effect. Indeed, in most cases the wool 

price variable had an insignificant negative coefficient, which is not surprising in view of the 

negative sample correlations between CH490L and the two real wool price series.35 It seems clear 

that New Zealand’s methane emission problems are not responsive to the associated international 

prices. 

 

As can be seen in Figure 2, real per capita  output has followed a strong upward trend in New 

Zealand since the Great Depression, and Giles et al. (1992) have established the existence of 

significant (Granger) causality from exports of certain goods and services to real GDP in that 

country. In the context of our EKC results, this suggests that it would be a mistake for New 

Zealand’s policy-makers to look to livestock (and hence exports) reduction as a means of 

achieving their Kyoto Protocol commitments with respect to methane emissions. Moreover, were 
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they to do so (such as through a reinstatement of sheep retention subsidies), the effects of the 

associated trade diversion could result in net increase in worldwide emissions of enteric CH4. For  

example, assuming no change in the international demand for wool and sheep meats, but with the 

New Zealand supply diminished, prices for these products would rise on international markets 

and other countries would increase their sheep stocks. The countries most likely to respond in this 

way are ones (such as China, Argentina, Uruguay and South Africa) with lower real per capita  

GDP than New Zealand.36 To the extent that our EKC results for methane apply internationally, 

this would lead to a net increase in enteric methane emissions. Relatively high income countries  

have a comparative advantage in finding technological solutions for pollution problems such as 

methane emissions, and from a global perspective policy-makers in New Zealand are correct in 

pursuing their current scientific efforts to reduce CH4 emission rates per animal.  

 

The agricultural research base in that country is exceptionally strong, and recently there has been 

intensive research into methods of measuring and reducing methane emission rates among 

ruminants (especially sheep and cattle). On-the-farm measurements of enteric methane emissions 

in New Zealand date from 1996, with the development of a micro-meteorological method of 

measuring net methane emissions from flocks of free-ranging sheep, taking into account the 

oxidation or consumption of methane by soil bacteria.37 Dietary intake is an important 

determinant of enteric CH4 emissions. For example, Ulyatt et al. (2002) report on the extent to 

which these emissions can be reduced by modifying the type of pasture to include sub-tropical 

kikuyu grass (Pennisetum clandestinum). Other research indicates that emission rates fall as the 

condensed tannin content of the food is increased.  Such research is not limited to New Zealand. 

For example, experiments at the Institut National de la Recherche Agronomique in France have 

involved lambs, born by caesarian section, being reared in a sterile environment. The animals 

have been inoculated with all the usual bacteria from the rumen of ordinary sheep, except for the 

methane-producing bacteria. The results to date indicate that the elimination of the bacteria does 

not affect the growth or productive capabilities of the sheep. Related research in Australia has 

resulted in experimental trials of a vaccine that discourages Methanogenic archae, the organisms 

which inhabit the animal’s digestive system and produce methane by breaking down feed. 
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Table 4 

Fuzzy and Nonparametric Regression Results 

(a) Fuzzy Regression Sub-Model Results 

 

c  Fuzzy  T  Cluster Slope   Intercept  

Cluster    Centre   (t-value) (t-value) 

 

2  1   61   39.032  0.2767*10-3 0.4182  

        (1.06)  (39.25)   

2  41  89.826  -0.1529*10-2 0.5722 

        (-4.07)  (17.15) 

3  1  49  35.291  0.1291*10-2 0.4702 

        (2.23)  (22.31) 

2  24  64.117  0.1689*10-2 0.4147 

       (3.33)  (12.79) 

 3  29  95.786  -0.4938*10-2 0.9839 

        (-7.41)  (15.49) 

 

(b) Comparative Model Performances* 

 

OLS    Fuzzy  Nonparametric 

Quadratic Cubic  c = 2  c = 3 

 

RMSE  0.0565  0.0517  0.0244  0.0201  0.0228  

MAE  0.0321  0.0254  0.0201  0.0168  0.0179  

Max.  8.41  10.74  9.74  11.28  11.28 

(NZ$’000)  

Max.   6.80  7.65  7.70  8.14  8.14 

(US$’000)*  

Year  1950  1967  1959-1961 1970  1970 

     

* Converted using the ratio (‘Y’) of real per capita GDP for New Zealand to that of the U.S.A., 

 from the Penn World Table, 5.6  (Summers and Heston, 1995), for each year in question.
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Figure 5(a) 
Fuzzy Clustering Membership Functions (c = 2)
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Figure 5(b) 
Fuzzy Clustering Membership Functions (c = 3)
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7. Conclusions  

 

In this paper we have studied the relationship between enteric methane emissions and real per 

capita GDP in New Zealand, using traditional and new techniques to estimate an environmental 

Kuznets’ curve for this GHG. Among the noteworthy features of this research are: our use of data 

spanning more than a century; the application of new ‘fuzzy regression’ techniques to unearth the 

nonlinear characteristics of the relationship in a flexible manner; and the focus on a little-studied 

GHG that is of primary concern to this major wool-producing country in meeting its obligations 

as a signatory to the Kyoto Protocol. 

 

It is not the purpose of this paper to offer a theoretical basis for the relationship between methane 

emissions and income, but our empirical results indicate that there is an environmental Kuznets’ 

curve for CH4 in New Zealand. Our preferred results, based on ‘fuzzy regression’ methods 

suggest that the curve has a ‘double -hump’, with a maximum at a GDP level of just over 

US$8,000 per capita , in real 1990 dollar terms. This general shape for the EKC is consistent with 

the results of Taskin and Zaim (2000) and Dijkgraaf and Vollebergh (2001) for CO2, and is 

suggested by the theoretical model of Bousquet & Favard (2000). Our nonparametric kernel 

regression results suggests a curve with a single maximum at the same level of income, while 

levels of the order of US$7,000-US$7,500 are implied by our standard quadratic and cubic 

regressions. These turning point levels are very consistent with the results of other studies relating 

to various GHG emissions internationally, as is evidenced by the discussions in Grossman and 

Krueger (1995) and Hilton and Levinson (1998). 

 

Lowering enteric methane emissions by reducing livestock numbers is not a viable option for 

New Zealand, given its dependence on pastoral-based exports, and the established causality 

between its exports and GDP. Our positive findings with respect to an environmental Kuznets’ 

curve for CH4 suggest that this economic ‘fact of life’ may be fortuitous – it seems that any 

significant reduction in real GDP from its recent levels would lead to an increase in the emissions 

of this GHG. With its relatively high per capita  GDP, New Zealand has always invested heavily 

(and successfully) in agricultural research. A number of positive recent scientific developments 

suggest that methane emissions in that country will be curtailed (and livestock productivity will 

be increased) through vaccinations and dietary changes. Our findings with respect to an 

environmental Kuznets’ curve suggest that there will also be a reinforcing effect as enhanced 

exports have a positive impact on real output. 
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Appendix 
Fuzzy Econometric Modelling 

 
 
The Fuzzy c-Means Algorithm 
 
 
The FCM algorithm provides a method for dividing up the ‘n’ data-points into ‘c’ fuzzy clusters 

(where c < n), while also locating the centres of these clusters. The metric that forms the basis for 

the usual FCM algorithm is usually ‘squared error distance’, though the use of an ‘absolute error 

distance’ can be used to deal with outliers in the data. (See Stroomer and Giles, 2003). The 

mathematical details of the algorithm are as follows. Let xk be the k th   (possibly vector) data-point 

(k  = 1, 2, ...., n). Let vi be the centre of the ith (fuzzy) cluster (i = 1, 2, ....., c). Let dik = || xk - vi || be 

the distance between xk and vi , and let uik be the ‘degree of membership’ of data-point ‘k’ in 

cluster ‘i’, where : 

 

The objective is to partition the data-points into the ‘c’ clusters, locate the cluster centers, and 

also determine the associated ‘degrees of membership’, so as to minimize the functional 

 

While there is no explicit basis for choosing the value of the parameter ‘m’, which must satisfy 1 

< m < ∞, with m = 1 corresponding to ‘hard clustering’. In practice m = 2 is a common choice, 

and is the one that we adopt here. The FCM algorithm requires that the number of clusters, c, be 

specified in advance, and in view of the sample size in our study (and the empirical findings of 

Giles and Draeseke, 2003) we have considered c = 2, 3 and 4. The algorithm then comprises the 

following steps: 

 

1. Select the initial locations of the cluster centres. 

2. Generate a (new) partition of the data by assigning each data-point to its closest cluster 

centre. 

3. Calculate new cluster centres from the revised partition of the data. 

4. If the cluster partition is stable then stop. Otherwise go to step 2 above. 
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In the case of fuzzy the memberships, the Lagrange multiplier technique generates the following 

expression for the membership values to be used at step 2 above: 

If the memberships of data-points to clusters are ‘crisp’ then  

uik = 0 ;   ≤ i ! j, 

ujk = 1 ; j    s.t. djk = min.{dik, i = 1, 2, ...., c}. 

 

The updating of the cluster centres at step 3 above is obtained via the expression 

 

The fixed-point nature of this problem ensures the existence of a solution in a finite number of 

steps. When the centres of the fuzzy clusters have been determined, each of the n data-points can 

be allocated to the cluster whose center it is closest to.  

 

Fuzzy Regression Analysis 

 

To begin with, consider the simple case where there is a single regressor (other than, perhaps, a 

constant intercept). The fuzzy relationship to be estimated is of the form: 

 

where the form of the functional relationship remains unspecified (but will typically involve 

unknown parameters), and e is a random disturbance term. There is no need to make any 

distributional assumptions about the latter. If the disturbance has a zero mean, the fuzzy function 

represents the conditional mean of the dependent variable, y. To this extent, the framework is the 

same as that which is adopted in non-parametric kernel regression. 

 

The identification and estimation of the fuzzy model then proceeds according to the following 

steps: 
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Step 1:  Partition the sample observations for x into c fuzzy clusters, using the FCM  

  algorithm. This generates the membership values for each x-value with respect to 

  each cluster, and also defines a corresponding partition of the data for y.  

 

Step 2:  Using the data for each fuzzy cluster separately, fit the models: 

   

  In particular, if the chosen estimation procedure is parametric least squares, then 

 

Step 3:  Model and predict the conditional mean of y using: 

 

where uik is the degree of membership of the k th value of x in the i’th. fuzzy 

 cluster, and bim is the least squares estimator of bim (m = 0, 1) obtained using the 

 ith fuzzy partition of the sample.  

 

The fuzzy predictor of the conditional mean of y is a weighted average of the linear predictors 

based on the fuzzy partitioning of the explanatory data, with the weights (membership values) 

varying continuously through the sample. This latter feature enables non-linearities to be 

modelled effectively. In addition, it can be seen that the separate modelling over each fuzzy 

cluster involves the use of fuzzy logic of the form “IF the input data are likely to lie in this 

region, THEN this is likely to be the predictor of the output variable”, etc.. The derivative of the 

conditional mean with respect to the input variable also has this weighted average structure, and 

the same potential for non-linearity. 

 

Note that this modelling strategy is essentially a semi-parametric one. The parametric 

assumptions could be relaxed further by using kernel estimation to fit each of the cluster sub-

models at Step 2 above, in which case the estimated derivatives (rather than coefficients) would 

be weighted at Steps 3 and 4, instead of the parameter estimates. However, some experimentation 

with this variation of the modelling methodology was undertaken by Giles and Draeseke (2003), 

and was found not to perform well.  

y f x j n i cij i ij ij i= + = =( ) ; ,...., ; ,....,ε 1 1

y x j n i cij i i ij ij i= + + = =β β ε0 1 1 1; ,...., ; ,....,

[ ]$ ( ) / ; ,....,y b b x u u k nk
i

c

i i k ik
i

c

ik= +








 =

= =
∑ ∑

1
0 1

1

1



 26 

More generally we will be interested in models that have more than one regressor: 

 

 

Assuming a linear least squares basis for the analysis for expository purposes, the steps in the 

above fuzzy modelling procedure are extended as follows : 

 

Step 1': Separately partition the n sample observations for each xr into cr fuzzy clusters 

  (where r = 1, 2, ....,p), using the FCM algorithm. This generates the membership 

   values for each observation on each x variable with respect to each cluster.  

 

Step 2': Consider all c possible combinations of the fuzzy clusters associated with the p  

  input variables, where 

 

  and discard any for which the intersections involve negative degrees of freedom  

  (nr < p). Let the number of remaining cluster combinations be c'. 

 

Step 3': Using the data for each of these c' fuzzy clusters separately, fit the models: 

   

Step 4': Model and predict the conditional mean of y by using: 

 

where  
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Here, dij is a ‘selector’ that chooses the membership value for the j th fuzzy cluster 

(for the rth input variable) if that cluster is associated with the ith  cluster 

combination (i = 1, 2, …., c'); and bim is the least squares estimator of bim 

obtained by using the ith fuzzy partition of the sample.  

 

Comparing these steps with those in the case of a single input variable, it is clear that the 

computational burden associated with the fuzzy modelling increases at the same rate as in the 

case of multiple linear regression as additional explanatory variables are added to the model. 

Under some very mild conditions, it can be shown that the fuzzy regression estimator is weakly 

consistent, and more importantly its rate of convergence is the same as that for the least squares 

estimator. That is, we have T1/2 convergence under standard assumptions. In contrast, 

nonparametric kernel regression suffers from the well-known ‘curse of dimensionality’ – it 

converges in probability increasingly slowly as the number of regressors grows. (Strictly 

speaking, this is true only if all of the regressors are continuous, rather than discrete, variables – 

see Racine and Li, 2003, for details.) 
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Footnotes 

 

* We are extremely grateful to Dr Harry Clark (AgResearch Ltd., New Zealand) and Dr 

 Gerald Rys (Ministry of Agriculture and Forestry, New Zealand) for helpful 

 correspondence and the provision of data and technical information relating to the 

 scientific research program into enteric methane emissions in that country. 

1. Total atmospheric methane concentrations in New Zealand rose from 1669.5 ppb in 1990 

 to 1736.3 ppb in 2000 (in terms of Gg of CO2-equivalent units). See New Zealand 

 National Institute of Water and Atmospheric Research (2003). 

2. See Clark, 2001. 

3. This level was just over 73 million CO2-equivalent tonnes. 

4. Some of this research has been undertaken in collaboration with other scientific teams in 

 Australia and France.  

5. See Table 1 below for details of the different enteric methane emission rates associated 

 with the different animal types. 

6. See New Zealand Ministry of Agriculture and Forestry (2000). 

7. See New Zealand Ministry of Agriculture and Forestry (2002). This represented a 

 reduction from over 48% in 1992. Agriculture as a whole accounted for 53.8% of the 

 value of New Zealand’s exports in 1999, and forestry products accounted for 

 approximately an additional 11% of export dollars. 

8. It also seems likely that the results of some of the earlier studies, using time-series data, 

 may have been affected by a failure to take account of the fact that these data were non-

 stationary. For some evidence on this point, see Jacobsen and Giles (1998) Perman and 

 Stern (1999), and Stern and Common (2001). 

9. Special issues of Ecological Economics (in 1995 and 1998), and Environment and 

 Development Economics (1996) have been devoted to the environmental Kuznets curve. 

10. See Selden and Song (1995, p.147). 

11. Each GHG has its own ‘global warming potential’, set by the Intergovernmental Panel on 

 Climate Control (IPCC). In the case of methane this is 21 (c.f., CO2 = 1) for a 100-year 

 time-horizon. 

12. These are constant 1999 dollars. 

13. Although Stern and Common (2001) have data for sulfur emissions for the period 1850 

 to 1990, their EKC study is based on models estimated for 1960 to 1990 due to 

 constraints on the availability of PPP-adjusted international GDP data. 
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14. Our data for livestock numbers end in 1996, due to a change in the reporting method. 

Official Ministry of Agriculture and Fisheries (now Forestry) figures for the period prior 

to 1971 are taken from the annual New Zealand Yearbooks. 

15. Recent confidential work by Clarke and Ulyatt deals with updates to these estimates. No 

 emission rate estimates are available for the period prior to 1990, the latter year being the 

 ‘base year’ for New Zealand’s Kyoto Protocol obligations. In our calculations, in the 

 absence of contrary evidence, we assume a constant emission rate for each animal type 

 over time. 

16. The series using the ‘1990-High’ and ‘1999-Low’ emission estimates are visually

 indistinguishable. 

17. A ‘spurious regression’ arises when the data are non-stationary, but are not cointegrated, 

 and the associated results are meaningless (and increasingly so as the sample size 

 increases). See Granger and Newbold (1974), Phillips (1986) and Giles (2002) for more 

 details.  

18. It is understood, of course, that this turning point may occur at a level of output that is 

 outside the range of the sample values, so it may not be ‘observed’. 

19. Their modelling framework is based, in turn, on the earlier contribution of Shephard and 

 Shi (1998). 

20. It should be emphasized that while this technique may appear to be similar to spline 

 analysis, in fact it is quite different, and is much more flexible. In spline analysis the join- 

 points (or ‘knots’) for the continuous sections of the function are taken as known and are 

 specified in advance. In fuzzy regression, the FCM algorithm determines  the partition of 

 the data into the clusters on the basis of the sample values. Moreover, in fuzzy regression 

 the different estimated cluster results are ‘mixed’ by using the estimated degrees of 

 membership, whereas in spline analysis the separate functional sections are simply 

 abutted to one another. 

21. The following discussion is taken essentially from Giles and Draeseke (2003, pp.412-

 419).  For some additional applications of fuzzy clustering in economic applications, see 

 Giles (2001), Giles and Feng (2003) and Stroomer and Giles (2003). 

22. For a more complete discussion of this topic, see Zadeh (1987). 

23. The FCM algorithm is usually attributed to Ruspini (1970), though there are now many 

 variants of it in use. 
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24. Applying the tests to the differenced data confirmed that none of the series are I(2). In 

 addition, allowing for the possibility of structural breaks in the trends of the data did not 

 affect our conclusions.  

25. Details of the results obtained by using each of the other three methane series are 

available from the authors on request. The results that we present here are completely 

insensitive to the choice of the CH4 series. 

26. If ‘T’ denotes the sample size, a super-consistent estimator is one that converges to the 

 true parameter value at a rate ‘T’, rather than the usual rate of ‘T1/2’. See Stock (1987). 

27. The FRESET test of Debenedictis and Giles (1998, 1999) is similar to Ramsey’s  RESET 

 test, but a Fourier series approximation is used in its construction, rather than a 

 polynomial approximation. This use of a global (rather than local) approximation 

 increases the power of test markedly, even in the context of contamination from serial 

 correlation. The FRESET test can be conducted with the DIAGNOS command in the 

 SHAZAM econometrics package. 

28. In Figure 3(a) we present the ‘fitted values’ from the OLS regressions, plotted against 

 GDP. The relationships shown in Figure 3(b) are obtained when  we solve for the long-

 run estimated relationship, as follows. If the model is of the generic form, 

 yt = a + b xt + c yt-1 + ut, then y* = (a* + b* x)/(1 – c*), where an asterisk denotes an 

 estimated value. 

29. Giles and Draeseke (2003) estimate a conventional Kuznets’ curve for the U.S.A. using 

 fuzzy regression, as one of their illustrative examples. Nonparametric (kernel) estimates 

 of Kuznets’ curves are surprisingly unusual. For conventional Kuznets’ curves see 

 Ogwang (1994) and Jacobsen and Giles (1998); and for the only nonparametric EKC that 

 we are aware of, see Taskin and Zaim (2000). 

30.  The same is true when the fuzzy analysis is conducted with c = 4. In this case the higher 

 of the two maxima occurs at a real (1990 dollars) per capita  output level of NZ$11,680 

 (US$8,433), which corresponds to the year 1971 in our sample. Of course it may also be 

 possible to achieve a ‘double-hump’ EKC with a higher-order polynomial specification, 

 but we have not pursued this further.  

31. The New Zealand economy boomed during the Korean War, largely as a result of the 

increased demand for its coarse-grade wool. 

32. See Mosk (2003) for further details. 

33. The export of live sheep is to countries in the Middle East, so that religious customs may 

be observed during slaughtering.  
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34. New Zealand’s production was 258 kilo-tonnes of fleece and skin wool (greasy wool 

equivalent). The productions of Australia and China were 652 and 291 kilo-tonnes 

respectively. See the British Wool Marketing Board’s site on the internet at 

<http://www.britishwool.org.uk/a-factsheet4.asp>  

35. The simple correlations with CH490L are –0.026 and –0.018 when wool prices are 

deflated by the CPI and by export prices respectively.  

36. Using Penn World Table data, the real (1990 dollars) per capita GDP’s for New Zealand, 

China, South Africa and Uruguay in 2000 were approximately $16,750, $3,200, $6,700 

and $8,600. Our preferred EKC peaks at approximately $8,140. 

37. This research has been undertaken primarily by the LandcareResearch, Agresearch and 

 HortResearch organizations. For more information on the internet, see 

<http://www.landcareresearch.co.nz/research/greenhouse/climatechange/methane.asp> 

 


