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ABSTRACT 
We compare testing strategies for Granger noncausality in vector autoregressions (VARs) 

that may or may not have unit roots and cointegration.  Sequential testing methods are examined; 
these test for cointegration and use either a differenced VAR or a vector error correction model 
(VECM), in which to undertake the main noncausality test. Basically, these strategies attempt to 
verify the validity of appropriate standard limit theory. We contrast such methods with an 
augmented lag approach that ensures the limiting χ2 null distribution irrespective of the data’s 
nonstationarity characteristics.  Our simulations involve bivariate and trivariate VARs in which we 
allow for the lag order to be selected by general to specific testing as well as by model selection 
criteria.  We find that the current practice of pretesting for cointegration can result in severe over-
rejections of the noncausal null while overfitting results in better control of the Type I error 
probability with often little loss in power.  
 
 
 

1. INTRODUCTION 

This paper examines the properties of Wald-tests for Granger noncausality (GNC)1, when 

applied in finite-order vector autoregressive (VAR) models with nonstationary variables.  Several 

preliminary steps affect the finite-sample properties of the GNC statistic: estimation of the VAR 

lag order and determination of nonstationarity characteristics. We use Monte Carlo experiments to 

determine the impact of these preliminary steps on the empirical probability of a Type I error and 

the associated “power” of GNC statistics, allowing for the VAR lag order and cointegrating rank 

to be estimated.  We surveyed over two hundred applied studies so we could examine methods 

                                                           
1  Granger (1969), which builds on earlier work of Wiener (1956). 



   

system of order at most three, allowing for three alternative error covariance matrices and three 

GNC testing strategies.  In the first, the test is based on a vector autoregression in levels, denoted 

as a VARL, that ignores the impact of nonstationarity on the test statistic’s asymptotic null 

distribution. The second strategy, suggested by Toda and Yamamoto (1995) and Dolado and 

Lütkepohl (1996)2, tests for GNC using an adjusted VARL model so that the test statistic’s 

limiting null distribution is standard, irrespective of the system’s nonstationarity properties.  The 

third approach, applied most often, uses preliminary cointegration tests to basically ensure that the 

GNC test is undertaken in an appropriately specified model; usually either a vector error-

correction model (VECM) or a VAR specified in terms of first differences; a VARD model.   

 As we allow for estimation of the dynamics of the system, our work substantially 

elaborates on Toda and Phillips (1994), Dolado and Lütkepohl (1996), Zapata and Rambaldi 

(1997), and Yamada and Toda (1998).  The simulation experiments of Toda and Phillips (1994), 

though extensive, are limited to trivariate VAR(1) DGPs with the lag order either specified 

correctly or overestimated by a fixed order.  Dolado and Lütkepohl (1996) undertake a small 

Monte Carlo involving a bivariate VAR(2) system with iid errors; they assume that the VAR order 

is either known or over-specified.  Zapata and Rambaldi (1997) examine testing for GNC within 

trivariate systems, but they limit attention to DGPs that are “sufficiently” cointegrated in the sense 

of Toda and Phillips (1993, 1994) so the statistic has a standard limiting distribution; we consider 

situations in which nonstandard asymptotic distributions result.  Zapata and Rambaldi also assume 

that the lag order is either correctly specified or over/under specified by one lag.  Finally, Yamada 

and Toda (1998) investigate a wide range of DGPs, but limit attention to a bivariate VAR(1) 

model that is always assumed to be a VAR(2).  They show that the finite sample distributions of 

their GNC statistics, with any innovation covariance matrix and a known lag order, are equivalent 

to those of a transformed model with an identity covariance.  However, this result no longer holds 

once we allow for estimation of the lag order, as the error covariance matrix affects lag order 

choice and, therefore, the finite sample distributions of the GNC statistics. 

The rest of this paper is organized as follows.  In section 2 we outline the tests for 

Granger noncausality, the tests for cointegration and noncointegration, and the methods we 

consider for selecting the lag order.  Section 2 also provides information from our survey of the 

empirical GNC literature that motivates some of our procedural choices.  The simulation study is 

described in section 3, with results from the experiments presented and examined in section 4.  We 

consider an empirical illustration in section 5 to highlight the differences that can result between 

the approaches we have studied.  Some concluding remarks are given in section 6. 

                                                                                                                                                               
1  Granger (1969), which builds on earlier work of Wiener (1956). 
2  Saikkonen and Lütkepohl (1996) extend this to infinite order cointegrated VARs. 

 
 



   

 

2. THE TESTING/SELECTION PROCEDURES 

There are three main testing and selection issues: testing for GNC, testing for the 

cointegrating rank and selection of lag length; augmentation in the cointegrating regressions also 

needs determining. We briefly detail each below and then outline the pretesting strategies. 

 

2.1. Tests for Granger Noncausality 

Each of the statistics used to test for GNC is a Wald statistic from an appropriate model:  

a VARL model, an augmented VARL model, a VECM, and a VARD model.  In each of these 

models, the lag length k must be determined; the selection of k is considered in section 2.3 below. 

 In general, consider a model where θ is an m×1 vector of parameters and let R be a 

known nonstochastic q×m matrix with rank q.  To test H0: Rθ=0, a Wald statistic is 

 W = T θ̂ TRT{R [ ]RV̂ θ̂ T}-1R  (1) θ̂

where is a consistent estimator of θ, [ ] is a consistent estimator of the asymptotic variance-

covariance matrix of 

θ̂ V̂ θ̂

T ( θ̂ -θ), and T is the number of observations.  Given appropriate 

conditions, W is asymptotically distributed as a χ2(q) variate under H0.  

For an n×1 vector time series {xt: t=1,2,...,T}, the VARL model of order k is 

xt = ∑
=
Π

k

1i
i xt-i + εt (2) 

where Πi is an n×n matrix of parameters, εt ~ IN(0, Σ), and (2) is initialized at t=-k+1...0; the 

initial values can be any random vectors including constants.  Let xt = ( )T
t3

T
t2

T
t1 x,x,x

L

T where xst is 

an ns×1 vector for s=1,2,3 with n=n1+n2+n3.  Also, with Πi conformably partitioned, let Πi,13 be the 

n1×n3 top-right partition of Πi.  Suppose we wish to determine whether or not x3t Granger causes 

x1t.  Then, in this levels model, the null hypothesis of GNC is H : PL
0 13=0 where P13= [Π1,13, 

Π2,13,..., Πk,13].  This null hypothesis can also be written in the form H 0 : Rθ=0 so the Wald 

statistic from (2), denoted WL, is then given by (1) where θ  is the LS estimator of θ=vec[Πˆ
1, 

Π2,...,Πk] and R is a selector matrix such that Rθ=vec[P13]. 

 Sims et al. (1990) and Toda and Phillips (1993, 1994), show that WL is asymptotically a 

χ2(n1n3k) variate under H when each series is either stationary or nonstationary with "sufficient" 

cointegration, which involves a rank condition on a submatrix of the cointegrating matrix.  The 

statistic WL has a nonstandard, but free of nuisance parameters, limiting distribution for a non-

intercept or an intercept/time trend VARL model; a nonstandard distribution involving nuisance 

L
0

 
 



   

parameters arises for an intercept/no time trend VARL model when there is no cointegration; and 

WL has a nonstandard limiting distribution that may depend on nuisance parameters when the 

relevant nonstationary series are "insufficiently" cointegrated. 

 These results lead Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996) to 

propose a method that gives an asymptotic χ2 null distribution for the GNC statistic in the VARL 

model, irrespective of the system’s integration or cointegration properties.  They use that the 

covariance matrix singularity of the LS estimator in a nonstationary system can be removed by 

fitting a VARL process whose order exceeds the true order by the highest degree of integration in 

the system. For instance, when the true DGP is a VARL(k) with I(1) variables, we estimate a 

VARL(k+1) model (irrespective of whether cointegration exists or not) and test for GNC using the 

first k coefficients.  Consider the augmented VARL model 

 xt = ∑
=
Π

k

1i
i xt-i + ∑

=
Π

d

1i
k+i xt-k-i +εt (3) 

where d is the highest order of integration for any element of xt.  In this augmented levels model, 

the null hypothesis of GNC (between x3t and x1t) is H : PAL
0 13=0 where P13 is as above; note that 

H and H test the same set of restrictions in the VARL and augmented VARL models, 

respectively.  The Wald statistic from (3) is then given by (1) where is the LS estimator of 

θ=vec[Π

L
0

AL
0

θ̂

1, Π2, ..., Πk+d] and R is a selector matrix such that Rθ=vec[P13].  We denote the resulting 

Wald statistics as WALd. Under our assumptions, WALd is asymptotically distributed as a 

χ2(n1n3k) variate under H AL
0 , irrespective of the nonstationarity properties of xt.  

Alternatively, using the operator ∆xt=xt-xt-1, the VARL can be written as a VECM 

∆xt = Πxt-1 + ∑
−

=
Γ

1k

1j
j∆xt-j + εt (4) 

where Π = - (In- ∑
=
Π

k

1i
i) and Γj= - ∑

+=
Π

k

1ji
i for j=1,2,..., k-1.  We assume that all the roots of 

0zI ik

1i
in =Π−∑

=
 lie outside the complex unit circle except for possibly some unit roots.  Since 

the rank of Π, denoted r, equals the dimension of the cointegrating space, the statistic used to test 

for noncausality depends on the value of r.  There are three possible cases to consider: r=n, 0<r<n, 

and r=0. The vector xt is believed stationary when r=n; then WL is used to test for GNC. 

If 0<r<n then Π can be decomposed as Π=αβT , where α and β are n×r matrices of rank r,  

β is the cointegrating matrix and α contains the error correction or adjustment vectors.  With Γj 

conformably partitioned with ∆xt, let Γj,13 be the n1×n3 top-right partition of Γj.  In this error-

 
 



   

correction model, the null hypothesis of GNC (between x3t and x1t) is H EC
0 : G13=0 and α1β 3 =0 

where G

T

13=[Γ1,13, Γ2,13, ..., Γk-1,13], α1 contains the first n1 rows of α, and β 3 contains the last nT
3 

columns of βT.  The Wald statistic from (4) with Π=αβT, denoted WEC, is then given by (1) where 

is the estimator of θ = vec[Γθ̂ 1, Γ2, ..., Γk-1, αβT] and R is a selector matrix such that Rθ=vec[G13, 

α1β T
3 ]. We estimate system (4) by maximum likelihood as outlined in Johansen (1988) using the 

normalization suggested by Johansen (1988, p.235); the sample value of WEC is then obtained 

using the transformations given in Lütkepohl (1993).  

Under our assumptions, Toda and Phillips (1993, Theorem 2) show that the statistic WEC 

has a limiting χ2(n1n3k) distribution when rank(α1)=n1 or rank(β3)=n3.  If either of the rank 

conditions is not satisfied then the problems of nuisance parameters, and nonstandard 

distributions, enter the limit theory.  Incorporating testing empirically whether these rank 

conditions hold gives rise to the additional pretesting in Toda and Phillips' (1994) strategies P1-P3.  

Researchers are not currently applying the additional pretest step; they assume validity of 

Theorem 2 of Toda and Phillips (1993, 1994) when cointegration is identified.  As our aim is to 

replicate applied practice, we also do not test the validity of the rank conditions.   

 If r=0 then Π=0 in which case (4) reduces to the VARD model  

 ∆xt = ∑
−

=
Γ

1k

1j
j∆xt-j + εt (5) 

with the GNC null (between x3t and x1t) being H D
0 : G13=0 where G13 is as above so the Wald 

statistic from (5), denoted WD, is then given by (1) where θ is the LS estimator of θ=vec[Γˆ
1, Γ2, 

..., Γk-1] and R is a selector matrix such that Rθ=vec[G13].  The results of Toda and Phillips (1994, 

Proposition 1) ensure that WD is asymptotically distributed as a χ2(n1n3(k-1)) variate under H 0 .   D

 

2.2. Tests for Noncointegration & Cointegration  

Since Granger's (1981) seminal paper on cointegration and the work of Engle and Granger 

(1987), this topic has received enormous attention. Numerous procedures exist for testing whether 

nonstationary series are cointegrated or noncointegrated.  Some methods are based on single 

equation analysis, while others use a systems approach, which requires solving an identification 

problem, typically by principal components, canonical correlations, or restrictions on the 

parameter space.  They also differ on the null hypothesis examined- a null of noncointegration 

versus a null of cointegration.  This is an important distinction under classical hypothesis testing, 

as traditional choices of the level imply that the null will be rejected only for extreme samples.   

 
 



   

Which are the most commonly applied cointegration tests? We provide information in 

Table 1 from an ad hoc survey we conducted based on 218, post 1992, publications or discussion 

papers to help answer this question.  The table reports the cointegration test applied; the method 

employed to choose the augmentation or bandwidth parameter (as necessary); and the strategy 

adopted to determine the lag order for any estimated autoregressive models (as applicable).  Our 

aim in preparing this table was not to be exhaustive, but rather to cover a wide range of sources of 

applied papers. We list the journals and origins of the discussion papers in the Appendix.  Of the 

218 papers we sampled, 173 applied one or more cointegration tests, and, in total, 226 

cointegration tests were performed with 180 of the 226 tests requiring choice of an augmentation 

or bandwidth parameter.  An autoregressive model was estimated by 135 of the 218 papers 

surveyed employing one or more ways to select the lag order. Table 1 gives relative percentages 

on the methods applied at each stage.  For example, 47% of the 226 cointegration tests apply 

Johansen's ML test (JJ), while the Engle-Granger ADF test (EG-ADF) was employed on 32% of 

occasions.  The coverage of "OTHER" in each case is available on request from the first author. 

 
Table 1.  Results of survey of empirical literature on cointegration test; bandwidth/augmentation 
procedure and lag order selection process  
 
Cointegration Test  Augmentation or bandwidth Lag Order Procedure 
    parameter method, applied 

at the cointegration stage    
 
 
JJ  47%  NS  26%  LR  19% 
EG-ADF 32%  PRESET 16%  PRESET 19% 
PO    4%  LR  14%  AIC  14% 
PP    3%  RANGE  13%  NS  14% 
NS    2%  SC  10%  SC  13% 
OTHER 12%   AIC    9%  FPE  12% 
    BPQ    5%  RANGE      4% 
    FPE    2%  OTHER      5% 
    OTHER       5%  
 
Notes:  PO = Phillips and Ouliaris (1990); PP = Phillips and Perron (1988); NS = Not Specified; 
PRESET = preset to an arbitrary number; LR = Likelihood Ratio general to specific; RANGE = 
range of numbers arbitrarily selected; SC = Schwarz’s (1978) Criterion; AIC = Akaike's (1973) 
Information Criterion; BPQ = Box and Pierce’s (1970) Q-test; FPE = Akaike's (1969) Final 
Prediction Error Criterion. 

 

 Given this, we consider three tests: the EG-ADF and JJ procedures, which dominate 

applied studies, and the McCabe et al. (1997) (MLS) test. The EG-ADF and JJ methods analyze a 

null hypothesis of noncointegration and, given classical testing procedures, we only reject in favor 

of cointegration if there is substantial evidence to do so.  However, as the hypothesis of 

 
 



   

cointegration is often of primary interest we include the MLS residual based test also.  As the EG-

ADF and JJ methods are common tools, we do not detail them here.  In our application of the EG-

ADF test, we follow the general recommendations of Hall (1994), and Ng and Perron (1995), for 

the ADF nonstationarity test, by estimating the number of augmentation terms via general-to-

specific modeling.    We use the critical values from MacKinnon (1991). For the JJ test, we 

examine a VECM with no deterministic trends: ∆xt = αβTxt-1 + ∆x∑
−

=
Γ

1k

1j
j t-j + εt. We consider the 

λmax (maximum eigenvalue) test to illustrate the procedure, using the asymptotic critical values 

estimated by MacKinnon et al. (1999).  

  The MLS approach is an extension of the Kwiatkowski et al. (1992) stationarity test.  As 

this cointegration test is not commonly used in applied work, we provide salient details here.  The 

underlying framework is the unobserved components model: yt = w1t+ε1t, w1t=w1,t-1+µ1t, where ε1t 

and µ1t are white noise, mutually independent iid processes with zero mean and constant, finite 

variances.  Cointegrating series have the same common component whereas they “differ” by a 

process that has the same structure as themselves when they noncointegrate.  Specifically, we 

consider the normalized relationship: , for t=1...T, with ztuzy t
T

t +ω+υ=

φj

t being an (n-1)-

variate I(1) process.  If ut is an I(0) process then [yt, zt
T] cointegrate, while an I(1) ut implies 

noncointegration.  We investigate this via an unobserved components process for ut: φ(L)ut=γt+ηt; 

γt=γt-1+νt,  γ0=0, where φ(L)=1- L∑ =
p

1j
j is a pth order autoregressive polynomial in the lag 

operator L with roots outside the unit circle.  We assume ηt is iid (0, σ ), ν2
η t is iid (0, σ ) and 

mutually independent of η

2
ν

t.  If σ 2
ν =0 then ut is an I(0) stationary AR(p) process.  Alternatively, if 

σ 2
ν >0 then ut is I(1), with an ARIMA(p,1,1) representation: φ(L)(1-L)ut = (1-ϑL)ξt, and ξt ~ iid (0, 

σ 2
ξ ), σ = σ 2

ηϑ
2
ξ

-1.  The cointegration score-based test statistic is S = 2−
ησ T-2eTVe with 2−

ησ  being 

a consistent estimator of σ η , V is a T×T matrix whose ij’th element is equal to minimum (i,j), (i,j 

= 1,2,...,T) , and e is an appropriately defined residual vector.  The test statistic has a nonstandard 

nuisance parameter free limiting null distribution.   

2

 To proceed we estimate the normalized regression +ϕt+∑t
T

t zy ω+υ= T
jt

s
sj z −−= ∆ πj+ 

ut; the augmentation terms include current, lead and lag terms to parametrically allow for serial 

correlation in ut, and contemporaneous correlation between zt and ut.  A linear time trend is 

included, as then the regression residuals become invariant to ∆zt having a (possibly) non-zero 

mean.  We follow MLS by choosing s to be the highest integer value satisfying that s grows at a 

 
 



   

rate below T1/3; i.e., s=[T1/3].  Let u~ t be the t’th residual.   We then fit an ARIMA(p,1,1) to u~ t.  

Let the ARIMA(p,1,1) parameter estimates be .   We now form and 

, with  being the pseudo MLE of . The test statistic is then given 

by S~ , which we compare with a 10% critical value; we use the simulated values 

for the asymptotic distribution provided by MLS. 

ϑφφ
~

,
~

,...,
~

p1

σ

∑ = −−= p
1i ittt u~u~e~

ϑσ=σ ξη
~~~ 22

~ 2−
ησ=

p̂

2~
ξσ

e~

2
ξ

Ve~T T2−

ϑφρ ϑ,φρ
d
→

p̂

 MLS use a general to specific approach to consistently estimate p; we apply this here. Let 

be our final estimate of p, ρ be an upper bound such that ρ > p, which we use to estimate an 

ARIMA(ρ,1,1) by pseudo ML. We test the significance of the ρ’th lag using the statistic z(ρ) = 

T1/2 , with  being the MLE’s; z(ρ) N(0,1) when =0.  This choice of the test 

statistic, rather than the usual t-ratio, avoids using computed standard errors, which may be 

unreliable near or on the boundary of invertibility.  If we support =0, then we estimate an 

ARIMA(ρ-1,1,1) model and so on.  In the event of rejection for p=ρ-j, we set = ρ-j and 

terminate the procedure.  Otherwise, we set =0. 

ρφ

ρφ

p̂

  

2.3.  Selection of Lag Order  

Lag length choice in the VARL, VECM or VARD is important to avoid spurious causality 

(or spurious absence of causality), and for obtaining an estimate of the cointegrating rank via the 

JJ approach.  We use two goodness-of-fit criteria and one sequential testing procedure based on 

our survey of the empirical literature.  The LR general to specific approach is the most commonly 

applied procedure in determining the lag order, k, followed by arbitrarily setting k.  A group of 

information criteria (IC) follow next: Akaike’s (1973) information criterion (AIC), Schwarz’s 

(1978) Bayesian criterion (SC), and Akaike’s (1969) final prediction error criterion (FPE).   

The AIC and FPE (which are asymptotically equivalent) do not provide consistent estimators 

of the lag order (e.g., Nishi, 1988; Lütkepohl, 1993), while the SC is strongly consistent. The FPE 

and AIC both have a positive probability of overestimating the true lag order, which perhaps 

suggests that we should not apply these selection procedures.  However, as argued by Cheung and 

Lai (1993) and Gonzalo (1994) for example, overestimation of the lag order may be preferable, 

given the problems that can occur with wrong inferences about r in an under-specified model.  

Further, it has been empirically established that the SC produces overly parsimonious estimates in 

finite samples that may impact on the performance of subsequent hypothesis tests.  Given this and 

the practices of applied researchers, we examine the FPE and SC information criteria in our study. 

 

 
 



   

2.4. Pretest Strategies   

Basically, the pretesting strategies use prior cointegration tests to attempt to verify the 

validity of the appropriate conditions for the asymptotic null distribution of the Wald statistics 

presented in section 2.1, with the exception of the WALd where no pre-testing for cointegration is 

required. We consider three pretest (PT) strategies for testing for GNC based on the three 

cointegration tests outlined in section 2.2; we denote these as EG-ADF PT, JJ PT and MLS PT. 

We briefly outline the PT approaches below and schematically show them in Figure 1.   

 The first step of JJ PT, based on the JJ cointegration test, is to estimate the lag order from 

the VARL model, denoted , using the FPE or SC goodness-of-fit measures, or the LR sequential 

testing strategy.  We next determine the cointegrating rank, denoted r , within the n-dimensional 

VARL( ) model using the JJ λ

k̂

ˆ

k̂ max sequential test.  Although the limiting distribution of the JJ 

statistic does not depend on the lag length, the choice of k may result in a misspecified VARL, 

which will affect the inferences for r in finite samples.  Further, if the errors from the misspecified 

VARL are no longer iid, then asymptotic inference is also invalid the limiting distribution of the JJ 

statistic does not depend on the lag length, the choice of k may result in a misspecified VARL, 

which will affect the inferences for r in finite samples.  Further, if the errors from the misspecified 

VARL are no longer iid, then asymptotic inference is also invalid when based on the usual iid 

tabulated critical values.  Having determined and , the final step in the JJ PT strategy is to test 

for GNC using WD if =0, WEC if 0< <n, or WL if =n. 

k̂ r̂

r̂ r̂ r̂

The EG-ADF PT procedure begins by determining the augmentation parameter for the 

ADF test on the cointegrating regression residuals using a sequential general-to-specific testing 

strategy, followed by a test for the null hypothesis of noncointegration.  Nonrejection of this null 

suggests using a VARD model for the I(1) data, from which we estimate the lag order (say ) via 

either the SC, AIC or LR.  When we reject the noncointegration null, we use a VECM, denoted as 

VECM( ), which implies an underlying VARL( +1) DGP.  In this case the error correction 

term is formed from the cointegrating regression residuals.  The final task is to test for GNC using 

either WD for the VARD( ) model or WEC for the VECM( ). 

k
~

k~ k~

k~ k~

The MLS PT strategy is identical to the EG-ADF PT procedure except for the first two 

steps. Given s=[T1/3], we first determine  via the general-to-specific approach outlined in section 

2.2, and we then use the MLS test to examine the null hypothesis of cointegration. Next, 

depending on the outcome of this test, we either model the nonstationary data as a VARD or a 

VECM selecting the lag order by the SC, AIC or LR methods.  As with the EG-ADF PT strategy, 

the last step is to test for GNC using either WD or WEC appropriately. 

p̂

 

 
 



   

Figure 1. Schematic outline of the pretest strategies  
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3. THE MONTE CARLO DESIGN 

Our simulation experiment uses a trivariate VARL(3) as its basis: xt = Π1xt-1 + Π2xt-2 + 

Π3xt-3 + εt, with xt
T = [x1t x2t x3t] and Πi a square matrix of dimension 3.  The corresponding 

VECM(2) is: ∆xt = Γ1∆xt-1 + Γ2∆xt-2 + Πxt-1 + εt. We use the coefficient values in Πi to set the 

system’s dimension, lag order, integration properties, cointegrating rank, and whether Corollary 1 

and Theorem 2 of Toda and Phillips (1993, 1994) are satisfied.  Recall that these specify rank 

conditions under which the GNC Wald statistics WL and WEC are asymptotic χ2 variates. We 

consider ten families of DGPs in an attempt to cover a range of processes and to enable 

comparisons between our results and those published elsewhere in the literature.  We provide a 

brief outline of each DGP family in Table 2, denoted as F1 to F10. For each DGP family we 

examine four sample sizes (T=50, 100, 200, 400) and three error variance-covariance matrices, 

denoted S1, S2 and S3; the error variance-covariance choices are considered below. 

 The bivariate DGP families F1, F6, and F7 have one cointegrating vector with 

unidirectional Granger causality from x2 to x1.  The cointegration is “sufficient” in terms of 

Corollary 1 and Theorem 2 of Toda and Phillips (1993, 1994); this is always so for bivariate 

cointegrated processes, so that GNC statistics WL and WEC are asymptotic χ2 variates. We test 

for GNC from x2 to x1 and from x1 to x2, denoted respectively as x2 →/   x1 and x1 →/   x2, which 

enables us to determine rejection frequencies when the GNC null hypothesis is true and false.  The 

dynamic order differs between the families: F1 is a VARL(1), F6 is a VARL(2), and F7 is a 

VARL(3). There is also cointegration with the bivariate VARL(1) family F5, which differs from 

F1, F6 and F7 due to there being bidirectional Granger causality.  

There are two cointegrating vectors in the trivariate DGP families F8 (a VARL(1)) and 

F10 (a VARL(2)), and we examine for GNC between x1 and (x2 x3), which ensures satisfaction of 

Corollary 1 and Theorem 2 of Toda and Phillips (1993, 1994); depending on the causal variable, 

n1 (n3) is either 1 or 2.  The causality is unidirectional, so our experiments provide rejection 

proportions when the null hypothesis is true and false.  The DGP family F9 is also a trivariate 

VARL(1), but with only one cointegrating relationship. We test whether x1→/ x3 (giving n1=n3=1) 

and x1→/ x3; the latter hypothesis is false and the former hypothesis is true. We regard this as a 

worst-case scenario as neither Corollary 1 nor Theorem 2 of Toda and Phillips is satisfied since 

the cointegration is “insufficient” for the causal null under investigation.    

 The families F1, F5, F6, F7, F8 and F10 are also used by Zapata and Rambaldi (1997), 

whose Monte Carlo study compares WALd, JJ PT and Mosconi and Giannini’s (1992) LR method 

of testing for GNC.  It is instructive to contrast our results with those of Zapata and Rambaldi as 

 
 



   

they assume that the lag order is either correctly specified or over/under specified by one lag 

whereas our lag order is estimated.  Toda and Phillips (1994) examine F9 (it corresponds to their 

N3) in their investigation of testing for GNC using the JJ PT, allowing for tests for “sufficient” 

cointegration, along with the Wald statistics WD and WL.  They also assume that the lag order is 

either known or overestimated by a fixed order.  We compare some of our results with those of 

Zapata and Rambaldi and Toda and Phillips in section 4. 

There is no cointegration present in DGP families F2, F3 and F4.  The family F2 involves 

two independent random walks so the GNC hypothesis is true in both directions.  There is also no 

Granger causality present within F3 or F4: DGP family F3 is a stationary bivariate VARL(2) and a 

random walk.  For these three DGPs we only generate estimates of probabilities of Type I errors.  

Corollary 1 and Theorem 2 of Toda and Phillips (1993, 1994) are not met for F2 or F4, while 

Corollary 2 of Toda and Phillips (1993, 1994) applies; WL is not asymptotically χ2. Appropriate 

(in terms of standard limit theory) GNC Wald statistics for these two families are WD and WALd, 

with WAL1 preferred to WAL2 since the data are I(1).   Standard distributional results hold for 

WL with DGP F3, though the near integratedness of the data may cause difficulties.  There are no 

gains in testing with WALd over WL for F3 so this family provides us with some information on 

the empirical distortions that may occur when the augmentation method is applied unnecessarily.  

Freeman et al. (1998) also use DGP families F2, F3 and F4 in their limited Monte Carlo study of 

GNC testing using Phillips’ (1995) Fully Modified VAR approach.  We term their investigation 

“limited” with respect to ours as they assume correctly specified DGPs with iid error processes; 

we relax both assumptions in our experiments.  We presuppose that all series are I(1); i.e., we do 

not undertake preliminary unit root tests (aside from that implicit within the JJ PT strategy with 

the full rank case).  Adding in a level for pretesting for unit roots severely complicates the number 

of alternative models that would need to be incorporated.  Such a task entails its own paper.   

The maximum value of the lag order employed to estimate k is 4.  We generate 5000 

series of (T+100+4) observations for each experiment then we discard the first 100 to remove the 

effect of the zero starting values that we used; the other 4 observations are needed for lagging. We 

study three error variance-covariance matrices: S1 is a symmetric matrix with contemporaneous 

covariance parameter 0.5 across the errors, S2 is an identity matrix, and S3 is such that the errors 

are independent across equations, but are moving average processes of order one within equations 

with a moving average parameter equal to 0.8.3 We employed the following nominal significance  

                                                           
3  The introduction of moving average errors can potentially alter the causality structure.  This is unlikely 
here due to our assumption of uncorrelated errors across equations.  Our DGPs under S3 satisfy the 

 
 



   

Table 2. DGP descriptions and null hypotheses examined. 

F1: Π1= , Π
















000
010
05.075.0

2=Π3=0; r=1; x1→/  x2; x2→x1. ; . 21 xx:1H →/ 12 xx:2H →/

F2: Π1= , Π
















000
010
001

2=Π3=0; r=0; x1→/  x2; x2→/  x1. ; . 21 xx:3H →/ 12 xx:4H →/

F3: Π1= , Π
















000
095.00
0095.0

2= , Π















−

−

000
025.00
0075.0

3=0; r=0; x1→/  x2; x2→/  x1.  

21 xx:5H →/ ; . 12 xx:6H →/

F4: Π1= , Π










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



000
010
0075.0

2=Π3=0; r=0; x1→/  x2; x2→/  x1. ; . 21 xx:7H →/ 12 xx:8H →/

F5: Π1= , Π

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













000
02.04.0
05.075.0
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















000
025.10
05.05.1
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
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
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−
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1x

3=0; r=1; x1→/  x2; x2→x1. 

; . x:11H 2x →/

F7: Π1= , Π


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





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


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









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


−
−−
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

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
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F8: Π1= , Π


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



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



−
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)x,x(x:15H 321 →/ ; . 132 x)x,x(:16H →/

F9: Π1= , Π

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






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
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F10: Π1= , Π


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

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
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




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3=0; r=2;  

x1  x2; x1  x3; x2→ x1; x2→x3; x3→ x1; x3 →x2. H ; . →/ →/ )x,x(x:19 321 →/ 132 x)x,x(:20H →/

 

                                                                                                                                                               
noncausality Theorems 3 and 4 of Boudjellaba et al. (1994) but these theorems require invertible ARIMA 
processes, which precludes cointegrating relations.  It would seem highly likely that the theorems would 
extend in this case, but the proofs are as yet unavailable; see Boudjellaba et al. (1994, p.278) for discussion. 

 
 



   

levels: 5% for the GNC test, 10% for the cointegration tests, 1% for the general-to-specific LR 

based lag selection, 5% for the general-to-specific method of choosing the EG-ADF augmentation 

parameter, and 5% for the standard normal test used to estimate p in the MLS PT procedure.  We 

realize the potential impact of our choices; it remains to explore the extent of this. 

  

4.  SIMULATION RESULTS 

 It is a challenge to present the results from our extensive set of experiments in a way that 

is both compact and useful.  The usual tabular approach, aside from taking up over ten pages, does 

not allow much information to be conveyed or assimilated.  Accordingly we use several different 

graphical methods that communicate the relevant information compactly and that enable the 

impact of changes to estimated rejection proportions from the sample size, the covariance matrix, 

testing methods, and other factors to be easily noted4.    

In section 4.1 we provide summary information on estimated Type I error probabilities.  

This discussion highlights the difficulties that can occur with the PT methods.  Accordingly, we 

follow, in section 4.2, with a more detailed examination of the PT methods.  We show that 

problems in GNC testing usually arise when the cointegration pretest does not work well.   In 

section 4.3 we compare empirical powers and we examine, in section 4.4, the importance of 

estimating the lag order, rather than pre-specifying it, in Monte Carlo experiments.  

 

4.1 Summary Estimated Type I Error Probabilities 

In this section we identify the tendency of the various GNC testing methods to 

systematically over-reject or under-reject over the range of cases examined that satisfy the GNC 

null and how this is influenced by sample size, covariance matrix and lag selection tool.  We use a 

graphical tool, which we call a “4M Chart”, to provide the information; “4M” denotes 

“Maximum”, “Minimum”, “Mean” and “Median”, formed as statistics from the twelve cases for 

which the GNC null hypothesis is true.  That is, of the twenty null hypotheses examined for our 

ten DGPs, as detailed in Table 1, twelve of these nulls are true: H1, H3, H4, H5, H6, H7, H8, H11, 

H13, H15, H18, H19. A 4M Chart is comprised of 4M bars, each bar provides the minimum, 

maximum, median and mean estimated Type I error probabilities, which we denote as ETIE, of the 

twelve cases that satisfy the GNC null hypothesis, with testing method, covariance matrix, lag 

selection tool and sample size fixed for a particular bar.  A 4M bar takes one of two forms, 

depending on whether the mean ETIE is less than or greater than the median ETIE.  When the 

                                                           
4 The usual tabulated results are available from the first author.   

 
 



   

mean is greater than the median the bar is of the form: 

Maximum 
Minimum 

Mean  

 
Median 

 

Alternatively, when the mean is less than the median, the bar’s form is: 

 

Mean 

Median 

Minimum 

Maximum  

 

The range of ETIEs can be quickly gleaned from the bars, in addition to the tendency of a 

GNC testing strategy to over- or under-reject.  At the same time, it is straightforward to ascertain 

the impact of sample size, covariance matrix and lag selection tool on the rejection proportions as 

many bars can be presented in one chart.  The 4M charts are shown in Figure 2 in panels labelled 

A to F, with each panel associated with one of the six GNC testing procedures: WL, WAL1, 

WAL2, EG-ADF PT, MLS PT and JJ PT.  Each panel provides a 4M Chart for SC and FPE; the 

charts for LR are similar to those for FPE and are available on request. Rejections proportions are 

provided on the “y-axis” and the “x-axis” denotes the sample size and covariance matrix used in 

that particular set of simulations; e.g., “100-S3” signifies that the 4M bar arises from the twelve 

cases when the sample size is 100 and the S3 covariance matrix is used to generate the errors.   

The nominal significance level of the GNC test is 0.05 and the standard error associated with the 

frequencies is approximately 0.003, though it can be as high as 0.009. 

 The following comments follow from the 4M charts given in Figure 2: 

1. The WALd results in the narrowest range of ETIEs, irrespective of lag selection method, 

followed by WL.  The PT methods can obtain ETIEs approaching one; that is, the GNC null 

will always be rejected even when it is true, which suggests a preference for WALd over the 

PT methods when interest lies only on ensuring consistent support for a true GNC hypothesis. 

2. All methods over-reject, though sample size can assist to mitigate this effect.  

3. The rejection proportions are similar for covariance matrices S1 and S2, while the presence of 

moving average errors usually results in greater over-rejection.   

4. Typically, the addition of the extra lag for WAL2 from WAL1 results in little change in the 

ETIEs, though the differences are more noticeable for T=50.  The addition of the extra lag can 

be helpful in reducing the degree of over-rejection with moving average errors. 

5. The minimum and median ETIEs, compared to the maximum and mean ETIEs, for the PT 

approaches show that for at least half of the cases examined the over-rejection problem is not 

 
 



Figure 2.  4M Charts
Panel A. WL

SC FPE

Panel B. WAL1
SC FPE
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Figure 2 (ctd).  4M Charts

Panel C. WAL2
SC FPE

Panel D. EG-ADF PT
SC FPE
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Figure 2 (ctd).  4M Charts

Panel E. MLS PT
SC FPE

Panel F. JJ PT
SC FPE
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too serious and is comparable in magnitude to that for WL, WAL1 and WAL2, at least when 

the errors are not serially correlated.  This suggests that the form of the DGP is far more 

crucial for ensuring control of the Type I error probability for the PT methods than for WL, 

WAL1 or WAL2.  We explore this issue further in section 4.2. 

6. At least for WAL1 and WAL2, our results tend to support use of the SC criterion for selecting 

the lag order over the FPE (and LR) method. 

7. The spread between the mean and median ETIEs is typically narrower for the FPE than the SC, 

for the PT methods and the WL approach, especially with moving average errors. 

  The 4M Charts show the consistent performance of the WALd method in terms of ETIEs 

over the PT approaches across the wide range of DGPs, covariance matrices, lag selection 

methods and sample sizes that we examined.  The charts also show that the problems with the PT 

methods are DGP dependent, as the ETIEs for some DGPs are comparable, and may indeed be 

preferable, to those of WAL1 and WAL2.  We explore this issue in the next section.  

 

4.2  More on Estimated Type I Error Probabilities for the PT Methods 

 We illustrate the impact of DGPs on the ETIEs for the PT methods in Figure 3, which 

provides scatter plots of ETIEs, when T=50, 100, 200 and 400, for EG-ADF PT, MLS PT and JJ 

PT when S1 is used to generate the errors and SC is the chosen lag order tool; the plots for the 

other covariance matrices and lag selection tools are qualitatively similar.  We include a scatter 

plot for WAL1 for comparative purposes.  The “x-axis” for each panel in Figure 3 is the DGP 

family and null hypothesis under test; e.g., “F3-H6” denotes DGP F3 when null hypothesis H6 is 

examined.  The “y-axis” in each case is the estimated Type I error probability.   

 One obvious feature is that F4-H8 and F10-H19 are “problem” cases for all three PT 

methods; rejection probabilities are over 0.40 irrespective of sample size.  The residual based PT 

methods also have difficulties with F3-H6 and F8-H15, but not so JJ PT.  Conversely, JJ PT 

suffers serious over-rejection for F7-H13 while this case is not of concern for EG-ADF or MLS-

PT.  Serious over-rejection does not occur for the other null hypotheses; for these cases, often JJ 

PT results in a Type I error that is closer to 0.05 than for WAL1 or WAL2, but this does not occur 

for either of the residual based PT procedures.  The “problem” DGPS are quite different in nature; 

e.g., DGP F4 is comprised of a stationary series and a unit root process, while DGP F10 has two 

cointegrating vectors and “sufficient” cointegration in the sense of Toda and Phillips (1993, 1994).  

However, the common thread is that we observe an over-rejection of the GNC null hypothesis for 

the PT methods when there is concurrently a higher than expected detection of one or more 

 
 



Figure 3. PT & WAL1 ETIEs for S1 and SC 

Panel A. EG-ADF PT Panel B. MLS PT

Panel C. JJ PT Panel D. WAL1
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cointegrating relationships.  This is inevitable, as cointegration implies Granger causality.  

 We illustrate this problem in Figure 4, where we provide stacked bar charts that compare 

the estimated Type 1 error probabilities with the corresponding proportion of trials for which an 

outcome of cointegration is found.  We examine the same cases presented in Figure 3, limiting 

attention to T=100 as qualitatively similar figures result for the other sample sizes, covariance 

matrices and lag selection methods.   The lower part of each bar, shaded as      , provides the 

ETIEs, which ideally would be close to 0.05, and the upper part of each bar, shaded as     , reports 

the proportion of trials for which cointegration is detected, denoted as CF for “cointegration 

frequencies”.   There is no cointegration with DGPs F2, F3 and F4, yet the residual based tests 

often detect such for F3 and F4 with a consequential finding of at least unidirectional Granger 

causality, while JJ PT does not have trouble with F3 but does so with F4; recall that F3 is a near 

integrated case and F4 consists of a stationary series and an integrated process.  These results 

highlight the importance for noncausality testing of accurately determining the cointegrating rank. 

The DGP F8 is quite different.  Then, the pretest methods do well at detecting 

cointegration, with the JJ method reasonably accurate at detecting two cointegrating vectors.  

However, the residual based PT approaches suffer from extreme over-rejection of the GNC null 

due to their limitation of only being able to detect one cointegrating vector.  The resulting 

omission of a relevant error correction term in the VECM leads to lack of control of the GNC 

Type I error probability.  This suggests that residual based approaches should not be used to form 

VECMs for GNC testing when there is a likelihood of more than one cointegrating relationship. 

The residual based tests outperform JJ PT, on the other hand, for DGP F7 for H13; this 

DGP is a bivariate VAR(3) with one cointegrating relationship.  Though all PT methods do well at 

accurately detecting cointegration, JJ PT more often than not finds bidrectional causality rather 

than the actual unidirectional causality – this is not a problem for the residual based PT methods.   

 The DGP F10 is an enigma in some sense. Despite there being two cointegrating 

relationships, JJ PT does not detect cointegration, while the residual based tests do reasonably well 

at finding cointegration.  Nevertheless, the PT methods strongly reject both H19 and H20 when 

H19 is true.  We suspect that the problem is one of complexity – the PT methods find it difficult to 

accurately estimate the cointegrating vectors and Granger causal relationships in higher 

dimensional systems.  We conjecture poor performance for the PT methods in systems comprised 

of four or more variables, though this remains to be verified in future research. 

 Our examination of the PT methods in this section provides evidence that the key to 

adequate control of the GNC Type I error probability is accurate assessment of the cointegrating 

 
 



Figure 4. PT Stacked Bar Chart of ETIEs & CFs for S1 and SC when T=100
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rank, known to often be a difficulty.  We now turn our attention to power comparisons. 

 

4.3 Empirical Power Comparisons 

Our experiments provide empirical “powers” - the proportion of trials for which we reject 

a false null hypothesis – when testing hypotheses H2, H9, H10, H12, H14, H16, H17 and H20.  

The estimated “powers”, denoted by EP, are size uncorrected.  We are aware of the debate on 

reporting such estimates, but for many of our cases there is often strict dominance; i.e., a 

procedure which has smaller empirical probability of a Type I error and higher empirical ‘power’.  

We believe that for the other cases, the results are informative enough to enable us to offer advice 

to practitioners, without the need for providing size corrected power information, a task that would 

be highly difficult here given the number of DGPs that satisfy the GNC null.  

Figure 5 shows EPs for each GNC testing strategy for T=50 when S1 is the error covariance 

matrix.  Though quantitatively different, the figures for S2 and S3 are qualitatively similar.  As our 

results suggest little difference in EPs when T=100 and no significant difference for the larger 

sizes, we limit attention to the smaller sample size.  The figure is divided into six panels – one for 

each DGP – and each panel has three bar charts – one for each lag selection method.  The height 

of the bars in each chart provides EPs; the graphical representation, rather than the usual table 

format, makes it far easier to compare across procedures, DGPs and lag order criterion.  Each 

chart also provides the associated ETIEs, which is useful when comparing EPs, given that these 

are not size corrected.  The “y-axis” in each case is the estimated proportion of trials for which we 

reject the relevant GNC null hypothesis and the “x-axis” provides the testing method. 

 The following points arise from the charts in Figure 5: 

1. WL is, as expected, preferred when the rank conditions hold to ensure its standard limiting null 

distribution.  Though the unadjusted EP is comparable when the rank conditions fail (see DGP 

F9), Type I error problems suggest that WL would then be dominated by WALd and JJ PT. 

2. There is an anticipated loss in EP from using WALd over WL when the latter’s null limiting 

distribution is indeed χ2 (F1, F6, F7, F8, F10); e.g., the reduction in EP is approximately 17% 

for F1 while up to 52% for F8.  The loss in power reduces significantly with increases in the 

true lag order when T=50 and there is minimal difference for samples greater than 50. 

Typically, the addition of the extra lag for WAL2 from WAL1 results in little change in the 

estimated rejection proportions, though it can be helpful with moving average errors.   

3. Rarely does MLS PT and EG-ADF PT result in a higher EP than WAL1 or WAL2, especially 

once allowance is made for differences in Type I error probabilities.   

 
 



Figure 5.  Empirical Powers for S1 and T=50
Panel A. DGP F1 SC FPE LR
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4. EP for the JJ PT method is typically higher than that for WALd when T=50, though the 

differences disappear for higher sample sizes.  However, this advantage must be weighed 

against the issues that can occur with Type I error probabilities with JJ PT. 

5. The lag order method adopted results in some quantitative differences in EP but similar 

qualitative comparisons occur.  Interestingly, the EPs for JJ PT are more sensitive to the lag 

selection criteria than are the other approaches; e.g., with LR, JJ PT usually has the lowest EP 

but this is rarely so with SC and FPE, while, allowing for Type I error probability differences, 

the EP for the other methods varies less with lag method.    

 

The DGP F5 has bidirectional causality so that power is only of interest.  Figure 6 

provides bar charts of the EPs that result after testing H9 and H10 when T=50.  The figure is 

divided into three panels – one for each error covariance matrix; each panel reports three charts – 

one for each lag approach.  The JJ PT procedure outperforms the other methods when there is 

bidirectional causality.  The loss in EP for WALd over WL, which is valid for this DGP, and JJ PT 

can be quite substantial in small samples, but the differences in EP are minor (typically) when T ≥ 

200.  The residual based PT approaches rarely do well, usually being outperformed by WALd, JJ 

PT and WL.   There are only minor differences in EP across the lag methods, for a given error 

variance-covariance matrix, though LR is less consistent across the three covariance matrices.    

 

4.4 Impact of Estimating the Lag Order on the Monte Carlo Results 

 The accuracy of lag selection methods has been well explored; we can add little to this 

debate.  Of importance is whether we gain in our learning about the properties of GNC statistics 

by substantially expanding the Monte Carlo experiments to incorporate lag selection, as opposed 

to assuming a correctly specified structure or a VAR process that is always over/under specified.  

 We address this by comparing some of our results with those available from studies that 

assume a given lag structure; e.g., Toda and Phillips (1994), Dolado and Lütkepohl (1996), Zapata 

and Rambaldi (1997), and Yamada and Toda (1998).  As we described in section 3, several of our 

DGP families match those used by Zapata and Rambaldi (1997), who assume that the lag-order is 

“true”, or “under”-specified by one, or “over”-specified by one and examine (in our terminology) 

WAL1 and JJ PT.  Comparing our results to those reported by Zapata and Rambaldi (1997) we 

find that the cases of “correct”, “under”, and “over” often do not reflect the frequencies found 

when the lag structure is estimated, especially for small sample sizes (e.g., T=50).  For instance, 

for our DGP F8, which corresponds to DGP5 of Zapata and Rambaldi (1997), we find that their 

 
 



Figure 6.  Empirical Powers for H9 and H10 (DGP F5), T=50
Panel A. S1 SC FPE LR

Panel B. S2 SC FPE LR

Panel C. S3 SC FPE LR
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“over” frequencies substantially overstate the distortion in the estimated Type I error probability 

for WAL1 when T=50 with the lag dynamics estimated using SC or FPE; our results correspond 

more closely to those reported by Zapata and Rambaldi for “true”.  However, our LR results for 

this example are more similar to Zapata and Rambaldi’s “over” frequencies.   

 In contrast, for the same DGP, their “true” frequencies for the JJ PT method understate 

the distortion we observe when the lag-order is estimated by SC and FPE; our results are closer to 

their “over” outcome for this comparison.  Moreover, our LR results with JJ PT exhibit much 

greater distortion than suggested by even their “over” case. 

 These comparative results need not hold for the other DGP families.  The DGP family 

F7, which is Zapata and Rambaldi’s DGP4, provides another example.  Comparing results, their 

“under” and “true” cases reflect the size distortion outcomes likely when estimating the lag order 

when using WAL1 with T≤100.  However, their “under” frequencies substantially underestimate 

the uncorrected powers when the lag structure is estimated; these empirical powers are closer to 

those observed for “true” or “over”, depending on lag selection method. 

 Toda and Phillips (1994, Table III, p276), who assume that the lag-order is either “true” 

or “over” by one or three, provide rejection proportions comparable to those for our DGP F9.  We 

find that the rejection proportions for their pre-specified lag results are typically smaller than ours.  

Another relevant analysis is that of Yamada and Toda (1998), who compare the empirical 

“size” and “size-unadjusted” power of, amongst others, the WAL1 and JJ PT (with the additional 

P1 test of Toda and Phillips, 1994) methods, assuming a known lag length for a bivariate system.  

They limit attention to an identity matrix error variance-covariance as they show that the finite 

sample distributions of their Wald test statistics for any choice of innovation variance-covariance 

matrix are equivalent to those of a transformed model with an identity covariance matrix, when the 

lag structure is known.  However, this no longer follows once the lag dynamics is estimated; our 

results illustrate that the form of the error variance-covariance matrix can substantially change the 

finite sample performance of the statistics and the preference for one method over another. 

In summary, the finite sample properties of GNC statistics can be markedly different 

when we estimate the lag structure than when the dynamics is pre-specified, either correctly or 

incorrectly, so that the additional effort in coding for the Monte Carlo experiments is worthwhile 

in order learn more about the procedures applied by practitioners. 

 

5.    AN EMPIRICAL APPLICATION 

 Many have examined for the existence of a long-run stable relationship between real 

 
 



   

money balances (mb), real income (gdp) and nominal interest rates (ir).  The results generally 

provide support for the stationarity of a money demand relation, which implies Granger causality 

in at least one direction.  We examine these three time series to test for GNC using each procedure 

and lag selection method examined in our Monte Carlo study.  We then discuss the outcomes in 

light of our simulation experiments.  

 We use Hoffman and Rasche's 1996 data for our study downloaded from the Journal of 

Applied Econometrics Data Archive.  The data are quarterly, seasonally adjusted U.S. time series 

originally obtained from the Citibase data set.  Real money balances are calculated by deflating the 

nominal series by the GDP deflator.  Both real balances and real GDP are expressed as natural 

logarithms, and the Treasury bill rate is used as the interest rate variable.  Allowing for appropriate 

lagging, estimation for all equations is undertaken over the period 1954:1 to 1994:4 (164 

observations).  We considered up to ten lags when choosing the systems lag order with the lag 

order selected from a VARL model for WAL1, WAL2, JJ PT and WL, while we employ the 

VECM or VARD model with appropriate residual vectors for the EG-ADF PT and MLS PT 

procedures.  In the VARL model the SC criterion results in a parsimonious two lags while the FPE 

and LR criteria lead to six and eight lags respectively.  Cointegration is detected from the EG-

ADF test with a VECM(2) being selected by SC, and a VECM(8) is selected by both the FPE and 

LR.  Conversely, noncointegration is suggested by the MLS test with lag orders for the resulting 

VARD model being 2, 8 and 7 for the SC, FPE and LR respectively. 

 We follow Hoffman and Rasche’s (1996) analysis, and assume that each of our time 

series is integrated of order one with no deterministic trends.  The JJ λmax test supports one 

cointegrating vector, irrespective of lag method.  This aligns with the research on this question.  

Regarding cointegration via the EG-ADF method we required one augmentation term in the 

auxiliary regression, with resulting support for the existence of a stable relationship.  We found no 

support for cointegration from the MLS test.   

Our final task is to undertake appropriate GNC Wald tests for each of our models and lag 

selection methods; we use a nominal 10% level of significance.  We report the results in Table 3 

using Granger causal maps.  The causal map is a “directed graph”, with an arrow that leads from 

one variable to another indicating support for Granger causality; e.g., mb gdp implies that mb 

Granger causes gdp.  We interpret these maps in light of our simulation experiments.   

→

As presented, the maps show no unanimity between lag methods and procedures, except 

for the question of GNC from ir to gdp and ir to gdp. We consider first the causality direction 

between gdp and ir.  All methods support Granger causality from ir to gdp and, given our  

 
 



   

Table 3. Granger causal maps 

Lag/Procedure SC FPE LR 

WL            gdp 

ir                     mb 

          gdp 

ir                     mb 

          gdp 

ir                     mb 

WAL1           gdp 

ir                     mb 

          gdp 

ir                     mb 

         gdp 

ir                     mb 

WAL2           gdp 

ir                     mb 

          gdp 

ir                     mb 

         gdp 

ir                     mb 

EG-ADF 

PT 

          gdp 

ir                     mb 

          gdp 

ir                     mb 

         gdp 

ir                     mb 

MLS PT            gdp 

ir                     mb   

          gdp 

ir                     mb 

         gdp 

ir                     mb 

JJ PT           gdp 

ir                     mb 

          gdp 

ir                     mb 

         gdp 

ir                     mb 

 

simulation experiments, it seems reasonable to assume that this exists.  The sample values for 

WAL1 and WAL2, and (applying a relatively liberal significance level) EG-ADF PT and MLS 

PT, support bidirectional causality here; i.e., the methods also indicate causality from gdp to ir.  

The JJ PT method supports bidirectional causality when using the FPE and LR method, but not 

with SC.  When there is bidirectional causality, our simulations suggested that JJ PT is most likely 

to detect it (size control is not of issue here), and so the JJ PT results we have here are consistent 

with these observations, at least for the FPE and LR methods.  What about SC?  The outcome for 

this selection criterion probably reflects the known slow rate at which the SC moves away from 

the low lag orders. Further, as the probability of overfitting using FPE decreases exponentially 

with the number of freely estimated parameters in the system, it would seem that the FPE (and so 

also LR here) results are more likely than the SC.  That is, the SC is likely to be underestimating 

the lag order, and may not be detecting causality from the JJ PT method, when in fact it exists.  

Consequently we can reconcile the observed differences and support bidirectional causality 

between ir and gdp, using the results from our simulations and those from other studies on lag 

order performance. 

 Turning now to GNC between gdp and mb, the results typically suggest Granger causality 

from mb to gdp with FPE and LR, but only WL and JJ PT support causality when using SC.  

There is no support for GNC from gdp to mb, using WAL1 and WAL2. The statistic WL with SC 

 
 



   

and LR, but not with FPE, implies Granger causality. The pretest approach JJ PT indicates 

bidirectional causality with SC and LR, but not with FPE; then, we find unidirectional causality 

from mb to gdp.  The EG-ADF PT method, on the other hand, suggests bidirectional causality with 

FPE and LR, but only unidirectional causality from gdp to mb with SC; MLS PT suggests similar 

outcomes. These results illustrate the potential conflicts that can occur, demonstrate that 

researchers would be wise to apply more than one approach when testing for GNC, and to 

consider simulation results to try to interpret the differences that may arise.  We now attempt this.  

 First, our simulation experiments suggest that LR is more likely to over-reject GNC than 

is FPE and SC.  Second, our earlier discussion also indicates likelihood that the SC may be 

underestimating the lag order leading us to support a false GNC null.  However, this is unlikely 

with the FPE criterion, and given the simulation performance of the augmented lags approach 

across many different DGPs, we proceed with the FPE WAL1 (and WAL2) result of GNC from 

gdp to mb.  This is supported by the JJ PT FPE conclusion.  We know that WL can overreject a 

true null more than WAL1 or WAL2, even when WL is valid, and this may be driving the WL 

FPE GNC result.  If we proceed with GNC from gdp to mb, then the EG-ADF PT and the MLS PT 

are supporting causality when it does not exist.  This often occurred in our simulation experiments. 

Finally, can we conclude unidirectional causality from mb to gdp?  Typically, our simulations 

indicate that the JJ PT method has the highest size uncorrected power when causality exists. This 

lends support for unidirectional causality from mb to gdp as this outcome results irrespective of 

lag method with JJ PT, EG-ADF PT and MLS PT, except for SC with the residual based tests.  

Moreover, our simulations indicate that WAL1 and WAL2 sometimes have reduced power 

(relative to the PT methods) for detecting causality.  The FPE WAL1 and WAL2 P-values imply 

unidirectional causality, but not nearly as strongly as for JJ PT, while the SC P-value points to 

GNC from mb to gdp; these outcomes may be a reflection of our simulation results and the 

underestimation of the lag structure by the SC.   

The methods suggest bidirectional causality between ir and mb, except for WL with SC, 

MLS PT and JJ PT where the support is for unidirectional causality from ir to mb.  Parsimonious 

lag order selection could be causing the SC outcome, giving a spurious finding of noncausality.  

Thus, using our experiments and the observed P-values, we conclude unidirectional causality from 

mb to gdp, bidirectional causality between ir and gdp and between ir and mb. 

 

 

 

 
 



   

6. RECOMMENDATIONS FOR APPLIED RESEARCH  

AND CONCLUDING REMARKS 

In this paper we compared several methods for testing for Granger noncausality over a 

wide range of data generating processes, allowing for the lag order to be selected by either 

Schwarz's (1978) criterion, Akaike's (1973) FPE criterion or a likelihood ratio general to specific 

hypothesis testing approach.  Overall, our simulation results suggest that the augmented lag 

method of Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996) exhibits consistent 

performance over the wide range of investigated DGP families.  We prefer this method to the 

pretesting approaches, whether applying Johansen's (1988) method of testing for cointegration, or 

the residual based procedures of Engle and Granger (1987) and McCabe et al. (1997), when there 

is noncausality or unidirectional Granger causality.  The cointegration pretest techniques can 

exhibit serious overrejection frequencies of a true noncausal null.  Typically these problems arise 

from inaccurate determination of the cointegrating rank at the prior testing stage, which may be 

exacerbated by the form of error variance-covariance matrix.  When causal relationships exist, we 

found that Johansen’s cointegration maximum likelihood pretest method often exhibits the highest 

empirical power, though the difference in empirical power between the various pretest approaches 

is usually insignificant in large samples. 

Thus, we recommend a two-prong strategy to applied researchers interested in Granger 

causal relationships.  We suggest that the Granger noncausality test be undertaken using both the 

augmented lag method and Johansen’s cointegration pretest procedure, with an outcome of 

noncausality being supported when suggested by the WALd statistic, but a result of causality if 

indicated by the WALd statistic and confirmed, probably even more strongly, by Johansen's 

pretest method.  Our results do not show a preference for the residual based cointegration pretest 

procedures.   We illustrated many of the distortions that we observed in our simulation 

experiments with a money demand example.  Then, our experiments helped us reconcile several 

different causality outcomes. 

 Our simulation experiments generally indicated preference for the Schwarz (1978) 

criterion for lag order determination, in terms of GNC statistic properties, particularly for samples 

less than 100 observations.  We observed little difference in GNC frequencies between the 

performances of lag selection criteria in larger samples.  Rarely, though, was the likelihood ratio 

strategy a preferred choice.   

However, if the true lag order is relatively large, SC may underestimate it, missing a 

causal relationship.  Our empirical example illustrated this possibility.  Accordingly, we advise 

 
 



   

applied researchers to apply two lag selection methods; e.g., SC and FPE (or AIC).  When the 

difference between the resulting lag orders is large, and if there are sufficient observations, we 

recommend researchers proceed with the FPE noncausality results when there is a conflict with the 

SC outcome.  However, when the two criteria suggest a similar lag order, SC usually exhibits 

better control of the Type I error probability and empirical power than does FPE. 

 Much remains for future research.  The fully modified VAR (FM-VAR) estimation 

procedures (Phillips, 1995 and Quintos, 1998) offer an alternative route to those explored here.  

Though they were found to suffer from some overrejection frequencies in the known lag case 

studied by Yamada and Toda (1998), the FM-VAR strategies may do better when selection criteria 

are used.  Jointly determining the cointegrating rank and lag order (e.g., Gonzalo and Pitarakis, 

1998) may provide better finite sample performance when testing for Granger noncausality than 

the sequential procedures we examine.  The application of Monte Carlo or bootstrap tests may also 

be beneficial here.  We have also limited our attention to Wald tests for noncausality; a useful 

avenue of research would be to explore whether LR test statistics and/or out of sample prediction 

criteria do better at accurately determining Granger noncausality.   
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